Teoria atomului a lui Bohr modelul Bohr pentru atomii hidrogenoizi Experienţele de difuzie a particulelor α efectuate de Rutherford au condus la
|
|
- Ê Μεταξάς
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Teoria atomului a lui Bohr modelul Bohr pentru atomii hidrogenoizi Experienţele de difuzie a particulelor α efectuate de Rutherford au condus la ipoteza că atomii seamănă structural cu un sistem solar în miniatură, toată sarcina pozitivă fiind concentrată în nucleu iar electronii gravitează în jurul acestuia. Modelul atomului planetar al lui Rutherford a fost reluat de către Bohr spre a calcula stările energetice ale celui mai simplu atom cel de hidrogen pe baza unor postulate cuantice. Teoria atomică elaborată de Bohr combină ideile de bază ale modelului planetar cu ipoteza cuantelor de energie a lui Planck şi cu ipoteza fotonilor a lui Einstein. Subliniem de la început că teoria lui Bohr este o teorie semiclasică şi valabilă doar pentru atomii hidrogenoizi (cu 1 electron), fiind doar o etapă intermediară în cunoaşterea structurii atomului. Doar mecanica cuantică deţine o descriere riguroasă. Însă avantajele teoriei semiclasice sunt evidente: explică spectrele atomilor hidrogenoizi, efectul Zeeman normal, spectrele metalelor alcaline, ale radiaţiilor X, iar prin extinderea dată de Sommerfeld, încearcă explicarea structurii fine a spectrelor. Nu a putut explica însă efectul Zeeman anomal, experieţa Stern-Gerlach (existența spinului), spectrele atomilor cu mai mulţi electroni, ş.a. Date empirice preliminare Din datele spectroscopice Balmer a desprins formula anumitor linii de emisie din spectrul hidrogenului:, cu n 3,,5.... Rydberg a rescris această formulă astfel: cu n=3,,5..., este numărul de undă. Pentru obține limita seriei: iar. Generalizând, pentru atomul de H, scriem:,,. Măsurători ulterioare mai exacte au stabilit că există o structură fină ce cuprinde singleți, dubleți, tripleți,... (multipleți). Pentru m se obține seria Lyman în U.V. Pentru m=2 seria Balmer în vizibil. Pentru m=3,, 5 seriile Paschen, Bracket, Phundt, în IR. Doar seria Lyman este de singleți, celelalte sunt multipleți. O serie spectrală se obține pentru un m dat și mai mulți n (>m). Se va vedea mai jos că m reprezintă nivelul final energetic în care se află atomul iar n nivelul inițial energetic, a.î. atomul se dezexcită dintr-o stare energetică superioară într-una inferioară. Postulatele lui Bohr Niels Bohr a reușit să evalueze calitativ și cantitativ spectrele atomilor hidrogenoizi, calculând teoretic energiile nivelelor electronice și constanta empirică Rydberg, însă pentru aceasta a trebuit să introducă două postulate (de fapt 3 după cum vom vedea mai jos..). Primul postulat al lui Bohr (numit postulatul orbitelor staţionare) afirmă că atomul se poate găsi doar în anumite stări energetice, bine determinate, numite stări staţionare, în care atomul nici nu absoarbe nici nu cedează energie. Valorile energiilor în care se poate afla un atom funcţie de nivelele pe care se află electronul/electronii au un spectru discontinuu adică formează un şir discontinuu, discret. În general, o mărime fizică ce nu poate lua decât anumite valori, distincte, având un spectru discret, se numeşte cuantificată. Primul postulat al lui Bohr admite deci că energia atomului este cuantificată, stratificarea valorilor energetice formând aşa-numitele nivele de energie. Sprijinul experimental al teoriei lui Bohr se găseşte în experienţele lui Franck şi Hertz care demonstrau clar discontinuitatea nivelelor de energie. Acest postulat este în contradicție cu electrodinamica clasică conform căreia electronul aflat în mișcare accelerată trebuie să emită radiație în spectru continuu, raza orbitei ar trebui să varieze continuu și electronul ar trebui să se apropie în spirală, de nucleu (aceasta ar conduce la un atom instabil). Cerinţele electrodinamicii clasice îşi pierd astfel valabilitatea în cazul atomului (în care electronul se află într-o stare legată). Al doilea postulat al lui Bohr (numit postulatul frecvenţelor) afirmă că atomul poate absoarbe sau emite energie, sub formă de radiaţie, doar trecând dintr-o stare staţionară în alta, electronii trecând astfel de pe un nivel energetic pe altul. Radiaţia emisă sau absorbită este strict monocromatică iar energia hν a fotonului emis este egală cu diferenţa dintre energiile celor două nivele, respectiv celor două stări staţionare între care a avut loc tranziţia:. Dacă energia finală este mai mare decât energia iniţială atunci fotonul este absorbit (n > m, întrucât nivelul cel mai depărtat de nucleu are energia cea mai mare și saltul electronului este de pe m pe n), iar dacă energia finală este mai mică decât cea inițială, fotonul este emis (nivelul energetic final este mai coborât decât cel iniţial, n > m dar saltul electronului este de pe n pe m). Pentru a nu apărea confuzii rezumăm astfel relația de mai sus (hν > 0 obligatoriu): 1
