REGRESIJSKA ANALIZA. U razvoju regresijske analize najznačajniju ulogu su imali: Carl Friedrich Gauss ( ) Francis Galton (
|
|
- Τίμων Κοντολέων
- 7 χρόνια πριν
- Προβολές:
Transcript
1 SEMINAR U razvoju regresjske aalze ajzačajju ulogu su mal: Carl Fredrch Gauss (822 9) Fracs Galto (822 9) Karl Pearso ( ) George Udy Yule (87 95)
2 SEMINAR Regresjska aalza je matematčko-statstčk postupak kojm se utvrđuje odgovarajuća fukcoala veza (relacja) zmeđu jede zavse l krterjske varjable jede l vše ezavsh l predktorskh varjabl Zavsa (krterjska) varjabla je varjabla čj se varjabltet objašjava putem ezavsh varjabl Nezavse (predktorske) varjable su varjable a temelju kojh se objašjava varjabltet zavse varjable
3 SEMINAR Regresjska aalza se u kezologj ajčešće korst u svrhu: utvrđvaja utjecaja jede varjable l skupa varjabl a eku krterjsku varjablu (pr utvrđvaje utjecaja karakterstka građe tjela a rezultat u bacaju kugle) utvrđvaje treda razvoja rezultata u ekom sportu (pr utvrđvaje treda razvoja ajboljh rezultata u bacaju kugle a svjetskm prvestvma)
4 SEMINAR Fukcoala veza zmeđu predktorskh varjabl krterjske varjable defra se utvrđvajem odgovarajuće regresjske jedadžbe Opć oblk regresjske jedadžbe zgleda ovako: ezavse (predktorske) varjable Y f ( X, X,, X ) e 2 m odgovarajuća fukcja greška progoze zavsa (krterjska) varjabla
5 SEMINAR Regresjske modele moguće je geeralo podjelt a temelju dvaju krterja to: prema broju ezavsh varjabl a: jedostave (smple) regresjske modele všestruke (multple) regresjske modele, te prema odosu zmeđu zavse ezavsh varjabl a: leare regresjske modele eleare regresjske modele
6 SEMINAR Lear elear model jedostave regresjske aalze: Y Y = b 0 + b *X - polom stupja (pravac) Y = b 0 *log b*x - logartamska fukcja Y = b 0 *b x - ekspoecjala fukcja Y = b 0 + b *X + b 2 *X 2 + +b *X - polom -tog stupja X
7 SEMINAR Odabr modela jedostave regresjske aalze vrš se pomoću korelacjskog djagrama Y Y = b 0 + b * X Y = b 0 * log b*x (Prmjer: logartamska fukcja je prklada model) X
8 SEMINAR Jedostava leara regresjska aalza Jedostavom learom regresjskom aalzom utvrđuje se leara povezaost zmeđu jede ezavse (predktorske) jede zavse (krterjske) varjable pr čemu regresjska jedadžba ma sljedeć oblk: gdje je y b b x 0 y - rezultat etteta u krterjskoj varjabl b 0 b - regresjsk koefcjet x - rezultat etteta u predktorskoj varjabl e - rezduala vrjedost etteta =,, e
9 SEMINAR Jedostava leara regresjska aalza Regresjsk koefcjet omogućavaju progozraje rezultata etteta u krterjskoj varjabl a temelju rezultata u predktorskoj varjabl putem sljedeće formule: y' b b x 0 gdje je y - progozra rezultat etteta u krterjskoj varjabl b 0 b - regresjsk koefcjet x - rezultat etteta u predktorskoj varjabl =,,
10 SEMINAR Jedostava leara regresjska aalza Y y = b 0 + b x (x,, y ) y = y + e y e y y y x (Prkaz regresjskog pravca, orgalh progozrah rezultata u krterjskoj varjabl rezdualh vrjedost) X
11 SEMINAR Jedostava leara regresjska aalza y = b 0 + b x (Dstrbucja rezdualh vrjedost oko regresjskog pravca)
12 SEMINAR Jedostava leara regresjska aalza Koefcjet regresjskog pravca utvrđuju se metodom ajmajh kvadrata Metoda ajmajh kvadrata temelj se a uvjetu da je suma kvadrata rezdualh vrjedost mmala gdje je e 2 ( y y' ) 2 m e - rezduala vrjedost etteta y - rezultat etteta u krterjskoj varjabl y - progozra rezultat etteta u krterjskoj varjabl =,,
13 x x y x x x y b ) ( Regresjsk koefcjet b 0 predstavlja odsječak a os zavse varjable y, odoso, vrjedost zavse varjable y ukolko je vrjedost ezavse varjable x = 0 SEMINAR Jedostava leara regresjska aalza y - rezultat etteta u krterjskoj varjabl x - rezultat etteta u predktorskoj varjabl =,, gdje je
14 x x y x y x b 2 2 ) ( Regresjsk koefcjet b određuje agb pravca, odoso, pokazuje kolko se u prosjeku learo mjeja vrjedost zavse varjable y za jedč porast vrjedost ezavse varjable x SEMINAR Jedostava leara regresjska aalza y - rezultat etteta u krterjskoj varjabl x - rezultat etteta u predktorskoj varjabl =,, gdje je
15 SEMINAR Jedostava leara regresjska aalza Regresjsk koefcjet se također mogu zračuat rješavajem regresjske jedadžbe u matrčom oblku: y = X b + e y y x x b b 0 e e gdje je y - vektor rezultata etteta u krterju X - matrca reda 2 rezultata etteta u predktoru b - vektor regresjskh koefcjeata e - vektor rezdualh vrjedost
16 SEMINAR Jedostava leara regresjska aalza y = X b /X T X T y = X T X b / (X T X) - b = (X T X) - X T y y' = X b e = y - y'
