Sinhrone mašine imaju istu (sinhronu) brzinu obrtanja rotora i obrtnog magnetnog polja statora

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Sinhrone mašine imaju istu (sinhronu) brzinu obrtanja rotora i obrtnog magnetnog polja statora"

Transcript

1 SINHRONE MAŠINE

2 Sinhrone mašine imaju istu (sinhronu) brzinu obrtanja rotora i obrtnog magnetnog polja statora Mogu raditi i kao generatori i kao motori U oba režima rada mogu proizvoditi reaktivnu energiju i predavati je mreži Najčešće se koriste kao trofazni generatori za proizvodnju električne energije Sinhroni generatori se prema vrsti pogonskih mašina dele na: - turbogeneratore - pogon sa parnim ili gasnim turbinama - hidrogeneratore - pogon sa vodenim turbinama - dizel generatore - pogon sa dizel motorima

3 SINHRONI GENERATORI Turbogeneratori se koriste u termoelektranama i nuklearnim elektranama i grade se do snaga 2000 MVA i napona do 27 kv Hidrogeneratori se primenjuju u hidroelektranama i grade za snage do 800 MVA i napona 110 kv Snaga dizel generatora zavisi od snage pogonskog dizel motora i može biti do nekoliko desetina MVA Sinhroni generator snage 15 MVA Sinhroni generator može se koristiti samo za proizvodnju reaktivne električne snage - tada se naziva sinhroni kompenzator

4 Konstrukcija sinhronih mašina Stator sinhrone asinhrone mašine Magnetno kolo izolovanih limova mašine statora identičan je po konstrukciji sastoji se od tankih i statoru međusobno Namotaj je smešten u žlebovima statora Izgled statora sinhrone mašine Namotaj statora je trofazni, a kroz namotaj rotora propušta se jednosmerna struja

5 Namotaj rotora je pobudni namotaj Njegovo napajanje se ostvaruje pomoću dva klizna prstena na vratilu i četkica pričvršćenih na statoru Rotor može biti: cilindrični rotor - sa neistaknutim polovima - - sa istaknutim polovima -

6 Cilindrični rotor - ožlebljen rotor, najčešće je od masivnog gvožđa - namotaji su sastavljeni iz sekcija i smešteni u žlebovima Rotor sa istaknutim polovima - jezgro je od punog gvožđa i ima isturene polove - namotaji su postavljeni oko jezgra svakog pola

7 Konstrukcija rotora zavisi od vrste pogonske mašine koja obezbeđuje spoljnu mehaničku snagu Turbogeneratori (za pogon se koriste parne turbine) - velike periferne brzine rotora (3000 i 1500 ob/min) i velike obrtne mase - rotor je cilindričan, velike aksijalne dužine i malog prečnika, sa što ravnomernijim rasporedom namotaja po obimu - turbogeneratori se uvek postavljaju horizontalno Cilindrični rotor turbogeneratora

8 Hidrogeneratori (pogon vodenim turbinama) - brzine rotora od ob/min) i velike obrtne mase - rotor je sa istaknutim polovima, manje aksijalne dužine i većeg prečnika Rotor hidrogeneratora sa istaknutim polovima

9 Šema veze trofaznog dvopolne sinhrone mašine Broj magnetnih polova na rotoru je dva, kao i magnentih polova obrtnog magnetnog polja

10 SINHRONI MOTORI U motorskom režimu rada stator sinhrone mašine priključen je na trofaznu električnu mrežu Struje u statoru proizvode obrtno magnetno polje koje se vrti brzinom: Ako se rotorski namotaj priključi na jednosmerni napon, jednosmerna struja će stvoriti magnetno polje konstantnog fluksa Rotor ima veliku masu i inerciju, a obrtno polje rotira velikom brzinom, pa magnetni polovi polja statora i rotora ne mogu da se zakače

