Izločanje zdravilnih učinkovin iz telesa:
|
|
- Ὑάκινθος Κασιδιάρης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Izločanje zdravilnih učinkovin iz telesa: kinetični vidiki Biofarmacija s farmakokinetiko Aleš Mrhar
2
3 Izločanje učinkovin Izraženo s hitrostjo in maso, dx/dt = k e U očistkom in volumnom, Cl = k e V Hitrost eliminacije je količina ina učinkovine ki se eliminira iz telesa na enoto časa (mg/h) preko določenega organa, U je količina v telesu Očistek je volumen tekočine, iz katerega se izloči učinkovina na enoto časa (L/h) preko določenega organa, V je volumen telesa
4 Izločanje učinkovin dx/dt = k e U, izločanje splošno du E /dt = k e U P, izločanje z urinom, blatom, znojem, izdihanim zrakom, skozi kožo, presnovo... du EU /dt = k eu U P, izločanje z urinom du EU /dt, hitrost izločanja v urin du P /dt = - k e U P du P /dt, hitrost izločanja iz plazme z urinom, blatom, znojem, izdihanim zrakom, skozi kožo, presnovo...
5 Povezava med enačbama dx / dt = k e U, U = V C Cl = dx / dt / C Cl = k e U / C = k e V C / C = k e V dx / dt = Cl C U je količina v telesu (plazmi) C je koncentracija v telesu (plazmi)
6 Osnovna farmakokinetična enačba Celokupni plazemski očistek v l/h (Cl p) dx = Cl C ( t ) dt Plazemska koncentracija učinkovine v času t (mg/l) Celokupna hitrost izločanja učinkovine v mg/h
7 dx Hitrost izločanja skozi ledvica dt ClR Renalni očistek dx Hitrost izločanja skozi jetra dt ClH Hepatični očistek... Cl = CL + P R Cl H
8 dx dt = Cl P C( t) ( t ) dx = X = 0 Cl P C dt 0 celotna količina učinkovine, ki se je iz centralnega krvnega obtoka izločila iz telesa X Cl = 0 P AUC 0 Površina pod krivuljo, ki prikazuje odvisnost plazemske koncentracije od časa, AUC
9 X 0 = D iv = FD po Intravenski odmerek Cl = P D iv AUC iv Neintravenski odmerek Cl = P F D po AUC po Biološka uporabnost Obseg absorpcije Delež odmerka ki pride v centralni krvni obtok 0 F 1 Predsistemski metabolizem, nepopolna absorpcija, razgradnja učinkovine na mestu aplikacije
10 Določanje AUC β naklon terminalnega dela krivulje AUC Cp + Cp 2 ( t ) = 1 2 t 1 AUC 0 = AUC last 0 + Cp β last
11 Cp (mg/l) iv 0.2 po t (h)
12 Očistek Primarni farmakokinetični parameter Določa hitrost izločanja snovi iz telesa. Predstavlja volumen telesne tekočine, ki se v časovni enoti očisti snovi (L/h, ml/min). Odvisen samo od biološkega sistema Neodvisen od volumna porazdelitve, odmerka, intervala odmerjanja in načina dajanja zdravila, pri posamezniku je običajno konstanten, pri bolezenskih stanjih se spreminja. Cl=dU E /dt/c p =k e V d =(F)D/AUC
13 Očistek (Cl) Biološka razpolovna doba, volumen porazdelitve 13
14 Klinični pomen Od očistka je odvisen vzdrževalni odmerek v stacionarnem stanju. D [mg/h] = C [mg/l]cl[l/h] ] m ss Vzdrževalni odmerek Željena koncentracija v stacionarnem stanju
15 Telesne tekočine Pravilo tretjin Človek (70 kg) 2/3 vode (46.7 L) 1/3 suha snov (23.3 kg) 2/3 intracelularno (31.1 L) 1/3 ekstracelularno (15.6 L) 2/3 intersticiji (10.4 L) 1/3 kri (5.2 L) Plazma: 1-Hct
