CURS 1 Fizica. Fenomene optice. Introducere.Radiaţii electromagnetice.proprietăţi
|
|
- Ιολανθη Αμάλθεια Ζάχος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 CURS 1 Fizica Fenomene optice. Introducere.Radiaţii electromagnetice.proprietăţi
2 Unele corpuri, aflate în anumite condiţii, produc asupra ochiului o impresie fiziologică pe care o numim lumină. Cu studiul propagării undelor luminoase şi a fenomenelor legate de aceste unde, numite unde optice, se ocupă partea fizicii numită optică In prezent, optica cuprinde studiul undelor electromagnetice a căror lungimi de undă se găsesc atât în domeniul vizibil ( = 0,4 m 0,8 m ) cât şi în domeniile învecinate (infraroşu: = 0,8 m 3 10 m, şi ultraviolet: = 0,02 m 0,4 m
3 Partea opticii care studiază fenomenele luminoase servindu-se de razele de lumină ca simple linii geometrice se numeşte optică geometrică, iar partea opticii care studiază fenomene ca: interferenţa luminii, difracţia, polarizarea, etc. se numeşte optică ondulatorie. Prima teorie ştiinţifică cu privire la natura luminii aparţine lui I. Newton (1704) şi susţine că sursa de lumină emite corpusculi luminoşi care se propagă în virtutea inerţiei în linie dreaptă cu o viteză relativ mare. Teoria corpusculară explică fenomenele de reflexie a luminii prin analogie cu reflexia unor bile elastice de un perete fix, iar fenomenul de refracţie prin atracţia corpusculilor luminoşi de către mediile mai dense. In 1690, C. Huygens pune bazele teoriei ondulatorii cu privire la natura luminii, conform căreia lumina trebuie să fie considerată ca o undă elastică ce se propagă într-un mediu special, care umple întregul univers, numit eter. Teoria ondulatorie a lui Huygens, completată de Young, Fresnel şi alţii explică majoritatea fenomenelor optice cunoscute: reflexia, refracţia, interferenţa, difracţia, polarizarea, dar are şi unele neajunsuri. Abia în 1893, Maxwell pune bazele teoriei electromagnetice cu privire la natura luminii. El afirmă că lumina este un fenomen electromagnetic, unda electromagnetică fiind formată dintr-un câmp electric şi unul magnetic, variabile în spaţiu şi timp. Conform acestei teorii, deosebirea dintre undele electromagnetice propriu zise şi undele luminoase constă în frecvenţa lor. Mai târziu, în 1901, Max Planck revine la teoria corpusculară a luminii sub forma teoriei cuantice a naturii luminii. Conform acestei teorii, lumina are o structură discontinuă, sub formă de cuante de energie. Einstein (1905) a numit particulele de lumină care au energia egală cu o cuantă, fotoni. Dezvoltarea în continuare a cercetărilor în domeniul opticii au arătat că lumina este un fenomen complex care reprezintă în acelaşi timp proprietăţi ondulatorii şi corpusculare. Louis de Broglie (1924) dezvoltă această idee şi arată că dualitatea undă-corpuscul nu este caracteristică numai luminii, ci oricărei particule. Această dualitate confirmă dualitatea materială a luminii.