11 Kada magnetni pol N obrtnog polja statora pređe preko S pola magnetnog polja rotora, S pol rotora teži da prati N pol statora, dolazi do kretanja rotora polovi rotora zakačili su se ili zalepili za stator Sinhroni motor okreće se konstantnom brzinom

12 Brzina obrtanja sinhronog motora ne zavisi od opterećenja radne mašine koju motor pokreće Važno je samo da moment radne mašine nije toliko veliki da motor ispadne iz sinhronizma (dešava se kada snaga magnetne veze između statora i rotora nije dovoljna da magnetno polje rotora prati obrtno magnetno polje statora)

13 Potrebno je rotor dovesti na brzinu obrtanja koja je približno jednaka brzini obrtnog polja statora Ako se to učini, magnetni polovi će se "zalepiti" i rotor će nastaviti da se obrće sa jakim obrtnim momentom i na njegovu osovinu moći će da se priključi radna mašina Rotor sinhronog motora može se dovesti na sinhronu brzinu obrtanja na tri načina: priključenjem na njegovo vratilo drugog pomoćnog motora asinhronim pokretanjem, ako se u rotor ugradi dodatni (zaletni) kavez korišćenjem pretvarača frekvencije postavljenog između mreže i motora

14 Pokretanje pomoćnim motorom skupo je i nije praktično, jer zahteva mehaničko spajanje Asinhrono pokretanje: u rotor sinhronog motora ugrađuje se dodatni (zaletni) kavez - Pomoću zaletnog kaveza motor se pokreće kao asinhroni i dostiže brzinu koja se malo razlikuje od brzine obrtanja obrtnog polja statora - Namotaj rotora se zatim priključuje na izvor jednosmerne struje - Pošto je razlika brzina obrtanja vrlo mala, u motoru se javlja tzv. uskočni moment, koji rotor dovodi na sinhronu brzinu obrtanja - U normalnom radu kavez ne smeta, jer se u njegovim štapovima ništa ne indukuje (brzina rotora jednaka je brzini polja) - Pored pokretanja, kavez na rotoru prigušuje oscilacije struje i amortizuje mehaničke udare na vratilu za vreme prelaznih pojava

15 Pokretanje frekventnim pretvaračem vrši se tako što se, pri uključenoj pobudi rotora, frekvencija na frekventnom pretvaraču podesi na malu vrednost, čime se ostvaruje mala brzina obrtnog polja statora Postepenim povećavanjem frekvencije na izlazu frekventnog pretvarača povećava se brzina obrtanja rotora motora, sve do dostizanja nominalne sinhrone brzine obrtanja :

16 Sinhroni motor kao sredstvo za popravku faktora snage mre že Pri radu sinhronog motora postoje dva obrtna magnetna polja: - jedno, koje se dobija obrtanjem rotora sa magnetnim polovima (Φp) - drugo, od naizmeničnih struja u namotaju statora (Φa) Iz ova dva obrtna magnetna polja dobija se rezultujuće polje (fluks Φrez) koje u namotaju statora indukuje protiv elektromotornu silu Ea, suprotnog smera od napona U na koji je motor priključen Struja Ia u namotaju statora zaostaje u fazi iza napona U za ugao Struja statora Ia stvara magnetni fluks Φa, pa i on zaostaje iza napona U za ugao

17 Snaga sinhronog motora: P 3 U I a cos Ako je motor priključen na mrežu stalnog napona U - snaga motora menja se samo ako se menja Iacosφ Ako se opterećenje motora ne menja: I a cos const. Kako je Ia ~ Φa važiće i: Φa cos const. što predstavlja projekciju vektora Φa na pravac vektora U

18 Kada se menjaju vrednosti pobudne struje Ip, odnosno fluksa Φp, temena trouglova (C, C, C i C ) moraju ostati na istoj pravoj Ako se smanji pobudna struja (Ip ) smanjuje se Φp, povećava se ugao φ (φ' na slici) i struja statora Ia više zaostaje za naponom U Pri jednoj pobudnoj struji (Ip ) i fluksu (Φp ), ugao φ=0 i strua Ia i napon U su u fazi Daljim povećanjem pobudne struje (Ip ), struja u statoru Ia prednjači naponu U