16 Volumen porazdelitve Primarni farmakokinetični parameter Kvantitativen opis porazdelitve učinkovine v telesu; da informacijo o obsegu porazdeljevanja učinkovine v tkiva Opis odnosa med količino učinkovine v telesu in njeno koncentracijo v krvi (navidezni volumen porazdelitve) Neodvisen od očistka, odmerka, intervala odmerjanja in načina dajanja zdravila, pri posamezniku je običajno konstanten, pri bolezenskih stanjih se spreminja. V d =D/C p Gentamicin (ECF) 0,25 L/kg Fenazon (TBW) 0,6 L/kg Ciprofloksacin 2,5 L/kg (kopiči se v tkivih, kjer dosega višje koncentracije kot v krvi) Azitromicin 31,0 L/kg (kopiči se v fagocitih, ki ga prenesejo na mesto okužbe, zato so njegove koncentracije v vnetih tkivih nekajkrat večje kot v zdravih)
17 Klinični pomen V nekaterih situacijah želimo takoj doseči želeno koncentracijo učinkovine v plazmi. D [mg] = C[mg/l] V[l] i d Začetni odmerek Željena koncentracija
18 Hitrostna konstanta izločanja in biološka razpolovna doba Kompleksna funkcija očistka in volumna porazdelitve Od t 1/2 je odvisno v kakšnem času se bo učinkovina izločila iz telesa; po cca 5 t 1/2 je koncentracija v plazmi blizu 0 Od t 1/2 je odvisno kdaj nastopi stacionarno stanje; po cca 5 t 1/2 koncentracija v plazmi blizu 95% Css Cl=k e V d t 1/2 =ln2/k e t 1/2 =ln2v d /Cl Gentamicin t 1/2 = 2 h, k e = 0,347 h -1 Ciprofloksacin t 1/2 = 3 h, k e = 0,213 h -1 Azitromicin t 1/2 = 70 h, k e = 0,010 h -1 1/2 je
19 /l) Cp (m g/ t 1/2 2t 1/2 3t 1/2 t (h)
20
21
22
23 Cl učinkovine z nelinearno eliminacijo kon. uč., metabolizem in/ali renalna sekrecija nelinearna eliminacija Clearance Cl uč. opišemo z Michaelis-Mentenovo kinetiko V max Cl kelvd Cl = Km + C Filtration only Hitrost eliminacije = V K max m + C C C>>Km hitrost el. 0. reda Hitrost eliminacije V max C<<Km hitrost el. 1. reda Hitrost eliminacije V max K m C = K' C
24 Linearna farmakokinetika krvna koncentracija je PROPORCIONALNA odmerku hitrost izločanja je PROPORCIONALNA koncentraciji
25 Nelinearna farmakokinetika krvna koncentracija NI PROPORCIONALNA odmerku kinetika 0.reda kinetika 1.reda hitrost izločanja NI PROPORCIONALNA koncentraciji Michaelis-MentenovaMentenova encimska kinetika
26 Odvisnost koncentracije fenitoina od časa Odvisnost koncentracije fenitoina od časa (točke predstavljajo povprečne vrednosti vsaj sedmih podatkov)
27
28
Aleš Mrhar. kinetični ni vidiki. Izraženo s hitrostjo in maso, dx/dt očistkom
Izločanje zdravilnih učinkovin u iz telesa: kinetični ni vidiki Biofarmacija s farmakokinetiko Univerzitetni program Farmacija Aleš Mrhar Izločanje učinkovinu Izraženo s hitrostjo in maso, dx/ k e U očistkom
Διαβάστε περισσότεραFARMAKOKINETIKA. Hitrosti procesov Farmakokinetični ni parametri Aplikacija. Tatjana Irman Florjanc
FARMAKOKINETIKA Hitrosti procesov Farmakokinetični ni parametri Aplikacija Tatjana Irman Florjanc Inštitut za farmakologijo in eksperimentalno toksikologijo, MF, Univerza v Ljubljani V praksi - kontrola
Διαβάστε περισσότεραUNIVERZA V LJUBLJANI FAKULTETA ZA FARMACIJO DIPLOMSKA NALOGA
UNIVERZA V LJUBLJANI 1 FAKULTETA ZA FARMACIJO DIPLOMSKA NALOGA AVTOR: Barbara Koder MENTOR: prof. dr. Aleš Mrhar, mag. farm. SOMENTOR: Brigita Mavsar Najdenov, mag. farm. spec. 2 1. UVOD: 1.1. LASTNOSTI
Διαβάστε περισσότεραStaranje. Referenčna točka. Variabilnost kliničnih učinkov zdravil Vpliv starosti, telesne mase, ledvične in jetrne funkcije ter sočasnih obolenj
Variabilnost kliničnih učinkov zdravil Vpliv starosti, telesne mase, ledvične in jetrne funkcije ter sočasnih obolenj Iztok Grabnar Fakulteta za farmacijo, Univerza v Ljubljani Staranje novorojenčki (do
Διαβάστε περισσότεραRežimi odmerjanja zdravil