2 , ț { {, În ambele cazuri > > > dar saltul electronului de pe nivelul inițial pe cel final este cuprins în notația pentru frecvență: primul indice este nivelul inițial iar al doilea cel final. En Em Relaţia anterioară se mai scrie: sau ~ En Em 1 Tm Tn unde este h c hc termenul spectral (valoarea sa este pozitivă, întrucât energiile E n sunt toate negative prin convenţie). Rezultă:. Postulatul al doilea al lui Bohr explică spectrul discret (de linii) al atomilor, radiaţia emisă fiind monocromatică. De fapt, mai exact, liniile au o lărgime naturală, existând o abatere foarte mică de la frecvenţele spectrului (multipleți), datorită despicării nivelelor energetice provocată de existenţa spinului electronic, explicație apărută însă mult mai târziu. Acest postulat (precum și principiul de combinare Ritz) este în contradicție fizica clasică conform căreia liniile spectrale ar trebui să fie formate dintr-o frecvență fundamentală și mai multe armonici, cu frecvențe egale cu multipli ai primeia (armonicele). În modelul său Bohr presupune că traiectoria în cazul atomilor hidrogenoizi este un cerc. Egalitatea dintre forţa centrifugă şi cea centripetă, coulombiană, impusă de stabilitatea orbitei, se scrie: Întru-cât sunt două necunoscute, r şi v, este necesară o a doua relaţie. Pentru aceasta, la postulatul frecvenţelor Bohr adaugă un alt 3-lea postulat, numit postulat de cuantificare, care generalizează ipoteza stărilor cuantice ale oscilatorului armonic liniar. Relaţia matematică a acestui postulat este:, cu n=1,2,3,... Bohr a aplicat această relație la studiul oscilatorului armonic liniar cu un grad de libertate. În spațiul fazelor punctele (q, p) formează o elipsă, în cazul oscilatorului armonic liniar: energia oscilatorului se scrie care e o elipsă cu semiaxele mare și mică și. Aria figurii din spațiul fazelor va fi. Înlocuind a și b și ținând cont că, rezultă:, cu n=1,2,3... În concluzie, se obține condiția de cuantificare pentru un sistem cu 1 grad de libertate:. Raportul E n/ν are dimensiunile: energie x timp, adică ale acţiunii. Formularea postulatului de cuantificare se va enunța astfel: pentru orice sistem atomic trebuie ca acţiunea să fie un multiplu întreg al constantei lui Planck (h). Acţiunea pentru întreaga orbită electronică este chiar aria orbitei din planul fazelor şi, pentru mai multe grade de libertate vom avea mai multe condiții de cuantificare (respectiv numere cuantice): cu,, 3,...., Numărul n i este un număr întreg, p i este impulsul generalizat asociat coordonatei generalizate q i (pentru gradul de libertate i asociat). Pentru f grade de libertate vom avea f coordonate generalizate şi f numere cuantice n. Deducerea energiilor nivelelor în modelul Bohr Pentru atomul hidrogenoid, folosim relația dedusă experimental,. Întrucât rezultă: și, până la o constantă (care se poate stabili pentru n ca fiind ), se poate găsi: sau, echivalent:. { Observăm că E p = -2E c şi E referitoare la stările staţionare. - E c rezultat care este în concordanţă cu teorema virialului din mecanică Deducem că: și, unde și. Bohr a presupus că orbita electronului în atomul de H este circulară și are un singur grad de libertate: q = φ (unghiul la centru, în coordonate polare), variind de la la π; condiţia de cuantificare devine: 2
