Induktivno spregnuta kola
|
|
- Κρέων Καλογιάννης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Induktivno spregnuta kola 13. januar 2016 Transformatori se koriste u elektroenergetskim sistemima za povišavanje i snižavanje napona, u elektronskim i komunikacionim kolima za promjenu napona i odvajanje kola. U induktivno spregnutim kolima promjene struje u jednom kolu uzrokuju promjene fluksa, a time i pojavu elektromotorne sile na pristupima drugom kolu. U transformatorima se induktivna sprega postiže tako što se kalemovi namotavaju na zajedničko jezgro tako da magnetno polje jednog kalema prolazi kroz drugi. Principijelna šema transformatora prikazana je na Slic, a simbol na Slici 2. Kalem (namotaj) na koji je priključena pobuda naziva se primar, a kalem na kojem se posmatra odziv se naziva sekundar. Slika 1: Principijelna šema transformatora. Sopstveni fluks primara jednak je Φ 1 = Φ 11 + Φ 12. (1) Sopstveni fluks sekundara je Φ 2 = Φ 22 + Φ 21. (2) 1
2 Slika 2: Simbol spregnutih induktiviteta. Ukupni fluks kroz N 1 namotaja primara je N 1 Φ 1r = N 1 Φ 1 ± N 1 Φ 21 = ± 2 i 2, (3) gdje je sopstvena induktivnost primara, a 2 medusobna induktivnost primara i sekundara. Znak + ili - se bira u zavisnosti od medusobnog odnosa smjerova sopstvenog fluksa primara i medusobnog fluksa, odnosno, smjerova namotavanja primara i sekundara. Ukupni fluks kroz N 2 namotaja sekundara je N 2 Φ 2r = N 2 Φ 2 ± N 2 Φ 12 = L 2 i 2 ± 2, (4) gdje je L 2 sopstvena induktivnost sekundara. Ukupni medusobni fluks kroz jedan zavojak iznosi Φ M = Φ 12 ± Φ 21. (5) Odnosi izmedu medusobnih i sopstvenih flukseva predstavljaju koeficijente medusobnih flukseva (induktivne sprege) k 1 = Φ 12 Φ 1, (6) k 2 = Φ 21 Φ 2, (7) a odnosi izmedu rasutih i sopstvenih flukseva su koeficijenti rasipanja flukseva Sopstvene induktivnosti su σ 1 = Φ 11 Φ 1, (8) σ 2 = Φ 22 Φ 2. (9) = N 1Φ 1, (10) L 2 = N 2Φ 2 i 2, (11) 2
3 a medusobna induktivnost Induktivnosti rasipanja su Važe veze izmedu koeficijenata 2 = N 2Φ 12 = N 1Φ 21 i 2 = M. (12) L σ1 = N 1Φ 11, (13) L σ2 = N 2Φ 22 i 2. (14) σ 1 + k 1 = 1, (15) σ 2 + k 2 = 1. (16) Sopstvene induktivnosti i induktivnosti rasipanja su povezane preko Koeficijenti sprege se mogu izraziti u obliku = L σ1 + k 1, (17) L 2 = L σ2 + k 2 L 2. (18) k 1 = Φ 12 Φ 1 = k 2 = Φ 21 Φ 2 = gdje je prenosni broj transformatora Rezultujući koeficijent sprege je 2 N 2 = m 2, (19) N 1 L 21 i 2 N 1 L 2 i 2 N 2 = 1 2, (20) m L 2 m = N 1 N 2. (21) k = k 1 k 2 = 2 L1 L 2. (22) 1 Linearan transformator Posmatrajmo kolo na Slici 3. Neka u primaru djeluje naponski izvor napona u 1 i neka je sekundar transformatora otvoren, i 2 = 0. Tada je 3
4 Slika 3: Spregnuti induktiviteti (linearni transformator). N 1 Φ 1 =, (23) N 2 Φ 12 = 2. (24) U primaru i sekudnaru se indukuju ems koje se suprotstavljaju promjeni fluksa pa je u 1 = R 1 + dt, (25) u 2 = 2 dt. (26) Analogno se dobija kada je primar otvoren, = 0, a u sekundaru djeluje naponski izvor napona u 2. u 1 = 2 di 2 dt, (27) u 2 = R 2 i 2 + L 2 di 2 dt. (28) Dakle, jednačine za spregnuta kola prikazana na Slici 3 su u 1 = R 1 + dt + L di 2 12 dt, (29) u 2 = R 2 i 2 + L 2 di 2 dt + 2 Jednačine za spregnuta kola prikazana na Slici 4 su dt. (30) u 1 = R 1 + dt L di 2 12 dt, (31) u 2 = R 2 i 2 + L 2 di 2 dt 2 dt. (32) 4