Lastnosti učinkovin in organizma, ki vlivajo na FK in F tr klinično učinkovitost Ržimi odmrjanja zdravil Alš Mrhar Igor Locatli Iztok Grabnar Farmakokintični aramtri Omogočajo odgovor na nasldnja vrašanja:
Διαβάστε περισσότεραFarmakokinetični modeli. Aleš Mrhar
Farmaoineični modeli Aleš Mrhar Ena odmere zdravila? Cefalor Volumen porazdelive Genamicin Očise Od sruure do učina Farmaoineia/Farmaodinamia Farmaoineia: Prehod učinovin sozi elo v prosorsem in časovnem
Διαβάστε περισσότεραIzločanje zdravilnih učinkovin iz telesa preko ledvic: fiziološki vidik
Univerza v Ljbljani Faklteta za farmacijo Izločanje zdravilnih činkovin iz telesa preko ledvic: fiziološki vidik Biofarmacija s farmakokinetiko Univerzitetni programa Farmacija doc. dr. Tomaž Vovk, mag.farm.
Διαβάστε περισσότεραFARMAKOKINETIKA. Eliminacija zdravil. Tatjana Irman Florjanc
FARMAKOKINETIKA Eliminacija zdravil Tatjana Irman Florjanc Inštitut za farmakologijo in eksperimentalno toksikologijo, Medicinska fakulteta, Univerza v Ljubljani Eliminacija zdravila Glavne poti ekskrecije
Διαβάστε περισσότεραΕισαγωγικές έννοιες Φαρμακολογίας Φαρμακοκινητική - Φαρμακοδυναμική
Εισαγωγικές έννοιες Φαρμακολογίας Φαρμακοκινητική - Φαρμακοδυναμική Αντώνης Γούλας Αναπληρωτής καθηγητής Α Εργαστήριο Φαρμακολογίας Τμήμα Ιατρικής, Α.Π.Θ. Φαρμακοκινητική: Η χρονική εξέλιξη των ποσοτικών
Διαβάστε περισσότεραDiferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci
Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja
Διαβάστε περισσότεραFunkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx
Διαβάστε περισσότεραPONOVITEV SNOVI ZA 4. TEST
PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.
Διαβάστε περισσότεραMotnje ledvične funkcije
Univerza v Ljubljani december 2005 Medicinska fakulteta Inštitut za patološko fiziologijo Motnje ledvične funkcije Avtorji: Petra Adamič Nina Ana Albreht Vesna Amon Jernej Avsenik Vesna Bančič Tadej Borovšak
Διαβάστε περισσότεραFarmakogenetika v klinični farmakokinetiki
Farmakogenetika v klinični farmakokinetiki Igor Locatelli Katedra za biofarmacijo in farmakokinetiko Fakulteta za farmacijo Univerza v Ljubljani Variabilnost v farmakokinetiki genetski polimorfizem telesna
Διαβάστε περισσότεραOdvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki
Διαβάστε περισσότεραIZPIT IZ ANALIZE II Maribor,
Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),
Διαβάστε περισσότεραJure Stojan 2. predavanje termodinamične osnove, encimske katalize encimska kataliza časovni potek encimske reakcije začetna hitrost
FFA: Laboratorijska medicina, Molekularna encimologija, 2010/2011 3.predavanje Jure Stojan 2. predavanje termodinamične osnove, encimske katalize encimska kataliza časovni potek encimske reakcije začetna
Διαβάστε περισσότεραPomen FARMAKOKINETIKE IN FARMAKODINAMIKE pri napovedovanju kliničnih zdravil za zdravljenje Parkinsonove bolezni
Pomen FARMAKOKINETIKE IN FARMAKODINAMIKE pri napovedovanju kliničnih nih učinkov zdravil za zdravljenje Parkinsonove bolezni Igor Locatelli, Aleš Mrhar Fakulteta za farmacijo, Univerza v Ljubljani Aškerčeva
Διαβάστε περισσότεραFunkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma
Διαβάστε περισσότεραPOMEN FARMAKOKINETIKE IN FARMAKODINAMIKE PRI NAPOVEDOVANJU TERAPEVTSKIH IZIDOV PROTIMIKROBNIH ZDRAVIL. prof. dr. Aleš Mrhar, mag. farm.