3 În această egalitate am ţinut cont de calculele din cadrul mecanicii analitice referitoare la câmpul central 2 conservativ şi anume de faptul că: p mr L const., în care L este momentul cinetic orbital al mişcării. Deci pentru orbita circulară momentul cinetic este o constantă și diversele orbite posibile vor avea valori discrete ale momentului cinetic:. Rezultă: Mai rezultă: și. Iar pentru energie obținem: Pentru a nu depinde de numărul atomic Z, constanta Rydberg pentru atomul de hydrogen o notăm cu și formula tranzițiilor energetice pentru atomul hidrogenoid devine:. Deschidem aici o paranteză. Se poate găsi şi pe altă cale relaţia de cuantificare a momentului cinetic. Plecând de la undele de Broglie asociate şi considerând unda asociată electronului ca staţionară, rezultă că lungimea orbitei (ca şi la vibraţiile sonore dintr-o coardă, de exemplu) este un număr întreg de lungimi de undă. Deci: în care înlocuim relația lui de Broglie, şi rezultă:, care este tocmai condiţia de cuantificare Bohr. Undele de materie ale lui de Broglie au apărut însă mult mai târziu și nu au constituit calea urmată de Bohr. Ne putem pune întrebarea: cele două frecvențe, și asociate mișcării de rotație a electronului respectiv undei asociate de Broglie au aceeași semnificație? Putem să fixăm raza orbitei și să atribuim acestei orbite mai multe lungimi de undă funcție de numărul întreg n? Dacă λ e variabil și viteza v, frecvența ν sunt variabile. Răspunsul este da doar la prima întrebare. Calculele arată că există o singură interpretare: și,, Pentru n = 1 (prima orbită),,, și. Rezultă:. Câteva calcule care vin în sprijinul afirmațiilor de mai sus. Vom renunța temporar la indicele n = 1,2,3... sau sau > > Din ultimele două formule pentru frecvența ν rezultă:. Precizăm că, fără a folosi relația lui de Broglie, ci doar relația de cuantificare, Bohr putea deduce nivele energetice ale atomului hidrogenoid, respectiv formula constantei Rydberg, numai urmând calcule similare cu cele de mai sus. Diferența față de calculul folosind relația de Broglie este factorul 2 din relația. Mai rezultă:,., și cum. Putem afla de exemplu:. Etc. 3
4 Se vede simplu că mărimile cu indicele zero sunt tocmai mărimile corespunzătoare orbitei numărul, cea mai apropiată de nucleu. Cu cât n crește, cu atât raza crește, frecvența scade, viteza scade, lungimea de undă crește. Energia fotonului emis, conform postulatului 2 al lui Bohr, va fi. Pentru numere n și m n foarte mari, putem aproxima și avem:,. Pentru nivelele superioare n, n 3, n... se obțin frecvențele,,... În schimb, folosind postulatul de cuantificare, se obține același lucru:,. Este posibil ca N. Bohr să fi folosit principiul de corespondență, conform căruia legile clasice provin din aplicarea la limită a conceptelor cuantice conforme cu noile postulate introduse pentru descrierea stărilor legate a electronilor în atom. Folosind rezultatele fizicii clasice pentru nivelele foarte îndepărtate de nucleu (n foarte mare), acestea fiind foarte apropiate, la limită cu spectrul continuu, vom avea: Cea mai mică frecvență a unui foton ce poate fi emis pentru nivelele foarte îndepărtate de nucleu va fi la dezexcitarea atomului de pe nivelul m=n+1 pe nivelul n, atunci: Deducem că, pentru dezexcitarea atomului de pe nivele superioare (m, m 3, ) pe nivelul (n) inferior, conform rezultatelor din teoria clasică, vom avea armonicele: ν, 3ν, În teoria clasică Maxwell-Lorentz frecvența radiației emise este egală cu frecvența de rotație circulară a electronului și de asemenea sunt emise și armonicele respective. Pentru nivele foarte îndepărtate frecvența de emisie devine egală cu cea clasică:, când. Tot în cadrul limitei clasice a energiilor atomului foarte excitat, putem scrie următoarele relații: și la:, unde viteza și raza pentru nivelul îndepărtat (n) se vor exprima din relațiile: (folosim pentru electron prescurtarea numită sarcină redusă ). Obținem din :, care egalată cu conduce. Ultima egalitate provine din expresia scrisă anterior,. Obținem în final relația pentru energia nivelului și constanta Rydberg pentru atomul hidrogenoid: Iar pentru R se obține pentru tranziții se modifică astfel: în care:. Scoțând numărul atomic din constanta Rydberg,, formula lui Rydberg Relațiile și dau acum: și. Făcând produsul acestor doi termeni rezultă:. Putem închide aici paranteza făcută. Am obținut raza orbitei şi viteza electronului: unde r 1 raza primei orbite electronice (pentru n = 1) în atomul hidrogenoid (orbită Bohr), iar r o este raza primei orbite Bohr în cazul atomului de Hidrogen (n şi Z ). Expresia razei r o, dacă înlocuim constanta k, este:,5. Iar viteza electronului: unde v 1 este viteza electronului petru n = 1 în cazul atomului hidrogenoid, iar v o este viteza pentru n şi Z (hidrogen). Înlocuind constanta k în expresia obţinem pentru expresia lui v o (viteza electronului pe prima orbită Bohr în atomul de Hidrogen):. Energia fotonului emis la tranziţia de pe orbita n pe orbita m (n>m) va fi: ν (π ) [ ]