19 U mrežama naizmenične struje asinhroni motori čine da je struja fazno pomerena unazad od napona (I1) Da bi se poboljšao faktor snage (cos ) može se upotrebiti veći sinhroni motor za pogon neke veće mašine radilice Povećavanjem pobudne struje sinhronog motora (I2) on će imati struju koja fazno prednjači naponu U Vektorskim slaganjem ove struje sa strujom asinhronih motora rezultujuća struja (Irez) pomerena je unazad od napona U za manji ugao povećava se ukupan faktor snage cos

20 Sinhroni motor može se upotrebiti za pokretanje kompresora, ventilatora, itd. Prednosti: - dobar faktor snage - visok stepen korisnog dejstva - izdržava znatna preopterećenja - neosteljiv je na varijacije napona Nedostaci: - pokreće se specijalnim kratkopojenim namotajem na rotoru ili malim asinhronim motorom - puštanje u rad zahteva sinhronizaciju - pri velikim preopterećenjima može ispasti iz sinhronizma i stati - za pobudni namotaj potrebna je jednosmerna struja - broj obrtaja ne može se menjati

21 Tipičan izgled sinhronog motora velike snage (više stotina kw):

22 Sinhroni motori malih snaga: Koriste se tamo gde upravljanje je neophodno precizno i kvalitetno Izuzetno su važni za primenu u robotici, alatnim mašinama i servopogonima

ELEKTRIČNE MAŠINE Sinhrone mašine

ELEKTRIČNE MAŠINE Sinhrone mašine ELEKTRIČNE MAŠINE Sinhrone mašine Uvod Sinhrone mašine predstavljaju mašine naizmenične struje. Koriste se uglavnom kao generatori električne energije naizmenične struje, te stoga predstavljaju jedan od

Διαβάστε περισσότερα

Uvod. Asinhrona mašina se u primjeni najčešće koristi kao motor, i to trofazni, iako može da radi i kao generator.

Uvod. Asinhrona mašina se u primjeni najčešće koristi kao motor, i to trofazni, iako može da radi i kao generator. Asinhrone mašine Uvod Asinhrona mašina se u primjeni najčešće koristi kao motor, i to trofazni, iako može da radi i kao generator. Prednosti asinhronih mašina, u odnosu na ostale vrste električnih mašina,

Διαβάστε περισσότερα

SINHRONE MAŠINE. Osnovi elektroenergetike. Dr Ivana Vlajić-Naumovska

SINHRONE MAŠINE. Osnovi elektroenergetike. Dr Ivana Vlajić-Naumovska SINHRONE MAŠINE Osnovi elektroenergetike Dr Ivana Vlajić-Naumovska Sadržaj Uopšteno o sinhronim mašinama Sinhroni generatori Podela sinhronih generatora Osnovni delovi Princip rada Pobuda sinhronih mašina

Διαβάστε περισσότερα

MAŠINE JEDNOSMERNE STRUJE

MAŠINE JEDNOSMERNE STRUJE MAŠINE JEDNOSMERNE STRUJE ELEKTROMEHANIČKO PRETVARANJE ENERGIJE Uređaji za elektromehaničko pretvaranje energije: ELEKTRIČNI SISTEM MEHANIČKI SISTEM Električni motori Električni generatori Sprega između

Διαβάστε περισσότερα

OBRTNO MAGNETNO POLJE DVOSTRUKA VIŠEFAZNOST: PROSTORNA I VREMENSKA

OBRTNO MAGNETNO POLJE DVOSTRUKA VIŠEFAZNOST: PROSTORNA I VREMENSKA VISOKA ŠKOLA ELEKTROTEHNIKE I RAČUNARSTVA STRUKOVNIH STUDIJA-VIŠER, BEOGRAD STUDIJSKI PROGRAM: NOVE ENERGETSKE TEHNOLOGIJE SPECIALISTIČKE STUDIJE PREDMET: SPECIJALNE ELEKTRIČNE INSTALACIJE OBRTNO MAGNETNO