POMEN FARMAKOKINETIKE IN FARMAKODINAMIKE PRI NAPOVEDOVANJU TERAPEVTSKIH IZIDOV PROTIMIKROBNIH ZDRAVIL prof. dr. Aleš Mrhar, mag. farm. PRAVILNA UPORABA ANTIBIOTIKOV? IZBIRA PRAVEGA ANTIBIOTIKA? ANTIBIOTIK?
Διαβάστε περισσότεραIntegralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)
Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2
Διαβάστε περισσότεραTretja vaja iz matematike 1
Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +
Διαβάστε περισσότεραp 1 ENTROPIJSKI ZAKON
ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:
Διαβάστε περισσότεραOdvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena
Διαβάστε περισσότεραIspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
Διαβάστε περισσότεραZaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,
Διαβάστε περισσότεραFunkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2
Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a
Διαβάστε περισσότεραZakonitosti hitrosti reakcije in konstante hitrosti (Rate laws)
Zakonioi hiroi reakcije in konane hiroi (Rae law) Merjena hiro reakcije je odvina od koncenracije reakanov na neko poenco. v k [A] [B] k konana hiroi reakcije (neodvina od koncenracije) (odvina od T) Ekperimenalno
Διαβάστε περισσότερα1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja
ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost
Διαβάστε περισσότεραFazni diagram binarne tekočine
Fazni diagram binarne tekočine Žiga Kos 5. junij 203 Binarno tekočino predstavljajo delci A in B. Ti se med seboj lahko mešajo v različnih razmerjih. V nalogi želimo izračunati fazni diagram take tekočine,
Διαβάστε περισσότεραZačetni vzdrževalni odmerek in nadaljnja povečanja odmerka je, če je potrebno, mogoče doseči tudi hitro. Epilepsija Monoterapija in dodatno zdravljenj
1. IME ZDRAVILA Edion 100 mg trde kapsule Edion 300 mg trde kapsule Edion 400 mg trde kapsule POVZETEK GLAVNIH ZNAČILNOSTI ZDRAVILA 2. KAKOVOSTNA IN KOLIČINSKA SESTAVA Trda kapsula vsebuje 100 mg, 300
Διαβάστε περισσότεραSKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK
SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi
Διαβάστε περισσότεραΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ
GR ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ H OLJLAJNYOMÁSÚ SZEGECSELŐ M4/M12 SZEGECSEKHEZ HASZNÁLATI UTASÍTÁS - ALKATRÉSZEK SLO OLJNO-PNEVMATSKI KOVIČAR ZA ZAKOVICE
Διαβάστε περισσότεραSEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
Διαβάστε περισσότεραPOMEN FARMAKOKINETIKE IN FARMAKODINAMIKE PRI NAPOVEDOVANJU TERAPEVTSKIH IZIDOV PROTIMIKROBNIH ZDRAVIL
POMEN FARMAKOKINETIKE IN FARMAKODINAMIKE PRI NAPOVEDOVANJU TERAPEVTSKIH IZIDOV PROTIMIKROBNIH ZDRAVIL Marko Obradović, mag. farm. Tanja Drnovšek, mag. farm. Tanja Cesar, mag. farm. Prof. dr. Aleš Mrhar,
Διαβάστε περισσότεραTabele termodinamskih lastnosti vode in vodne pare
Univerza v Ljubljani Fakulteta za strojništvo Laboratorij za termoenergetiko Tabele termodinamskih lastnosti vode in vodne pare po modelu IAPWS IF-97 izračunano z XSteam Excel v2.6 Magnus Holmgren, xsteam.sourceforge.net
Διαβάστε περισσότερα1 2 3 4 5 6 7 8 9 10 2 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 3 6 11 1 12 7 1 2 5 4 3 9 10 8 18 20 21 22 23 24 25 26
Διαβάστε περισσότερα2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 9 10 1 8 12 7 3 1 6 2 5 4 3 11 18 20 21 22 23 24 26 28 30
Διαβάστε περισσότεραEliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
Διαβάστε περισσότεραCENTRALNI LABORATORIJ
CENTRALNI LABORATORIJ I.ODVZEM IN POŠILJANJE VZORCEV 1 KAPILARNI ODVZEM KRVI DA DA 30min/15min 2 ODVZEM FECESA DA NE 30min/15min 3 ODVZEM URINA DA DA 30min/15min 4 POŠILJANJE BIOLOŠKIH VZORCEV ( EKSPEDIT)
Διαβάστε περισσότεραIterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013
Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:
Διαβάστε περισσότεραBojan Božič, Jure Derganc, Gregor Gomišček, Vera Kralj-Iglič, Janja Majhenc, Mojca Mally, Praktikum iz biofizike Študijsko leto 2017/2018
Bojan Božič, Jure Derganc, Gregor Gomišček, Vera Kralj-Iglič, Janja Majhenc, Mojca Mally, Primož Peterlin, Saša Svetina in Boštjan Žekš Praktikum iz biofizike Študijsko leto 2017/2018 Ljubljana, oktober
Διαβάστε περισσότεραBooleova algebra. Izjave in Booleove spremenljivke
Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre
Διαβάστε περισσότεραOsnove elektrotehnike uvod
Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.