5 De aici se scoate numărul de undă λ -1 : λ * + în care notăm cu şi obţinem: ν λ * + Pentru Z se obţine relaţia obţinută pe cale experimentală de către Balmer (m ), precum şi celelalte relaţii cunoscute (Lyman, Paschen, Bracket, etc, pentru m = 1, 3,, etc). În starea fundamentală a hidrogenului nu se poate obţine decât seria Lyman (m = 1), celelalte linii spectrale se pot obţine doar în starea excitată (notată H * ). 5
Seria Balmer. Determinarea constantei lui Rydberg
Seria Balmer. Determinarea constantei lui Rydberg Obiectivele lucrarii analiza spectrului in vizibil emis de atomii de hidrogen si determinarea lungimii de unda a liniilor serie Balmer; determinarea constantei
Curs 4 Serii de numere reale
Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
Aplicaţii ale principiului I al termodinamicii la gazul ideal
Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia
Metode iterative pentru probleme neliniare - contractii
Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii
5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.
5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este
(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
DETERMINAREA CONSTANTEI RYDBERG
UNIVERSITATEA "POLITEHNICA" BUCUREŞTI DEPARTAMENTUL DE FIZICĂ LABORATORUL DE FIZICA ATOMICA SI FIZICA NUCLEARA BN-03A DETERMINAREA CONSTANTEI RYDBERG DETERMINAREA CONSTANTEI RYDBERG. Scopul lucrării Determinarea
III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.
III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,
Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"
Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia
Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
Asupra unei inegalităţi date la barajul OBMJ 2006
Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale
Curs 1 Şiruri de numere reale
Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,
a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0
SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................
Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice
1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă
V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile
Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ
Subiecte Clasa a VIII-a
Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul
Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor
Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.
Curs 2 Şiruri de numere reale
Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un
Sisteme diferenţiale liniare de ordinul 1
1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2
a. 11 % b. 12 % c. 13 % d. 14 %
1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul
Metode de interpolare bazate pe diferenţe divizate
Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare
Ovidiu Gabriel Avădănei, Florin Mihai Tufescu,
vidiu Gabriel Avădănei, Florin Mihai Tufescu, Capitolul 6 Amplificatoare operaţionale 58. Să se calculeze coeficientul de amplificare în tensiune pentru amplficatorul inversor din fig.58, pentru care se
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1
Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui
SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a
Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii
riptografie şi Securitate
riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element
2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2
.1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,
Integrala nedefinită (primitive)
nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei
MARCAREA REZISTOARELOR
1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea
CURS 10 INTERACTIUNEA RADIATIILOR ELECTROMAGNETICE CU SUBSATNTA CARACTERUL CORPUSCULAR AL RADIATIILOR ELECTROMAGNETICE ATOMUL, STRUCTURA SI
CURS 10 INTERACTIUNEA RADIATIILOR ELECTROMAGNETICE CU SUBSATNTA CARACTERUL CORPUSCULAR AL RADIATIILOR ELECTROMAGNETICE ATOMUL, STRUCTURA SI PROPRIETATILE ATOMILOR I. Interactiunea radiatiilor electromagnetice
Esalonul Redus pe Linii (ERL). Subspatii.
Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste
Subiecte Clasa a VII-a
lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate
Cursul Măsuri reale. D.Rusu, Teoria măsurii şi integrala Lebesgue 15
MĂSURI RELE Cursul 13 15 Măsuri reale Fie (,, µ) un spaţiu cu măsură completă şi f : R o funcţie -măsurabilă. Cum am văzut în Teorema 11.29, dacă f are integrală pe, atunci funcţia de mulţime ν : R, ν()
SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0
Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,
RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,
REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii
Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent
Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului
= 100 = 0.1 = 1 Å
STRUCTURA ATOMULUI Atom - cea mai mică particulă a unui element care nu poate fi divizată prin metode chimice şi care păstrează toate proprietăţile chimice ale elementului respectiv. Dimensiuni: 62 pm
Functii Breviar teoretic 8 ianuarie ianuarie 2011
Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)
6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă
Semiar 5 Serii cu termei oarecare Probleme rezolvate Problema 5 Să se determie atura seriei cos 5 cos Soluţie 5 Şirul a 5 este cu termei oarecare Studiem absolut covergeţa seriei Petru că cos a 5 5 5 şi
Seminar 5 Analiza stabilității sistemelor liniare
Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare
III. STRUCTURA ATOMULUI. STRUCTURA ÎNVELIŞULUI DE ELECTRONI AL ATOMILOR. CLASIFICAREA ELEMENTELOR
III. STRUCTURA ATOMULUI. STRUCTURA ÎNVELIŞULUI DE ELECTRONI AL ATOMILOR. CLASIFICAREA ELEMENTELOR III.1. Structura atomilor Atomul se defineşte ca fiind cea mai mică particulă dintr-o substanţă care, prin
Seminar 3. Problema 1. a) Reprezentaţi spectrul de amplitudini şi faze pentru semnalul din figură.
Seminar 3 Problema 1. a) Reprezentaţi spectrul de amplitudini şi faze pentru semnalul din figură. b) Folosind X ( ω ), determinaţi coeficienţii dezvoltării SFE pentru semnalul () = ( ) xt t x t kt şi reprezentaţi
Tranzistoare bipolare şi cu efect de câmp
apitolul 3 apitolul 3 26. Pentru circuitul de polarizare din fig. 26 se cunosc: = 5, = 5, = 2KΩ, = 5KΩ, iar pentru tranzistor se cunosc următorii parametrii: β = 200, 0 = 0, μa, = 0,6. a) ă se determine
4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica
BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)
BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul
Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca
Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este
COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.
SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care
5.4. MULTIPLEXOARE A 0 A 1 A 2
5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării
Problema a II - a (10 puncte) Diferite circuite electrice
Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător
1.3 Baza a unui spaţiu vectorial. Dimensiune
.3 Baza a unui spaţiu vectorial. Dimensiune Definiţia.3. Se numeşte bază a spaţiului vectorial V o familie de vectori B care îndeplineşte condiţiile de mai jos: a) B este liniar independentă; b) B este
Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite
Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval
n n r Z Cursul 4 Modelul Bohr-Sommerfeld - continuare Pentru ionii hidrogeniozi (ioni cu un singur e - ):
Pentru ionii hidrogeniozi (ioni cu un singur e - ): n k k n R Z r Z n r n k n k n, ~ Impasul modelului lui Bohr: Ulterior s-a constatat apariţia în spectru a unor linii în plus, de energii apropiate, care
EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă
Coordonatori DANA HEUBERGER NICOLAE MUŞUROIA Nicolae Muşuroia Gheorghe Boroica Vasile Pop Dana Heuberger Florin Bojor MATEMATICĂ DE EXCELENŢĂ pentru concursuri, olimpiade şi centre de excelenţă Clasa a
Criptosisteme cu cheie publică III
Criptosisteme cu cheie publică III Anul II Aprilie 2017 Problema rucsacului ( knapsack problem ) Considerăm un număr natural V > 0 şi o mulţime finită de numere naturale pozitive {v 0, v 1,..., v k 1 }.
Laborator 11. Mulţimi Julia. Temă
Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.