Διαβάστε περισσότερα

Otpornost R u kolu naizmjenične struje

Otpornost R u kolu naizmjenične struje Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja

Διαβάστε περισσότερα

ELEKTRIČNE MAŠINE Asinhrone mašine

ELEKTRIČNE MAŠINE Asinhrone mašine ELEKTRIČNE MAŠINE Asinhrone mašine Uvod Asinhrona mašina je tipičnan predstavnik električne mašine male i srednje snage koja se obično pravi u velikim serijama. Prednosti asinhrone mašine u odnosu na ostale

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

TRANSFORMATORI I ASINHRONE MAŠINE

TRANSFORMATORI I ASINHRONE MAŠINE TRANSFORMATORI I ASINHRONE MAŠINE napon transformacije : nema kretanja provodnika u magnetnom polju 0 e E M S = dφ d( B S) db ds db = = ( S + B) = S dt dt dt dt dt za mrežni napon U = U eff 2 sinωt napon

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

RAD, SNAGA I ENERGIJA

RAD, SNAGA I ENERGIJA RAD, SNAGA I ENERGIJA SADRŢAJ 1. MEHANIĈKI RAD SILE 2. SNAGA 3. MEHANIĈKA ENERGIJA a) Kinetiĉka energija b) Potencijalna energija c) Ukupna energija d) Rad kao mera za promenu energije 4. ZAKON ODRŢANJA

Διαβάστε περισσότερα

Snage u kolima naizmjenične struje

Snage u kolima naizmjenične struje Snage u kolima naizmjenične struje U naizmjeničnim kolima struje i naponi su vremenski promjenljive veličine pa će i snaga koja se isporučuje potrošaču biti vremenski promjenljiva Ta snaga naziva se trenutna

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

Komutatorske mašine jednosmerne struje

Komutatorske mašine jednosmerne struje ELEKTRIČNE MAŠINE Komutatorske mašine jednosmerne struje Uvod Mašine jednosmerne struje su zbog svojih veoma dobrih funkcionalnih karakteristika nekada predstavljale često rešenje u električnim pogonima.

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE)

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) (Enegane) List: PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) Na mjestima gdje se istovremeno troši električna i toplinska energija, ekonomičan način opskrbe energijom

Διαβάστε περισσότερα

Sinhrone mašine 1. Slika Vektorski dijagram natpobuđenog sinhronog generatora.

Sinhrone mašine 1. Slika Vektorski dijagram natpobuđenog sinhronog generatora. Sinhrone mašine 1 5. Zadatak: Trofazni sinhroni generator ima nominalne podatke: 400 kw, 6,3 kv, 50 Hz, 45,8 A, cosϕ = 0,8, 1500 o/min i sinhronu reaktansu X s = 18 Ω. Svi gubici se mogu zanemariti. Generator

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ SINHRONIH MAŠINA (OG3SM) TEKSTOVI ZADATAKA

RAČUNSKE VEŽBE IZ SINHRONIH MAŠINA (OG3SM) TEKSTOVI ZADATAKA RAČUNSKE VEŽBE IZ SINHRONIH MAŠINA (OG3SM) TEKSTOVI ZADATAKA 1. Vodena turbina za pogon hidrogeneratora ima optimalnu ekonomičnu brzinu od približno. Odrediti broj polova i najbližu izvodljivu brzinu obrtanja

Διαβάστε περισσότερα

frekventni pretvarači bez međukola (poznati kao direktni pretvarači), frekventni pretvarači sa promenljivim ili konstantnim međukolom.