Διαβάστε περισσότεραKODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK
1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24
Διαβάστε περισσότερα( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)
A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko
Διαβάστε περισσότεραTablete repaglinida so bele, okrogle, izbočene in imajo vrezan logo Novo Nordisk-a (bik Apis).
POVZETEK ZNAČILNOSTI ZDRAVILA (SPC) 1. IME ZDRAVILA NovoNorm tablete 0,5 mg 2. KAKOVOSTNA IN KOLIČINSKA SESTAVA Vsaka tableta vsebuje: 0,5 mg repaglinida Za pomožne snovi glejte točko 6.1, Seznam pomožnih
Διαβάστε περισσότεραTermovizijski sistemi MS1TS
Termovizijski sistemi MS1TS Vežbe 02 primer 1 MATLAB funkcija conv. f x = rect x rect x 2 ( ) ( ) ( ) y=conv(rectangle_function(x),rectangle_function(x-2)); figure,subplot(3,1,1),plot(x,rectangle_function(x)),xlabel('\itx'),ylabel('rect({\itx})');
Διαβάστε περισσότεραDomače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA
Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA. Naj bo vektorsko polje R : R 3 R 3 dano s predpisom R(x, y, z) = (2x 2 + z 2, xy + 2yz, z). Izračunaj pretok polja R skozi površino torusa
Διαβάστε περισσότεραLogatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013
WP 14 R T d 9 10 11 53 d 2015 811/2013 WP 14 R T 2015 811/2013 WP 14 R T Naslednji podatki o izdelku izpolnjujejo zahteve uredb U 811/2013, 812/2013, 813/2013 in 814/2013 o dopolnitvi smernice 2010/30/U.
Διαβάστε περισσότεραPošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
Διαβάστε περισσότεραVeleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
Διαβάστε περισσότερα6. ΤΕΛΙΚΗ ΙΑΘΕΣΗ ΤΑΦΗ. 6.1. Γενικά
6. ΤΕΛΙΚΗ ΙΑΘΕΣΗ ΤΑΦΗ 6.1. Γενικά Είναι γεγονός ότι ανέκαθεν ο τελικός αποδέκτης των υπολειµµάτων της κατανάλωσης και των καταλοίπων της παραγωγικής διαδικασίας υπήρξε το περιβάλλον. Στις παλιότερες κοινωνίες
Διαβάστε περισσότεραOpća bilanca tvari - = akumulacija u dif. vremenu u dif. volumenu promatranog sustava. masa unijeta u dif. vremenu u dif. volumen promatranog sustava
Opća bilana tvari masa unijeta u dif. vremenu u dif. volumen promatranog sustava masa iznijeta u dif. vremenu iz dif. volumena promatranog sustava - akumulaija u dif. vremenu u dif. volumenu promatranog
Διαβάστε περισσότεραINTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
Διαβάστε περισσότεραDelovna točka in napajalna vezja bipolarnih tranzistorjev
KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.