8 Intervale de încredere
8 Intervale de încredere În cursul anterior am determinat diverse estimări ˆ ale parametrului necunoscut al densităţii unei populaţii, folosind o selecţie 1 a acestei populaţii. În practică, valoarea calculată
R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE
5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.
a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie)
Caracteristica mecanică defineşte dependenţa n=f(m) în condiţiile I e =ct., U=ct. Pentru determinarea ei vom defini, mai întâi caracteristicile: 1. de sarcină, numită şi caracteristica externă a motorului
GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii
GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile
Miscarea oscilatorie armonica ( Fisa nr. 2 )
Miscarea oscilatorie armonica ( Fisa nr. 2 ) In prima fisa publicata pe site-ul didactic.ro ( Miscarea armonica) am explicat parametrii ce definesc miscarea oscilatorie ( perioda, frecventa ) dar nu am
Principiul Inductiei Matematice.
Principiul Inductiei Matematice. Principiul inductiei matematice constituie un mijloc important de demonstratie in matematica a propozitiilor (afirmatiilor) ce depind de argument natural. Metoda inductiei
z a + c 0 + c 1 (z a)
1 Serii Laurent (continuare) Teorema 1.1 Fie D C un domeniu, a D şi f : D \ {a} C o funcţie olomorfă. Punctul a este pol multiplu de ordin p al lui f dacă şi numai dacă dezvoltarea în serie Laurent a funcţiei
Lucrare. Varianta aprilie I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2. sau p b.
Lucrare Soluţii 28 aprilie 2015 Varianta 1 I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2 Definiţie. Numărul întreg p se numeşte număr prim dacă p 0,
Cum folosim cazuri particulare în rezolvarea unor probleme
Cum folosim cazuri particulare în rezolvarea unor probleme GHEORGHE ECKSTEIN 1 Atunci când întâlnim o problemă pe care nu ştim s-o abordăm, adesea este bine să considerăm cazuri particulare ale acesteia.
Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].
Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie
Capitolul 2 - HIDROCARBURI 2.3.ALCHINE
Capitolul 2 - HIDROCARBURI 2.3.ALCHINE TEST 2.3.3 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Acetilena poate participa la reacţii de
Circuite electrice in regim permanent
Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, Electronică - Probleme apitolul. ircuite electrice in regim permanent. În fig. este prezentată diagrama fazorială a unui circuit serie. a) e fenomen este
Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015
Societatea de Ştiinţe Matematice din România Ministerul Educaţiei Naţionale Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015 Problema 1. Arătaţi că numărul 1 se poate reprezenta ca suma
Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare
Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R În cele ce urmează, vom studia unele proprietăţi ale mulţimilor din R. Astfel, vom caracteriza locul" unui punct în cadrul unei mulţimi (în limba
CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi
Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială
ffl 2e " # p Figura 1 Folosind figura de mai sus putem explica οsi evalua cantitativ procesul de ^ mpr aοstiere a particulelor ff. Consider am c a sar
Lucrarea 9 : Studiul modelului atomic al lui Rutherford 1 Consideratοii teoretice Dup a ce s-a stabilit c a ^ n atom sunt sarcini electrice atentοia a a fost ^ ndreptat a asupra formul arii unui model
2 Transformări liniare între spaţii finit dimensionale
Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei
FIZICĂ. Bazele fizice ale mecanicii cuantice. ş.l. dr. Marius COSTACHE
FIZICĂ Bazele fizice ale mecanicii cuantice ş.l. d. Maius COSTACHE 1 BAZELE FIZICII CUANTICE Mecanica cuantică (Fizica cuantică) studiază legile de mişcae ale micoaticulelo (e -, +,...) şi ale sistemelo
1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB
1.7. AMLFCATOARE DE UTERE ÎN CLASA A Ş AB 1.7.1 Amplificatoare în clasa A La amplificatoarele din clasa A, forma de undă a tensiunii de ieşire este aceeaşi ca a tensiunii de intrare, deci întreg semnalul
2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3
SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest
Activitatea A5. Introducerea unor module specifice de pregătire a studenţilor în vederea asigurării de şanse egale
POSDRU/156/1.2/G/138821 Investeşte în oameni! FONDUL SOCIAL EUROPEAN Programul Operaţional Sectorial pentru Dezvoltarea Resurselor Umane 2007 2013 Axa prioritară nr. 1 Educaţiaşiformareaprofesionalăînsprijinulcreşteriieconomiceşidezvoltăriisocietăţiibazatepecunoaştere
5.1. Noţiuni introductive
ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul
Difractia de electroni
Difractia de electroni 1 Principiul lucrari Verificarea experimentala a difractiei electronilor rapizi pe straturi de grafit policristalin: observarea inelelor de interferenta ce apar pe ecranul fluorescent.