frekventni pretvarači bez međukola (poznati kao direktni pretvarači), frekventni pretvarači sa promenljivim ili konstantnim međukolom. Frekventni regulatori Uvod S tatički frekventni pretvarači su elektronski uređaji koji omogućavaju upravljanje brzinom trofaznih motora pretvarajući mrežni napon i frekvenciju, koji su fiksirane vrednosti,

Διαβάστε περισσότερα

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II 1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja

Διαβάστε περισσότερα

ISTORIJAT 2. Veća cena Složenije i skuplje održavanje Manja pouzdanost i kraći vek trajanja

ISTORIJAT 2. Veća cena Složenije i skuplje održavanje Manja pouzdanost i kraći vek trajanja JEDNOSMERNI POGONI ISTORIJAT 1 Prvi realizovani električni pogoni. Prvi DC motor konstruisao je Jacobi 1838. godine u Petrogradu, a motor je pokretao čamac s 14 osoba po reci Nevi. Namotaji statora i rotora

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče

Διαβάστε περισσότερα

Induktivno spregnuta kola

Induktivno spregnuta kola Induktivno spregnuta kola 13. januar 2016 Transformatori se koriste u elektroenergetskim sistemima za povišavanje i snižavanje napona, u elektronskim i komunikacionim kolima za promjenu napona i odvajanje

Διαβάστε περισσότερα

ELEKTROMOTORNI POGONI - AUDITORNE VJEŽBE

ELEKTROMOTORNI POGONI - AUDITORNE VJEŽBE veučilište u ijeci TEHNIČKI FAKULTET veučilišni preddiplomki tudij elektrotehnike ELEKTOOTONI OGONI - AUDITONE VJEŽBE Ainkroni motor Ainkroni motor inkrona obodna brzina inkrona brzina okretanja Odno n

Διαβάστε περισσότερα

UZDUŽNA DINAMIKA VOZILA

UZDUŽNA DINAMIKA VOZILA UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

Ogled zaustavljanja i zaletanja

Ogled zaustavljanja i zaletanja Ogled zaustavljanja i zaletanja Ogled zaustavljanja Koristi se za određivanje momenta inercije ili za određivanje gubitaka pri zaustavljanju Postupak podrazumeva da zaletimo mašinu, pa je isključimo sa

Διαβάστε περισσότερα

Osnovne karakteristike koračnih pogona

Osnovne karakteristike koračnih pogona Osnovne karakteristike koračnih pogona Elektromagnetni koračni pogoni Rotor koračnog motora izvodi koračno kretanje Koračni ugao: α = 0,36... 180 о Broj koraka po obrtaju: z = 360 o / α = 1000 2 Univerzitet

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

TEORIJA BETONSKIH KONSTRUKCIJA 79

TEORIJA BETONSKIH KONSTRUKCIJA 79 TEORIJA BETOSKIH KOSTRUKCIJA 79 Primer 1. Odrediti potrebn površin armatre za stb poznatih dimenzija, pravogaonog poprečnog preseka, opterećen momentima savijanja sled stalnog ( g ) i povremenog ( w )

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

PROIZVODNJA TROFAZNOG SISTEMA SIMETRIČNIH NAPONA

PROIZVODNJA TROFAZNOG SISTEMA SIMETRIČNIH NAPONA PROIZVODNJA TROFAZNOG SISTEMA SIMETRIČNIH NAPONA Za proizvodnju trofaznog sistea sietričnih napona najčešće se koriste trofazni sinhroni generatori. Osnovni konstrukcijski dijelovi generatora su stator

Διαβάστε περισσότερα

Obrada signala

Obrada signala Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

Rad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet

Rad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet Rad, snaga, energija Tehnička fizika 1 03/11/2017 Tehnološki fakultet Rad i energija Da bi rad bio izvršen neophodno je postojanje sile. Sila vrši rad: Pri pomjeranju tijela sa jednog mjesta na drugo Pri

Διαβάστε περισσότερα

Iz zadatka se uočava da je doslo do tropolnog kratkog spoja na sabirnicama B, pa je zamjenska šema,