Διαβάστε περισσότεραM086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
Διαβάστε περισσότεραKotne in krožne funkcije
Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete
Διαβάστε περισσότεραARHITEKTURA DETAJL 1, 1:10
0.15 0.25 3.56 0.02 0.10 0.12 0.10 SESTV S2 polimer-bitumenska,dvoslojna(po),... 1.0 cm po zahtevah SIST DIN 52133 in nadstandardno, (glej opis v tehn.poročilu), npr.: PHOENIX STR/Super 5 M * GEMINI P
Διαβάστε περισσότερα1. Trikotniki hitrosti
. Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca
Διαβάστε περισσότεραKlasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
Διαβάστε περισσότεραElementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Διαβάστε περισσότεραIZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
Διαβάστε περισσότεραPOVZETEK GLAVNIH ZNAČILNOSTI ZDRAVILA
POVZETEK GLAVNIH ZNAČILNOSTI ZDRAVILA 1. IME ZDRAVILA Saridon 250 mg/150 mg/50 mg tablete 2. KAKOVOSTNA IN KOLIČINSKA SESTAVA Ena tableta vsebuje 250 mg paracetamola, 150 mg propifenazona, 50 mg kofeina.
Διαβάστε περισσότερα2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Διαβάστε περισσότεραZadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.
Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu
Διαβάστε περισσότεραMatematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
Διαβάστε περισσότεραKontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.
Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.
Διαβάστε περισσότεραFTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
Διαβάστε περισσότεραFunkcije več spremenljivk
DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije
Διαβάστε περισσότεραSATCITANANDA. F = e E sila na naboj. = ΔW e. Rudolf Kladnik: Fizika za srednješolce 3. Svet elektronov in atomov
Ruolf Klnik: Fizik z srenješolce Set elektrono in too Električno olje (11), gibnje elce električne olju Strn 55, nlog 1 Kolikšno netost or releteti elektron, se njego kinetičn energij oeč z 1 kev? Δ W
Διαβάστε περισσότεραCO2 + H2O sladkor + O2
VAJA 5 FOTOSINTEZA CO2 + H2O sladkor + O2 Meritve fotosinteze CO 2 + H 2 O sladkor + O 2 Fiziologija rastlin laboratorijske vaje SVETLOBNE REAKCIJE (tilakoidna membrana) TEMOTNE REAKCIJE (stroma kloroplasta)
Διαβάστε περισσότεραNumerično reševanje. diferencialnih enačb II
Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke
Διαβάστε περισσότεραE 220 228 Διοξείδιο του θείου - θειώδη άλατα 20 (3) μόνο σιρόπι γλυκόζης, αφυδατωμένο ή μη
Αριθμός κατηγορίας Αριθμός E Όνομα Ανώτατα επίπεδα (mg/l ή mg/kg ανάλογα με την περίπτωση) Υποσημειώσεις περιορισμοί/εξαιρέσεις 11 Σάκχαρα, σιρόπια, μέλι και επιτραπέζια γλυκαντικά 11.1 Σάκχαρα και σιρόπια
Διαβάστε περισσότερα*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center
Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:
Διαβάστε περισσότεραEnačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba.
1. Osnovni pojmi Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. Primer 1.1: Diferencialne enačbe so izrazi: y
Διαβάστε περισσότεραPismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
Διαβάστε περισσότερα4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i
Sdržj 4 INTEGRALI 64 4. Neodredeni integrl........................ 64 4. Integrirnje supstitucijom.................... 68 4. Prcijln integrcij....................... 7 4.4 Odredeni integrl i rčunnje površine
Διαβάστε περισσότεραOtpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
Διαβάστε περισσότεραFTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
Διαβάστε περισσότεραGimnazija Krˇsko. vektorji - naloge
Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor
Διαβάστε περισσότεραΜΕΛΕΤΗ ΤΗΣ ΥΝΑΤΟΤΗΤΑΣ ΑΞΙΟΠΟΙΗΣΗΣ ΤΟΥ ΓΕΩΘΕΡΜΙΚΟΥ ΠΕ ΙΟΥ ΘΕΡΜΩΝ ΝΙΓΡΙΤΑΣ (Ν. ΣΕΡΡΩΝ)