4 1. În funcţie de natura lor: - Radiaţii electromagnetice (EM) propagarea sub formă de unde transversale a undelor electromagnetice - Elastice: propagarea sub formă de unde longitudinale a vibraţiilor unui mediu elastic - Corpusculare: fascicule de particule de mare energie 2. În funcţie de energie, în raport efectul lor asupra substanţei cu care interacţionează: - Ionizante cele care sunt capabile să producă ionizarea, datorită energiei mari - Neionizante radiaţii de energie mică, incapabile să producă ionizarea. Radiaţie = propagarea în spaţiu a unor câmpuri de forţe sub formă de unde sau a unor fluxuri de particule. Clasificarea radiaţiilor
5 Interacţiunea radiaţiilor cu substanţa La interacţiunea cu substanţa, radiaţia cedează o parte din energia sa, în general conform unei legi de absorbţie exponenţiale unde I 0 reprezintă intensitatea incidentă, I intensitatea emergentă, d grosimea stratului de substanţă străbătut, k coeficient specific de atenuare (acesta depinde de natura radiaţiei şi de caracteristicile substanţei) Energia cedată se transformă în alte forme de energie, producând efecte diferite cu atât mai importante cu cât energia absorbită de substanţă este mai mare. Interacţiunea radiaţie - substanţă se realizează la diferite nivele de organizare a materialului absorbant: - La nivel molecular efecte termice, excitări vibraţionale şi rotaţionale ale moleculelor, reacţii chimice; - La nivel atomic, producând excitări ale ionilor sau ionizări; - La nivel nuclear excitări ale nucleului sau declanşarea unor reacţii nucleare.
6 Parametrii caracteristici undelor electromagnetice transversale Mărimile caracteristice undelor sunt perioada T (timpul după care oscilaţia se repetă), lungimea de undă λ (spaţiul parcurs într-un interval de timp egal cu o perioadă T) şi frecvenţa ν (inversul perioadei T). Relaţiile care există între mărimile caracteristice undelor sunt următoarele: unde c reprezintă viteza de propagare a undei. Undele electromagnetice sunt unde transversale care au componentă magnetică şi o componentă electrică, vectorii electric şi magnetic fiind perpendiculari unul pe celălalt şi pe direcţia de propagare (Fig. 1). Din punct de vedere al caracteristicilor ondulatorii spectrul radiaţiilor electromagnetice se întinde de la undele radio lungi caracterizate prin frecvenţe mici şi lungimi de undă mari (km) până la razele γ de mare energie, de frecvenţe mari şi lungimi de undă mici (Å) (Fig. 2). Conform relaţiei lui Planck, energia unei unde electromagnetice este: unde h = 6, Js, constanta lui Planck, iar c = m/s, viteza luminii în vid.
7 COURS D OPTIQUE GEOMETRIQUE modules S1 G et S1 SM-d Yves Georgelin
8 Propagarea luminii. Principiul lui Fermat Fig 1 Unda luminoasă este de natură electromagnetică; ea poate fi reprezentată într-un mediu omogen prin vectorii câmp electric şi câmp magnetic care sunt perpendiculari între ei şi perpendiculari pe direcţia de deplasare. Deoarece şi au aceeaşi fază şi variază sincron, unda electromagnetică E poate H fi reprezentată ca în figura: Fig 1
9
10 O proprietate importantă a undelor electromagnetice, ce rezultă din ecuaţiile lui Maxwell, este aceea că cei doi vectori şi sunt perpendiculari între ei şi împreună cu n alcătuiesc un triedru drept Referitor la viteza de propagare a undelor electromagnetice în vid, din teoria lui Maxwell, rezultă: c = c 8 = 3 10 m s Viteza undelor luminoase într-un mediu oarecare: v = 1 = 1 = c 0 0 r r r r = c n n = f( ) Fenomen de dispersie
11 Indicele de refracţie notat n la o temperatură dată şi lucrând cu lumină de lungime de undă, λ, fixată este o constantă fizică importantă care caracterizează cu precizie o substanţă deoarece mici cantităţi de impurităţi modifică valoarea acestui indice. Măsurătorile de indici de refracţie se pot realiza rapid şi cu cantităţi mici de substanţă Conform legilor refracţiei empirice: sin i/sin r = n reprezintă indicele de refracţie al mediului 2 în raport cu primul şi este egal cu raportul vitezelor de propagare în cele două medii (în mediul mai dens cu viteză mai mică) Dacă r = 90 raza se propagă în mediul 2 perpendicular pe interfaţa celor două medii şi se poate scrie: Această valoare i este denumită unghi limită sau unghi critic. Dacă r > 90 asistăm la o reflexie totală adică raza nu trece în mediul 2.