Iz zadatka se uočava da je doslo do tropolnog kratkog spoja na sabirnicama B, pa je zamjenska šema, . Na slici je jednopolno prikazan trofazni EES sa svim potrebnim parametrima. U režimu rada neposredno prije nastanka KS kroz prekidač protiče struja (168-j140)A u naznačenom smjeru. Fazni stav struje

Διαβάστε περισσότερα

ELEKTROMAGNETNA INDUKCIJA

ELEKTROMAGNETNA INDUKCIJA ELEKTROMAGNETNA INDUKCIJA Nakon Erstedovog otkrića elektromagnetizma, Faradej je 1821. god. konstruisao eksperimentalni uređaj - prvi elektromotor Električni provodnik rotirao je oko fiksiranog magneta

Διαβάστε περισσότερα

Snaga naizmenicne i struje

Snaga naizmenicne i struje Snaga naizmenicne i struje Zadatak električne mreže u okviru elektroenergetskog sistema (EES) je prenos i distribucija električne energije od izvora do potrošača, uz zadovoljenje kriterijuma koji se tiču

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan

Διαβάστε περισσότερα

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA. IOAE Dioda 8/9 I U kolu sa slike, diode D su identične Poznato je I=mA, I =ma, I S =fa na 7 o C i parametar n= a) Odrediti napon V I Kolika treba da bude struja I da bi izlazni napon V I iznosio 5mV? b)

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Elektromagnetizam. Tehnička fizika 2 09/03/2018 Tehnološki fakultet

Elektromagnetizam. Tehnička fizika 2 09/03/2018 Tehnološki fakultet Elektromagnetizam Tehnička fizika 2 09/03/2018 Tehnološki fakultet Elektromagnetizam Elektromagnetizam je grana klasične fizike koja istražuje uzroke i uzajamnu povezanost električnih i magnetnih pojava,

Διαβάστε περισσότερα

Dvanaesti praktikum iz Analize 1

Dvanaesti praktikum iz Analize 1 Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.

Διαβάστε περισσότερα

INDUCIRANJE TROFAZNOG NAPONA

INDUCIRANJE TROFAZNOG NAPONA SINKRONI STROJEVI generatori od najmanjih do najvećih snaga motori za snage reda MW i više (dobar η, vrtnja definirana f mreže i brojem pari polova) generatori i motori - jednake izvedbe - razlika u smjeru

Διαβάστε περισσότερα

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno. JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)

Διαβάστε περισσότερα

DINAMIČKI MODEL (SIMETRIČNOG) TROFAZNOG ASINHRONOG MOTORA

DINAMIČKI MODEL (SIMETRIČNOG) TROFAZNOG ASINHRONOG MOTORA DINAMIČKI MODEL (SIMETRIČNOG) TROFAZNOG ASINHRONOG MOTORA bs as cs bs br cr br ar br ar cr ar cr bs cs as 1856-1943 cs as Asinhroni (indukcioni) motor Patent iz1888 godine Naponska jednačina: u u R i t

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

BIPOLARNI TRANZISTOR Auditorne vježbe

BIPOLARNI TRANZISTOR Auditorne vježbe BPOLARN TRANZSTOR Auditorne vježbe Struje normalno polariziranog bipolarnog pnp tranzistora: p n p p - p n B0 struja emitera + n B + - + - U B B U B struja kolektora p + B0 struja baze B n + R - B0 gdje

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti MEHANIKA FLUIDA Isticanje kroz otvore sa promenljivim nivoom tečnosti zadatak Prizmatična sud podeljen je vertikalnom pregradom, u kojoj je otvor prečnika d, na dve komore Leva komora je napunjena vodom