5 Slika 4: Linearni transformator (drugačiji raspored tačkica). Slika 5: Savršeni transformator. U ustaljenom prostoperiodičnom režimu jednačine se mogu napisati korištenjem kompleksnih predstavnika U 1 = R 1 I 1 + jω I 1 ± jω2 I 2, (33) U 2 = R 2 I 2 + jωl 2 I 2 ± jω2 I 1. (34) 2 Savršeni transformator Pretpostavimo da je u kolu na Slici 3 R 1 = R 2 = 0, te da nema rasipanja fluksa, Φ 11 = Φ 22 = 0, odnosno, L σ1 = L σ2 = 0. U tom slučaju imamo savršenu spregu k 1 = k 2 = k = 1, Slika 5. Naponi primara i sekundara su jednaki U 1 = jω I 1 + jω2 I 2, (35) U 2 = jω2 I 1 + jωl 2 I 2. (36) Množenjem prve jednačine sa L 2 i druge sa 2 i njihovim oduzimanjem dobijamo L 2 U 1 = 2 U 2, (37) 5
6 odnosno, Pošto je koeficijent sprege slijedi da je odnosno, pa je U 1 = L 12 L1 =. (38) U 2 L 2 L 2 k 1 = m 2 = 1, (39) m = N 1 = L 1 L1 =, (40) N 2 2 L 2 Za kratko spojen sekundar, U 2 = 0, dobijamo 3 Idealni transformator U 1 U 2 = N 1 N 2 = m. (41) jω2 I 1 + jωl 2 I 2 = 0, (42) L2 I 1 = L 2 I L 2 = I 12 L 2, (43) 1 I 1 = N 2 I I 2 N 2 = 1 1 m I 2. (44) Neka je kod savršenog transformatora permeabilnost magnetskom jezgra beskonačna, µ, kao i sopstvene i medusobne induktivnosti, L 2, 2, ali uz 2 = const. Tada je Dijeljenjem ove jednačine sa dobijamo U 1 = jω I 1 + jω2 I 2. (45) U 1 = jωi 1 + jω 2 I 2. (46) Pošto je 0 = I I 2, (47) 6
7 odnosno, na osnovu (39) Pored toga vrijedi (41) Slika 6: Idealni transformator. I 1 I 2 = 1 m. (48) U 1 U 2 = m. (49) Dakle, u ovom slučaju savršeni transformator teži idealnom transformatoru. Simbol idealnog transformatora dat je na Slici 6, a opisan je jednačinama u 1 = m, u 2 (50) = 1 i 2 m. (51) Ukoliko su tačkice rasporedene kao na Slici 6 jednačine su u 1 = m, u 2 (52) = 1 i 2 m. (53) Važno je napomenuti da je idealni transformator rezistivni element. On ne akumuliše energiju. 7
8 Slika 7: Idealni transformator zatvoren impedansom. Kompleksna snaga na primarnom pristupu je a na sekundarnom Dakle vrijedi, S 1 = U 1 I 1, (54) S 2 = U 2 I 2 = 1 m U 1mI 1 = U 1 I 1 = S 1. (55) P 1 = P 2, (56) Q 1 = Q 2. (57) Ako je idealni transformator zatvoren impedansom Z 2, kao na Slici 7 ulazna impedansa je Z ul = U 1 I 1 = mu 2 1 m I 2 = m 2 U 2 I 2 = m 2 Z 2. (58) 8
Otpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
Διαβάστε περισσότεραSnage u ustaljenom prostoperiodičnom režimu
Snage u ustaljenom prostoperiodičnom režimu 13. januar 016 Posmatrajmo kolo koje se sastoji od dvije podmreže M i N, kao na Slici 1. U kolu je uspostavljen ustaljeni prostoperiodični režim i ulazni napon
Διαβάστε περισσότεραRAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović
Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče
Διαβάστε περισσότεραMAGNETNO SPREGNUTA KOLA
MAGNETNO SPEGNTA KOA Zadatak broj. Parametri mreže predstavljene na slici su otpornost otpornika, induktivitet zavojnica, te koeficijent manetne spree zavojnica k. Ako je na krajeve mreže -' priključen
Διαβάστε περισσότεραElementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Διαβάστε περισσότεραMreže sa dva pristupa
Mreže sa dva pristupa 18. novembar 2015 Mreža sa dva pristupa je električna mreža sa dva para priključaka kojima se povezuje sa drugim mrežama (kolima), Slika 1. Dva priključka čine pristup ako je struja
Διαβάστε περισσότεραUNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Διαβάστε περισσότερα1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
Διαβάστε περισσότεραnvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.