12 Dacă mediul 1 este chiar vidul, n reprezintă indicele de refracţie absolut şi: n = n1/n2 (1) În practica de laborator se determină indicele de refracţie faţă de aer. Indicele de refracţie al unei substanţe faţă de vid se numeşte indice de refracţie absolut. Acesta se obţine din cel măsurat în aer prin înmulţire cu Indicele de refracţie variază deci cu densitatea, temperatura şi presiunea mediului. Pentru a elimina influenţa temperaturii şi presiunii, deci a densitaţii, d s-a introdus o nouă constantă de material refracţia specifică: r = (n-1)/d (Gladstone şi Dale)
13 Dispersia luminii
14
15
16
17
18
19
20
21 Metodele refractometrice pot gasi o larga intrebuintare in multe ramuri ale industriei alimentare, petrochimice, farmaceutice si în laboratoarele biologice, chimice si medico-sanitare. Imbinarea deosebit de pretioasa a preciziei aparatului, a simplitatii tehnice si a accesibilitatii asigura o intrebuintare larga a refractometriei, ca una din cele mai importante metode fizice de analiza. Aparatul poate fi utilizat intr-o paleta larga de aplicatii atat din domeniul experimentarilor - pentru masurarea si interpretarea unor parametri fizico chimici, cat si din domeniul industrial. Folosirea refractometriei, prin utilizarea aparatului, ajuta la obtinerea unei bogate colectii de date utile privind: refractii specifice, constante refractometrice, indici de refractie si variatia acestora cu temperatura si compozitia, pentru o gama foarte larga de substante si produse obtinute in industria mediului, chimica, petrochimica, alimentara, biologica si domeniul medico-sanitar. Indicele de refractie constituie, la o temperatura si lungime de unda date a semnalului luminos, o importanta caracteristica unei combinatii chimice. Acest parametru face parte din putinele constante fizice care se pot masura cu o precizie foarte mare intr-un timp minim, avand la dispozitie o cantitate mica de substanta. Imbinarea metodelor refractometrice cu determinarea altor proprietati fizice sau cu o transformare chimica a substantei de cercetat permite sa se analizeze sisteme ternare si mai complexe si sa se determine astfel compozitia multor produse industriale si biologice importante.
22 Un alt exemplu de aplicare a reflexiei totale îl întâlnim la fibra optică. O fibră optică este un fir de sticlă, cu indicele de refracţie n 1, cu diametrul mult mai mic decât lungimea sa, învelit cu o cămaşă de sticlă mai puţin refringentă, adică n 2 <n 1. Transmisia luminii printr-o astfel de fibră se datorează reflexiilor totale multiple pe pereţii firului. Fig 2 Un fascicul de fibre optice asamblate într-un înveliş elastic poartă denumirea de conductor optic. Fig 3 Fig 2 Fig 3
23 Există două tipuri de conductori optici: a) conductorii de lumină prin care se transmit semnale luminoase modulate în timp (în acest caz poziţia relativă a firelor între ele nu contează). b) conductori de imagini prin care se transmit semnale luminoase modulate în spaţiu şi timp (firele au o poziţie relativ fixă). Fibrele optice au şi capătă pe zi ce trece o largă aplicabilitate în telecomunicaţii, medicină, etc..
24 Bibliografie selectiva 1. Ghiorghe Călugăru etc., Fizică, Teorie şi Aplicaţii, vol.2, 2. Curs Biofizica MG Elemente de fotobiologie 3. L histoire de l optique et de la photonique
a. 11 % b. 12 % c. 13 % d. 14 %
1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
Aplicaţii ale principiului I al termodinamicii la gazul ideal
Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia
Metode iterative pentru probleme neliniare - contractii
Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii
Curs 4 Serii de numere reale
Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,
Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice
1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element
a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1
Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui
III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.