4. Măsurarea tensiunilor şi a curenţilor electrici. Voltmetre electronice analogice
4. Măsurarea tensiunilor şi a curenţilor electrici oltmetre electronice analogice oltmetre de curent continuu Ampl.c.c. x FTJ Protectie Atenuator calibrat Atenuatorul calibrat divizor rezistiv R in const.
a) (3p) Sa se calculeze XY A. b) (4p) Sa se calculeze determinantul si rangul matricei A. c) (3p) Sa se calculeze A.
Bac Variata Proil: mate-izica, iormatica, metrologie Subiectul I (3 p) Se cosidera matricele: X =, Y = ( ) si A= a) (3p) Sa se calculeze XY A b) (4p) Sa se calculeze determiatul si ragul matricei A c)
Lucrarea Nr. 5 Circuite simple cu diode (Aplicaţii)
ucrarea Nr. 5 Circuite simple cu diode (Aplicaţii) A.Scopul lucrării - Verificarea experimentală a rezultatelor obţinute prin analiza circuitelor cu diode modelate liniar pe porţiuni ;.Scurt breviar teoretic
1. PROPRIETĂȚILE FLUIDELOR
1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea
9. Interacţiunea câmpului electromagnetic de înaltă frecvenţă cu substanţa. Polarizarea dielectricilor. Copyright Paul GASNER 1
9. Interacţiunea câmpului electromagnetic de înaltă frecvenţă cu substanţa. Polarizarea dielectricilor Copyright Paul GASNER 1 Cuprins Mecanisme de polarizare a dielectricilor Polarizarea electronică şi
Subiecte Clasa a V-a
(40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul numarului intrebarii
Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)).
Teoremă. (Y = f(x)). Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism Demonstraţie. f este continuă pe X: x 0 X, S Y (f(x 0 ), ε), S X (x 0, ε) aşa ca f(s X (x 0, ε)) = S Y (f(x 0 ), ε) : y
Criterii de comutativitate a grupurilor
Criterii de comutativitate a grupurilor Marius Tărnăuceanu 10.03.2017 Abstract În această lucrare vom prezenta mai multe condiţii suficiente de comutativitate a grupurilor. MSC (2010): 20A05, 20K99. Key
Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane
Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii
V O. = v I v stabilizator
Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,
prin egalizarea histogramei
Lucrarea 4 Îmbunătăţirea imaginilor prin egalizarea histogramei BREVIAR TEORETIC Tehnicile de îmbunătăţire a imaginilor bazate pe calculul histogramei modifică histograma astfel încât aceasta să aibă o
Cercul lui Euler ( al celor nouă puncte și nu numai!)
Cercul lui Euler ( al celor nouă puncte și nu numai!) Prof. ION CĂLINESCU,CNDG, Câmpulung Voi prezenta o abordare simplă a determinării cercului lui Euler, pe baza unei probleme de loc geometric. Preliminarii:
IV. CUADRIPOLI SI FILTRE ELECTRICE CAP. 13. CUADRIPOLI ELECTRICI
V. POL S FLTE ELETE P. 3. POL ELET reviar a) Forma fundamentala a ecuatiilor cuadripolilor si parametrii fundamentali: Prima forma fundamentala: doua forma fundamentala: b) Parametrii fundamentali au urmatoarele
O generalizare a unei probleme de algebră dată la Olimpiada de Matematică, faza judeţeană, 2013
O generalizare a unei probleme de algebră dată la Olimpiada de Matematică, faza judeţeană, 2013 Marius Tărnăuceanu 1 Aprilie 2013 Abstract În această lucrare vom prezenta un rezultat ce extinde Problema
3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4
SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei
NOŢIUNI GENERALE DE FIZICA ATOMULUI ŞI A NUCLEULUI
Noţiuni generale de fizica atomului şi a nucleului NOŢIUNI GENERALE DE FIZICA ATOMULUI ŞI A NUCLEULUI Structura discontinuă a materiei Încă din antichitate s-a pus problema cunoaşterii structurii materiei
Progresii aritmetice si geometrice. Progresia aritmetica.
Progresii aritmetice si geometrice Progresia aritmetica. Definitia 1. Sirul numeric (a n ) n N se numeste progresie aritmetica, daca exista un numar real d, numit ratia progresia, astfel incat a n+1 a