IOAE Dioda 8/9 I U kolu sa slike, diode D su identične Poznato je I=mA, I =ma, I S =fa na 7 o C i parametar n= a) Odrediti napon V I Kolika treba da bude struja I da bi izlazni napon V I iznosio 5mV? b)
Διαβάστε περισσότερα18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Διαβάστε περισσότεραPismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
Διαβάστε περισσότεραOSNOVE ELEKTROTEHNIKE II Vježba 11.
OSNOVE EEKTOTEHNKE Vježba... Za redno rezonantno kolo, prikazano na slici. je poznato E V, =Ω, =Ω, =Ω kao i rezonantna učestanost f =5kHz. zračunati: a) kompleksnu struju u kolu kao i kompleksne napone
Διαβάστε περισσότεραSnage u kolima naizmjenične struje
Snage u kolima naizmjenične struje U naizmjeničnim kolima struje i naponi su vremenski promjenljive veličine pa će i snaga koja se isporučuje potrošaču biti vremenski promjenljiva Ta snaga naziva se trenutna
Διαβάστε περισσότεραPRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
Διαβάστε περισσότεραOperacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
Διαβάστε περισσότερα3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Διαβάστε περισσότεραSISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
Διαβάστε περισσότεραradni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
Διαβάστε περισσότερα41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
Διαβάστε περισσότεραPoglavlje 7. Blok dijagrami diskretnih sistema
Poglavlje 7 Blok dijagrami diskretnih sistema 95 96 Poglavlje 7. Blok dijagrami diskretnih sistema Stav 7.1 Strukturni dijagram diskretnog sistema u kome su sve veliqine prikazane svojim Laplasovim transformacijama
Διαβάστε περισσότεραVJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.
JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)
Διαβάστε περισσότεραPismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
Διαβάστε περισσότεραDISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Διαβάστε περισσότερα2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Διαβάστε περισσότεραa M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
Διαβάστε περισσότεραObrada signala
Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p
Διαβάστε περισσότεραMATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Διαβάστε περισσότεραAnaliza rada Teslinog transformatora
Analiza rada Teslinog transformatora Sadržaj: 1. Uvod... 3 2. Konstrukcija Teslinog transformatora... 4 2.1 Napojni transformator... 6 2.2 Iskrište sa LC oscilatornim kolom... 7 2.3 Visokonaponski transformator
Διαβάστε περισσότερα- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
Διαβάστε περισσότεραLinearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
Διαβάστε περισσότεραOSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić
OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti
Διαβάστε περισσότεραradni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
Διαβάστε περισσότεραKaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
Διαβάστε περισσότεραRiješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
Διαβάστε περισσότεραPARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Διαβάστε περισσότεραAnaliza mreža u frekvencijskom domenu
Analiza mreža u frekvencijskom domenu 23. decembar 205 U ovom poglavlju ćemo se okrenuti analizi prinudnog odziva mreža na prostoperiodičnu pobudu, odnosno, analizi linearnih, vremenski nepromjenljivih,
Διαβάστε περισσότεραTeorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
Διαβάστε περισσότερα( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
Διαβάστε περισσότεραELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Διαβάστε περισσότεραApsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
Διαβάστε περισσότεραELEKTROMAGNETNA INDUKCIJA
ELEKTROMAGNETNA INDUKCIJA Nakon Erstedovog otkrića elektromagnetizma, Faradej je 1821. god. konstruisao eksperimentalni uređaj - prvi elektromotor Električni provodnik rotirao je oko fiksiranog magneta
Διαβάστε περισσότεραRačunarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Διαβάστε περισσότεραM086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
Διαβάστε περισσότεραElektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo
Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra
Διαβάστε περισσότεραS t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
Διαβάστε περισσότερα1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i
PRIPREMA ZA II PISMENI IZ ANALIZE SA ALGEBROM. zadatak Re{avawe algebarskih jedna~ina tre}eg i ~etvrtog stepena. U skupu kompleksnih brojeva re{iti jedna~inu: a x 6x + 9 = 0; b x + 9x 2 + 8x + 28 = 0;
Διαβάστε περισσότεραOdredivanje odziva u električnim kolima
Odredivanje odziva u električnim kolima 28. oktobar 2015 Kada se u električno kolo uključe naponski ili strujni generatori dolazi do promjene stanja kola. Na elementima kola se javljaju naponi, a kroz
Διαβάστε περισσότεραDINAMIČKI MODEL (SIMETRIČNOG) TROFAZNOG ASINHRONOG MOTORA
DINAMIČKI MODEL (SIMETRIČNOG) TROFAZNOG ASINHRONOG MOTORA bs as cs bs br cr br ar br ar cr ar cr bs cs as 1856-1943 cs as Asinhroni (indukcioni) motor Patent iz1888 godine Naponska jednačina: u u R i t
Διαβάστε περισσότεραSTATIČKE KARAKTERISTIKE DIODA I TRANZISTORA
Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -
Διαβάστε περισσότεραnumeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
Διαβάστε περισσότεραMatematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
Διαβάστε περισσότεραIZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
Διαβάστε περισσότεραKontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
Διαβάστε περισσότεραOM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
Διαβάστε περισσότεραPRIMJER 3. MATLAB filtdemo
PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8
Διαβάστε περισσότεραIspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
Διαβάστε περισσότεραMoguća i virtuelna pomjeranja
Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +
Διαβάστε περισσότεραOsnovne teoreme diferencijalnog računa
Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako
Διαβάστε περισσότεραKONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr
KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,
Διαβάστε περισσότεραDIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE
TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne
Διαβάστε περισσότεραSOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE
1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar
Διαβάστε περισσότεραNOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika
NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan
Διαβάστε περισσότεραZadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
Διαβάστε περισσότεραTRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
Διαβάστε περισσότεραUniverzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika
Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika Rešenja. Matematičkom indukcijom dokazati da za svaki prirodan broj n važi jednakost: + 5 + + (n )(n + ) = n n +.
Διαβάστε περισσότεραEliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
Διαβάστε περισσότεραOsnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Διαβάστε περισσότερα5 Ispitivanje funkcija
5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:
Διαβάστε περισσότερα7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
Διαβάστε περισσότερα5. Karakteristične funkcije
5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična
Διαβάστε περισσότεραGauss, Stokes, Maxwell. Vektorski identiteti ( ),
Vektorski identiteti ( ), Gauss, Stokes, Maxwell Saša Ilijić 21. listopada 2009. Saša Ilijić, predavanja FER/F2: Vektorski identiteti, nabla, Gauss, Stokes, Maxwell... (21. listopada 2009.) Skalarni i
Διαβάστε περισσότεραRačunarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Διαβάστε περισσότεραAntene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja:
Anene Transformacija EM alasa u elekrični signal i obrnuo Osnovne karakerisike anena su: dijagram zračenja, dobiak (Gain), radna učesanos, ulazna impedansa,, polarizacija, efikasnos, masa i veličina, opornos
Διαβάστε περισσότεραIspitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
Διαβάστε περισσότεραIII VEŽBA: FURIJEOVI REDOVI
III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.