III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar
5.4. MULTIPLEXOARE A 0 A 1 A 2
5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării
Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].
Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie
Integrala nedefinită (primitive)
nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei
Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"
Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia
Curs 1 Şiruri de numere reale
Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,
1. PROPRIETĂȚILE FLUIDELOR
1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea
Metode de interpolare bazate pe diferenţe divizate
Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare
Reflexia şi refracţia luminii.
Reflexia şi refracţia luminii. 1. Cu cat se deplaseaza o raza care cade sub unghiul i =30 pe o placa plan-paralela de grosime e = 8,0 mm si indicele de refractie n = 1,50, pe care o traverseaza? Caz particular
Subiecte Clasa a VIII-a
Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul
2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2
.1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,
Problema a II - a (10 puncte) Diferite circuite electrice
Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător
Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca
Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este
2. Ecuaţii de propagare a câmpului electromagnetic. Noţiuni fundamentale. Copyright Paul GASNER 1
2. Ecuaţii de propagare a câmpului electromagnetic. Noţiuni fundamentale Copyright Paul GASNER 1 Ecuaţii Helmholtz pentru medii omogene, izotrope şi infinite Unde electromagnetice plane Unde armonice plane
5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.
5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile
Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ
10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea
Activitatea A5. Introducerea unor module specifice de pregătire a studenţilor în vederea asigurării de şanse egale
Investeşte în oameni! FONDUL SOCIAL EUROPEAN Programul Operaţional Sectorial pentru Dezvoltarea Resurselor Umane 2007 2013 Axa prioritară nr. 1 Educaţiaşiformareaprofesionalăînsprijinulcreşteriieconomiceşidezvoltăriisocietăţiibazatepecunoaştere
Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1
Aparate de măsurat Măsurări electronice Rezumatul cursului 2 MEE - prof. dr. ing. Ioan D. Oltean 1 1. Aparate cu instrument magnetoelectric 2. Ampermetre şi voltmetre 3. Ohmetre cu instrument magnetoelectric
4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica
Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili
Anexa 2.6.2-1 SO2, NOx şi de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili de bioxid de sulf combustibil solid (mg/nm 3 ), conţinut de O 2 de 6% în gazele de ardere, pentru
RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,
REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii
R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
- Optica Ondulatorie
- Optica Ondulatorie *Proiect coordonat de Dna. Prof. Domisoru Daniela *Elevii participanti: Simion Vlad, Codreanu Alexandru, Domnisoru Albert-Leonard *Colegiul National Vasile Alecsandri GALATI *Concursul
1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB
1.7. AMLFCATOARE DE UTERE ÎN CLASA A Ş AB 1.7.1 Amplificatoare în clasa A La amplificatoarele din clasa A, forma de undă a tensiunii de ieşire este aceeaşi ca a tensiunii de intrare, deci întreg semnalul
Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25
Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 LAGĂRELE CU ALUNECARE!" 25.1.Caracteristici.Părţi componente.materiale.!" 25.2.Funcţionarea lagărelor cu alunecare.! 25.1.Caracteristici.Părţi componente.materiale.
Proprietăţile materialelor utilizate în sisteme solare termice
Proprietăţile materialelor utilizate în sisteme solare termice În procesul de conversie a radiaţiei solare în forme utile de energie, apar numeroase interacţiuni între radiaţia solară şi diverse materiale
Esalonul Redus pe Linii (ERL). Subspatii.
Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste
Laborator 11. Mulţimi Julia. Temă
Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.
Subiecte Clasa a VII-a
lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate
5.1. Noţiuni introductive
ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul
5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE
5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.
SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0
SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................