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

UPUTSTVO ZA LABORATORIJSKE VEŽBE IZ ISPITIVANJA ELEKTRIČNIH MAŠINA

UPUTSTVO ZA LABORATORIJSKE VEŽBE IZ ISPITIVANJA ELEKTRIČNIH MAŠINA Elektrotehnički fakultet Univerziteta u Beogradu Katedra za energetske pretvarače i pogone UUTSTVO ZA LABORATORJSKE VEŽBE Z STVANJA ELEKTRČNH MAŠNA me i prezime: Broj indeksa: Vežba 1 Vežba Vežba 3 Vežba

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

PRETHODNI PRORACUN VRATILA (dimenzionisanje vratila)

PRETHODNI PRORACUN VRATILA (dimenzionisanje vratila) Predet: Mašinski eleenti Proračun vratila strana Dienzionisati vratilo elektrootora sledecih karakteristika: oinalna snaga P = 3kW roj obrtaja n = 400 in Shea opterecenja: Faktor neravnoernosti K =. F

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Reverzibilni procesi

Reverzibilni procesi Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože

Διαβάστε περισσότερα

TREĆA LABORATORIJSKA VEŽBA

TREĆA LABORATORIJSKA VEŽBA TREĆA LABORATORIJSKA VEŽBA 1. UVOD RADNI REŽIMI I UPRAVLJANJE POGONOM SA ASINHRONIM MOTOROM Na laboratorijskom modelu grupe koju čini trofazni asinhroni motor sa kaveznim rotorom i jednosmerni motor sa

Διαβάστε περισσότερα

ASINHRONIM MOTOROM. Proučavamo samo pogone sa trofaznim motorom.

ASINHRONIM MOTOROM. Proučavamo samo pogone sa trofaznim motorom. ELEKTROMOTORNI POGONI SA ASINHRONIM MOTOROM Proučavamo amo pogone a trofaznim motorom. Najčešće korišćeni motor u elektromotornim pogonima. Ainhroni motor: - jednotavna kontrukcija; - mala cena; - vioka

Διαβάστε περισσότερα

4 Asinhroni strojevi Uvod Konstrukcijska izvedba Princip rada Režimi rada Modeli za analizu rada asinhronog

4 Asinhroni strojevi Uvod Konstrukcijska izvedba Princip rada Režimi rada Modeli za analizu rada asinhronog Sadržaj 4 Asinhroni strojevi 1 4.1 Uvod................................. 1 4.2 Konstrukcijska izvedba....................... 2 4.3 Princip rada............................. 5 4.4 Režimi rada.............................

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

ELEKTRONIKA ZABILJEŠKE S PREDAVANJA. literaturi, ovo su samo bitne natuknice

ELEKTRONIKA ZABILJEŠKE S PREDAVANJA. literaturi, ovo su samo bitne natuknice BRODSKA ELEKTROTEHNIKA I ELEKTRONIKA ZABILJEŠKE S PREDAVANJA Napomena: kompletno gradivo je u literaturi, ovo su samo bitne natuknice TROFAZNI SUSTAV Potreba za izmjeničnim strujama proistječe iz distribucije

Διαβάστε περισσότερα

ELEKTROMOTORNI POGONI SA ASINHRONIM MOTOROM

ELEKTROMOTORNI POGONI SA ASINHRONIM MOTOROM ELEKTROOTORNI POGONI SA ASINHRONI OTORO Poučavamo amo pogone a tofaznim motoom. Najčešće koišćeni moto u elektomotonim pogonima. Ainhoni moto: - jednotavna kontukcija; - mala cena; - vioka enegetka efikanot.