Διαβάστε περισσότεραRiješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
Διαβάστε περισσότερα2. Data je žičana otpornička mreža na slici. Odrediti ekvivalentnu otpornost između krajeva
1. U kolu stalne struje sa slike 1 poznato je R1 = 2R = 200 Ω, Rp> R1, E1 =-E2 = 10 V i E3 = E4 = 10 V. izračunati Ig (Ig 0) tako da snage koje razvijaju idealni naponski generator E3 i idealni strujni
Διαβάστε περισσότεραπ π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;
1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,
Διαβάστε περισσότερα1 Promjena baze vektora
Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis
Διαβάστε περισσότεραNAIZMENIČNE STRUJE POTREBNE FORMULE: Trenutna vrednost ems naizmeničnog izvora: e(t) = E max sin(ωt + θ)
NAIZMENIČNE STRUJE POTREBNE FORMULE: Trenutna vrednost ems naizmeničnog izvora: e(t) = E max sin(ωt + θ) Trenutna vrednost naizmeničnog napona: u(t) = U max sin(ωt + θ) Trenutna vrednost naizmenične struje:
Διαβάστε περισσότεραMatematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
Διαβάστε περισσότεραProgram testirati pomoću podataka iz sledeće tabele:
Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n
Διαβάστε περισσότεραNeka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.
Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +
Διαβάστε περισσότερα3525$&8158&1(',=$/,&(6$1$92-1,095(7(120
Srednja masinska skola OSOVE KOSTRUISAJA List1/8 355$&8158&1(',=$/,&(6$1$9-1,095(7(10 3ROD]QLSRGDFL maksimalno opterecenje Fa := 36000 visina dizanja h := 440 mm Rucna sila Fr := 350 1DYRMQRYUHWHQR optereceno
Διαβάστε περισσότεραZavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
Διαβάστε περισσότεραDvanaesti praktikum iz Analize 1
Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.
Διαβάστε περισσότερα(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
Διαβάστε περισσότεραSnaga naizmenicne i struje
Snaga naizmenicne i struje Zadatak električne mreže u okviru elektroenergetskog sistema (EES) je prenos i distribucija električne energije od izvora do potrošača, uz zadovoljenje kriterijuma koji se tiču
Διαβάστε περισσότεραINTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
Διαβάστε περισσότεραRIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
Διαβάστε περισσότεραIskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
Διαβάστε περισσότεραIZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
Διαβάστε περισσότεραFTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
Διαβάστε περισσότεραθ a ukupna fluks se onda dobija sabiranjem ovih elementarnih flukseva, tj. njihovim integraljenjem.
4. Magnetski fluks i Faradejev zakon magnetske indukcije a) Magnetski fluks Ako je magnetsko polje kroz neku konturu površine θ homogeno (kao na lici 5), tada je fluks kroz tu konturu jednak Φ = = cosθ
Διαβάστε περισσότεραBRODSKI ELEKTRIČNI UREĐAJI. Prof. dr Vladan Radulović
FAKULTET ZA POMORSTVO OSNOVNE STUDIJE BRODOMAŠINSTVA BRODSKI ELEKTRIČNI UREĐAJI Prof. dr Vladan Radulović ELEKTRIČNA ENERGIJA Električni sistem na brodu obuhvata: Proizvodnja Distribucija Potrošnja Sistemi
Διαβάστε περισσότεραOSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA
ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan
Διαβάστε περισσότερα( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
Διαβάστε περισσότεραKOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa
Διαβάστε περισσότεραINTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
Διαβάστε περισσότεραHEMIJSKA VEZA TEORIJA VALENTNE VEZE
TEORIJA VALENTNE VEZE Kovalentna veza nastaje preklapanjem atomskih orbitala valentnih elektrona, pri čemu je region preklapanja između dva jezgra okupiran parom elektrona. - Nastalu kovalentnu vezu opisuje
Διαβάστε περισσότερα