ελτίο της Ελληνικής Γεωλογικής Εταιρίας τοµ. XXXVI, 2004 Πρακτικά 10 ου ιεθνούς Συνεδρίου, Θεσ/νίκη Απρίλιος 2004 Bulletin of the Geological Society of Greece vol. XXXVI, 2004 Proceedings of the 10 th
Διαβάστε περισσότεραМЕХАНИКА НА ФЛУИДИ (AFI, TI, EE)
Zada~i za program 2 po predmetot МЕХАНИКА НА ФЛУИДИ (AFI, TI, EE) Предметен наставник: Проф. д-р Методија Мирчевски Асистент: Виктор Илиев (rok za predavawe na programot - 07. i 08. maj 2010) (во термини
Διαβάστε περισσότερα..,..,.. ! " # $ % #! & %
..,..,.. - -, - 2008 378.146(075.8) -481.28 73 69 69.. - : /..,..,... : - -, 2008. 204. ISBN 5-98298-269-5. - -,, -.,,, -., -. - «- -»,. 378.146(075.8) -481.28 73 -,..,.. ISBN 5-98298-269-5..,..,.., 2008,
Διαβάστε περισσότεραMatematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1
Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije
Διαβάστε περισσότερα2. KAKOVOSTNA IN KOLIČINSKA SESTAVA
POVZETEK GLAVNIH ZNAČILNOSTI ZDRAVILA 1. IME ZDRAVILA Fidi koencim 10 mehke kapsule 2. KAKOVOSTNA IN KOLIČINSKA SESTAVA Ena mehka kapsula vsebuje: - ubidekarenon* 30 mg - vseracemni-α-tokoferilacetat 24
Διαβάστε περισσότεραSimptomatsko zdravljenje kognitivnih oškodovanosti Priporočeni dnevni odmerek je 2,4 do 4,8 g, razdeljen na dva ali tri odmerke. Zdravljenje mioklonus
POVZETEK GLAVNIH ZNAČILNOSTI ZDRAVILA 1. IME ZDRAVILA Nootropil 1200 mg filmsko obložene tablete 2. KAKOVOSTNA IN KOLIČINSKA SESTAVA 1 filmsko obložena tableta vsebuje 1200 mg piracetama. Za celoten seznam
Διαβάστε περισσότεραΒασικές Αρχές Φαρμακοκινητικής
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Βασικές Αρχές Φαρμακοκινητικής Κάθαρση Διδάσκων: Αναπληρωτής Καθηγητής Π. Παππάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραPARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Διαβάστε περισσότεραOsnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Διαβάστε περισσότεραSoučinkovanje in pomembni stranski učinki antibiotikov ali Klinično pomembne interakcije protimikrobnih zdravil
Součinkovanje in pomembni stranski učinki antibiotikov ali Klinično pomembne interakcije protimikrobnih zdravil Podiplomski tečaj protimikrobnega zdravljenja za zdravnike, ki delajo na primarni ravni zdravstvenega
Διαβάστε περισσότεραDržavni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA
Državni izpitni center *M15143113* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sreda, 3. junij 2015 SPLOŠNA MATURA RIC 2015 M151-431-1-3 2 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor Naloga Odgovor
Διαβάστε περισσότεραNa pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12
Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola
Διαβάστε περισσότεραPrvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum
27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.
Διαβάστε περισσότεραΤελική τοποθέτηση. Θα ανακεφαλαιώσω αυτά στα οποία κατέληξα εγώ, όσο πιο συνοπτικά γίνεται.
Τελική τοποθέτηση Διονύση ξεκίνησες µε Σαββόπουλο, θα ανταποδώσω µε Μάνο Λοΐζο και Γιάννη Νεγρεπόντη: «Ο Γιόχαν, ο Φίσερ κι ο Φρανς, θα πέσουν σαν ήρωες κάτω απ τα τανκς» Φτάσαµε (;) στο τέλος µιας συζήτησης
Διαβάστε περισσότερα5. PARCIJALNE DERIVACIJE
5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x
Διαβάστε περισσότεραAppendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci
3 H 12.35 Y β Low 80 1 - - Betas: 19 (100%) 11 C 20.38 M β+, EC Low 400 1 5.97 13.7 13 N 9.97 M β+ Low 1 5.97 13.7 Positrons: 960 (99.7%) Gaas: 511 (199.5%) Positrons: 1,199 (99.8%) Gaas: 511 (199.6%)
Διαβάστε περισσότεραMATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Διαβάστε περισσότερα8. Diskretni LTI sistemi
8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z
Διαβάστε περισσότεραDržavni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA
Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor
Διαβάστε περισσότερα