Διαβάστε περισσότερα

Elektromagnetizam. Elektromagnetizam. Elektromagnetizam. Elektromagnetizam

Elektromagnetizam. Elektromagnetizam. Elektromagnetizam. Elektromagnetizam (AP301-302) Magnetno polje dva pravolinijska provodnika (AP312-314) Magnetna indukcija (AP329-331) i samoindukcija (AP331-337) Prvi zapisi o magentizmu se nalaze još u starom veku: pronalazak rude gvožđa

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

ASINHRONI MOTORI PRINCIP RADA ASINHRONOG MOTORA

ASINHRONI MOTORI PRINCIP RADA ASINHRONOG MOTORA 1 ASINHRONI MOTORI Od Teslinog pronalaska pre više od 120 godina, pa sve do danas asinhroni motor je najvažniji pogonski motor u industriji i drugim primenama u pogonima konstantne brzine. Osnovni uzroci

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

FAKULTET PROMETNIH ZNANOSTI

FAKULTET PROMETNIH ZNANOSTI SVUČILIŠT U ZAGU FAKULTT POMTNIH ZNANOSTI predmet: Nastavnik: Prof. dr. sc. Zvonko Kavran zvonko.kavran@fpz.hr * Autorizirana predavanja 2016. 1 Pojačala - Pojačavaju ulazni signal - Zahtjev linearnost

Διαβάστε περισσότερα

Periodičke izmjenične veličine

Periodičke izmjenične veličine EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike

Διαβάστε περισσότερα

TREĆA LABORATORIJSKA VEŽBA

TREĆA LABORATORIJSKA VEŽBA TREĆA LABORATORIJSKA VEŽBA RADNI REŽIMI POGONA SA ASINHRONIM MOTOROM 1. UVOD Na laboratorijskom modelu grupe koju čini jednosmerni motor sa nezavisnom pobudom i trofazni asinhroni motor sa kaveznim rotorom,

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

3525$&8158&1(',=$/,&(6$1$92-1,095(7(120

3525$&8158&1(',=$/,&(6$1$92-1,095(7(120 Srednja masinska skola OSOVE KOSTRUISAJA List1/8 355$&8158&1(',=$/,&(6$1$9-1,095(7(10 3ROD]QLSRGDFL maksimalno opterecenje Fa := 36000 visina dizanja h := 440 mm Rucna sila Fr := 350 1DYRMQRYUHWHQR optereceno

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE Dobro došli na... Konstruisanje GRANIČNI I KRITIČNI NAPON slajd 2 Kritični naponi Izazivaju kritične promene oblika Delovi ne mogu ispravno da vrše funkciju Izazivaju plastične deformacije Može doći i

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD Predmet: Mašinski elementi Proraþun vratila strana 1 Dimenzionisati vratilo elektromotora sledecih karakteristika: ominalna snaga P 3kW Broj obrtaja n 14 min 1 Shema opterecenja: Faktor neravnomernosti

Διαβάστε περισσότερα

θ a ukupna fluks se onda dobija sabiranjem ovih elementarnih flukseva, tj. njihovim integraljenjem.

θ a ukupna fluks se onda dobija sabiranjem ovih elementarnih flukseva, tj. njihovim integraljenjem. 4. Magnetski fluks i Faradejev zakon magnetske indukcije a) Magnetski fluks Ako je magnetsko polje kroz neku konturu površine θ homogeno (kao na lici 5), tada je fluks kroz tu konturu jednak Φ = = cosθ

Διαβάστε περισσότερα

UVOD - SKLOPNE NAPRAVE I KONTAKTORI. Slika 1.1 Osnovno električno kolo

UVOD - SKLOPNE NAPRAVE I KONTAKTORI. Slika 1.1 Osnovno električno kolo V - SKPNE NPRVE I KNTKTRI vodni deo Svaka električna instalacija se sastoji iz više ili manje složenih električnih kola. Jedno osnovno električno kolo je prikazano na slici.. S E P V Slika. snovno električno

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

MERENJE SNAGE, FAKTORA SNAGE I ENERGIJE

MERENJE SNAGE, FAKTORA SNAGE I ENERGIJE MERENJE SNAGE, FAKTORA SNAGE I ENERGIJE MERENJE SNAGE Za merenje snage koriste se razni merni instrumenti i metode, a njihov izbor zavisi od: - vrste struje (jednosmerna, naizmenična ili složenoperiodična)

Διαβάστε περισσότερα

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan

Διαβάστε περισσότερα