FIZICĂ. Bazele fizice ale mecanicii cuantice. ş.l. dr. Marius COSTACHE
FIZICĂ Bazele fizice ale mecanicii cuantice ş.l. d. Maius COSTACHE 1 BAZELE FIZICII CUANTICE Mecanica cuantică (Fizica cuantică) studiază legile de mişcae ale micoaticulelo (e -, +,...) şi ale sistemelo
Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor
Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.
MARCAREA REZISTOARELOR
1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea
LUCRAREA NR. 4 DETERMINAREA INDICELUI DE REFRACŢIE AL UNUI SOLID CU AJUTORUL PRISMEI
LUCRAREA NR. 4 DETERMINAREA INDICELUI DE REFRACŢIE AL UNUI SOLID CU AJUTORUL PRISMEI Tema lucrării: 1) Determinarea unghiului refringent al prismei. ) Determinarea indicelui de refracţie al prismei pentru
Sisteme diferenţiale liniare de ordinul 1
1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2
Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.
pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu
Difractia de electroni
Difractia de electroni 1 Principiul lucrari Verificarea experimentala a difractiei electronilor rapizi pe straturi de grafit policristalin: observarea inelelor de interferenta ce apar pe ecranul fluorescent.
Laborator 5 INTERFEROMETRE
Laborator 5 INTERFEROMETRE Scopul lucrarii În lucrarea de fańă sunt prezentate unele aspecte legate de interferometrie. Se prezinta functionarea unui modulator optic ce lucreaza pe baza interferentei dintre
2. STATICA FLUIDELOR. 2.A. Presa hidraulică. Legea lui Arhimede
2. STATICA FLUIDELOR 2.A. Presa hidraulică. Legea lui Arhimede Aplicația 2.1 Să se determine ce masă M poate fi ridicată cu o presă hidraulică având raportul razelor pistoanelor r 1 /r 2 = 1/20, ştiind
Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:
Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,
riptografie şi Securitate
riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare
Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt.
liberi 1 liberi 2 3 4 Segment orientat liberi Fie S spaţiul geometric tridimensional cu axiomele lui Euclid. Orice pereche de puncte din S, notată (A, B) se numeşte segment orientat. Dacă A B, atunci direcţia
2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3
SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest
Miscarea oscilatorie armonica ( Fisa nr. 2 )
Miscarea oscilatorie armonica ( Fisa nr. 2 ) In prima fisa publicata pe site-ul didactic.ro ( Miscarea armonica) am explicat parametrii ce definesc miscarea oscilatorie ( perioda, frecventa ) dar nu am
FIZICĂ. Oscilatii mecanice. ş.l. dr. Marius COSTACHE
FIZICĂ Oscilatii mecanice ş.l. dr. Marius COSTACHE 3.1. OSCILAŢII. Noţiuni generale Oscilaţii mecanice Oscilaţia fenomenul fizic în decursul căruia o anumită mărime fizică prezintă o variaţie periodică
Curs 2 DIODE. CIRCUITE DR
Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu
2CP Electropompe centrifugale cu turbina dubla
2CP Electropompe centrifugale cu turbina dubla DOMENIUL DE UTILIZARE Capacitate de până la 450 l/min (27 m³/h) Inaltimea de pompare până la 112 m LIMITELE DE UTILIZARE Inaltimea de aspiratie manometrică
IV. CUADRIPOLI SI FILTRE ELECTRICE CAP. 13. CUADRIPOLI ELECTRICI
V. POL S FLTE ELETE P. 3. POL ELET reviar a) Forma fundamentala a ecuatiilor cuadripolilor si parametrii fundamentali: Prima forma fundamentala: doua forma fundamentala: b) Parametrii fundamentali au urmatoarele
Noţiuni de optică. Ochiul uman
Biofizică Noţiuni de optică. Ochiul uman Capitolul VII. Noţiuni de optică. Ochiul uman Vederea reprezintă unul din simţurile de bază ale lumii animale, lumina este un factor indispensabil în existenţa
Unitatea atomică de masă (u.a.m.) = a 12-a parte din masa izotopului de carbon
ursul.3. Mării şi unităţi de ăsură Unitatea atoică de asă (u.a..) = a -a parte din asa izotopului de carbon u. a.., 0 7 kg Masa atoică () = o ărie adiensională (un nuăr) care ne arată de câte ori este
COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.
SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care
8 Intervale de încredere
8 Intervale de încredere În cursul anterior am determinat diverse estimări ˆ ale parametrului necunoscut al densităţii unei populaţii, folosind o selecţie 1 a acestei populaţii. În practică, valoarea calculată
CURS MECANICA CONSTRUCŢIILOR
CURS 10+11 MECANICA CONSTRUCŢIILOR Conf. Dr. Ing. Viorel Ungureanu CINEMATICA SOLIDULUI RIGID In cadrul cinematicii punctului material s-a arătat ca a studia mişcarea unui punct înseamnă a determina la
Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane
Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii
Capitolul 1 Tehnici şi sisteme de transmisiuni multiplex Noţiuni introductive. Antene.
Capitolul 1 Tehnici şi sisteme de transmisiuni multiplex Acest curs prezintă cateva aspecte generale legate de functionarea antenelor, particularizate din punct de vedere teoretic prin dipolul Hertz, precum
Modulul 5 OPTICĂ ONDULATORIE
57 Modulul 5 OPTICĂ ONDULATORIE Conţinutul modulului: 5.1 Generalităţi 5. Reflexia şi refracţia luminii 5.3 Interferenţa luminii 5.4 Difracţia luminii 5.5 Difuzia luminii 5.6 Dispersia luminii 5.7 Polarizarea
Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent
Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului
* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1
FNCȚ DE ENERGE Fie un n-port care conține numai elemente paive de circuit: rezitoare dipolare, condenatoare dipolare și bobine cuplate. Conform teoremei lui Tellegen n * = * toate toate laturile portile
Asupra unei inegalităţi date la barajul OBMJ 2006
Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale
a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie)
Caracteristica mecanică defineşte dependenţa n=f(m) în condiţiile I e =ct., U=ct. Pentru determinarea ei vom defini, mai întâi caracteristicile: 1. de sarcină, numită şi caracteristica externă a motorului
VII.2. PROBLEME REZOLVATE
Teoria Circuitelor Electrice Aplicaţii V PROBEME REOVATE R7 În circuitul din fiura 7R se cunosc: R e t 0 sint [V] C C t 0 sint [A] Se cer: a rezolvarea circuitului cu metoda teoremelor Kirchhoff; rezolvarea
Acustică. Sistemul auditiv
Acustică. Sistemul auditiv Undele elastice reprezintă modalitatea de comunicare poate cel mai frecvent întâlnită în lumea animală. Acest capitol îşi propune în primul rând să prezinte mărimile şi legile
Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice
Laborator 4 Măsurarea parametrilor mărimilor electrice Obiective: o Semnalul sinusoidal, o Semnalul dreptunghiular, o Semnalul triunghiular, o Generarea diferitelor semnale folosind placa multifuncţională
Algebra si Geometrie Seminar 9
Algebra si Geometrie Seminar 9 Decembrie 017 ii Equations are just the boring part of mathematics. I attempt to see things in terms of geometry. Stephen Hawking 9 Dreapta si planul in spatiu 1 Notiuni
CUPRINS 5. Reducerea sistemelor de forţe (continuare)... 1 Cuprins..1
CURS 5 REDUCEREA SISTEMELOR DE FORŢE (CONTINUARE) CUPRINS 5. Reducerea sistemelor de forţe (continuare)...... 1 Cuprins..1 Introducere modul.1 Obiective modul....2 5.1. Teorema lui Varignon pentru sisteme
Seria Balmer. Determinarea constantei lui Rydberg
Seria Balmer. Determinarea constantei lui Rydberg Obiectivele lucrarii analiza spectrului in vizibil emis de atomii de hidrogen si determinarea lungimii de unda a liniilor serie Balmer; determinarea constantei
FENOMENE TRANZITORII Circuite RC şi RLC în regim nestaţionar
Pagina 1 FNOMN TANZITOII ircuite şi L în regim nestaţionar 1. Baze teoretice A) ircuit : Descărcarea condensatorului ând comutatorul este pe poziţia 1 (FIG. 1b), energia potenţială a câmpului electric
Seminar 5 Analiza stabilității sistemelor liniare
Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare
OSCILATII SI UNDE UNDE
OSCILATII SI UNDE Cursul nr. 8-9-10 UNDE Cursul Nr.8 8.1. Introducere Undele sunt unele din cele mai raspandite fenomene naturale cu o importanta deosebita in stiinta si tehnica. Prin notiunea de unda
Proiectarea filtrelor prin metoda pierderilor de inserţie
FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri
Profesor Blaga Mirela-Gabriela DREAPTA
DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)
Noţiuni fundamentale de optică ondulatorie. Acţiunea biologică a radiaţiilor UV, V şi IR. LASER-ul
Noţiuni fundamentale de optică ondulatorie. Acţiunea biologică a radiaţiilor UV, V şi IR. LASER-ul Natura electromagnetică a luminii Caracterul dual undă corpuscul al luminii Unele fenomene luminoase pot
2 Transformări liniare între spaţii finit dimensionale
Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei
3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4
SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei
STUDIUL EFECTULUI HALL ÎN SEMICONDUCTORI
UIVERSITATEA "POLITEICA" DI BUCURESTI DEPARTAMETUL DE FIZICĂ LABORATORUL DE FIZICA ATOMICA ŞI FIZICA CORPULUI SOLID B-03 B STUDIUL EFECTULUI ALL Î SEMICODUCTORI STUDIUL EFECTULUI ALL Î SEMICODUCTORI Efectul
GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii
GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile
Curs 2 Şiruri de numere reale
Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un
Capitolul 30. Transmisii prin lant
Capitolul 30 Transmisii prin lant T.30.1. Sa se precizeze domeniile de utilizare a transmisiilor prin lant. T.30.2. Sa se precizeze avantajele si dezavantajele transmisiilor prin lant. T.30.3. Realizati
TITLUL INVENTIEI: Procedeu si instalatie de stocare electromagnetica, in domeniul optic, a energiei electrice
INVENTATORI : 1.BEŞLIU Ion BUCUREŞTI 2. MUŞAT Alexandru BUCUREŞTI 3. NEDELEA Valentin BUCUREŞTI 4. VASILESCU FLORIN 5. VASILE Rãducu Dãnuţ BUCUREŞTI 6. PĨRŞAN Liviu BUCUREŞTI TITLUL INVENTIEI: Procedeu
Tranzistoare bipolare şi cu efect de câmp
apitolul 3 apitolul 3 26. Pentru circuitul de polarizare din fig. 26 se cunosc: = 5, = 5, = 2KΩ, = 5KΩ, iar pentru tranzistor se cunosc următorii parametrii: β = 200, 0 = 0, μa, = 0,6. a) ă se determine
Amplitudinea sau valoarea de vârf a unui semnal
Amplitudinea sau valoarea de vârf a unui semnal În curent continuu, unde valoarea tensiunii şi a curentului sunt constante în timp, exprimarea cantităńii acestora în orice moment este destul de uşoară.
CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi
Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială
Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE
Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE Exerciţii şi probleme E.P.2.4. 1. Scrie formulele de structură ale următoarele hidrocarburi şi precizează care dintre ele sunt izomeri: Rezolvare: a) 1,2-butadiena;
Capitolul 2 - HIDROCARBURI 2.3.ALCHINE
Capitolul 2 - HIDROCARBURI 2.3.ALCHINE TEST 2.3.3 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Acetilena poate participa la reacţii de