17 SEMINAR Jedostava leara regresjska aalza Y b y = b 0 + b x b b b 0 b b0+b b b 0 +2b b 0 +3b b 0 +4b b 0 +5b (Prkaz regresjskh koefcjeata b 0 b ) X
18 SEMINAR Jedostava leara regresjska aalza Stadarda pogreška progoze ( e ) je drug korje z varjace rezdualh vrjedost, a predstavlja mjeru reprezetatvost regresjskog modela gdje je e ( y y' 2 y - rezultat etteta u krterjskoj varjabl y - progozra rezultat etteta u krterjskoj varjabl =,, - broj etteta ) 2
19 SEMINAR Jedostava leara regresjska aalza Koefcjet korelacje zmeđu krterjske predktorske varjable zražava velču jhove leare povezaost Kada je r x,y = 0 to zač da ezavsa varjabla x ema kakav utjecaj a varjabltet krterjske varjable y Ako koefcjet korelacje ma maksmalu vrjedost r x,y =, to zač da je cjelokupa varjabltet varjable y moguće prpsat utjecaju varjable x Kvadrat koefcjeta korelacje (r 2 ) azva se koefcjet determacje, a predstavlja proporcju varjace krterjske varjable koju je moguće objast putem predktorske varjable
20 SEMINAR STATISTICA 7 Jedostava leara regresjska aalza Jedostava leara regresjska aalza zvod se sljedom koraka: padajuć zbork Statstcs Multple Regresso U djaloškom okvru koj se pokreće odabrom opcje Varables potrebo je ozačt zavsu varjablu (Depedet var) ezavsu varjablu (Idepedet varable lst) Nako odabra varjabl rezultatma regresjske aalze se prstupa putem opcje Summary: Regresso results Zadatak - U datotec TRENDsta utvrdte regresjsku jedadžbu kojom je moguće progozrat tjelesu masu (TEZ) testraog sptaka a temelju broja tjedaa vježbaja (BRM)!
21 SEMINAR Všestruka leara regresjska aalza Všestrukom learom regresjskom aalzom utvrđuje se leara povezaost zmeđu dvju l vše ezavsh (predktorskh) jede zavse (krterjske) varjable pr čemu regresjska jedadžba ma sljedeć oblk: y = b 0 + b x + b 2 x 2 ++ b m x m + e gdje je y - rezultat etteta u krterjskoj varjabl b 0,,b m - regresjsk koefcjet x,,x m - rezultat etteta u m predktorskh varjabl e - rezduala vrjedost etteta =,, ( - broj etteta), a m - broj predktora
22 Regresjsk koefcjet mogu se zračuat rješavajem regresjske jedadžbe u matrčom oblku: SEMINAR Všestruka leara regresjska aalza y = X b + e m m m e e b b b x x x x y y 0
23 SEMINAR Všestruka leara regresjska aalza y = X b /X T X T y = X T X b /(X T X) - b = (X T X) - X T y y' = X b e = y - y' gdje je y - vektor rezultata etteta u krterju X - matrca reda m+ rezultata etteta u m predktora b - vektor regresjskh koefcjeata y - vektor progozrah vrjedost u krterju e - vektor rezdualh vrjedost
24 SEMINAR Všestruka leara regresjska aalza Regresjsk koefcjet b 0 predstavlja vrjedost zavse varjable y ukolko je vrjedost svh ezavsh varjabl jedaka 0 Regresjsk koefcjet b,,b m pokazuju kolko se u prosjeku learo mjeja vrjedost zavse varjable y za jedč porast vrjedost odgovarajuće ezavse varjable (x,,x m ) uz uvjet da su vrjedost ostalh ezavsh varjabl kostate
25 SEMINAR Všestruka leara regresjska aalza Ako se krterjska predktorske varjable prethodo stadardzraju regresjska jedadžba poprma sljedeć oblk: k = z + 2 z m z m + gdje je k - stadardzra rezultat etteta u krterjskoj varjabl β,,β m - stadardzra regresjsk koefcjet z,,z m - stadardzra rezultat etteta u m predktorskh varjabl - stadardzraa rezduala vrjedost etteta =,, ( - broj etteta), a m - broj predktora
26 Stadardzra regresjsk koefcjet mogu se zračuat rješavajem sljedeće jedadžbe u matrčom oblku: SEMINAR Všestruka leara regresjska aalza k = Z + m m m z z z z k k
27 SEMINAR Všestruka leara regresjska aalza k = Z / Z T - gdje je Z T k - = Z T Z - k - vektor stadardzrah rezultata etteta u krterju r r2 r Z - matrca reda m m stadardzrah rezultata r2 etteta u m predktora β - vektor stadardzrah regresjskh koefcjeata r m rm r - vektor korelacja m r = R / R - predktora s krterjem R - matrca međusobh = R - r korelacja m predktora
28 SEMINAR Všestruka leara regresjska aalza Stadardzra regresjsk koefcjet β,,β m su relatv koefcjet utjecaja, a predstavljaju velču promjee zavse varjable zražeu u djelovma stadarde devjacje za jedč porast stadardzrae vrjedost odgovarajuće ezavse varjable (z,,z m ) uz uvjet da su vrjedost preostalh ezavsh varjabl kostate
29 SEMINAR Všestruka leara regresjska aalza Statstčka začajost svakog pojedog regresjskog koefcjeta se testra putem Studetove t-dstrbucje Pr tome je za svak regresjsk koefcjet moguće postavt sljedeću alteratvu (H), odoso ultu (H0) hpotezu: H: b j 0 - Utjecaj predktora j a krterjsku varjablu je statstčk začaja uz pogrešku p H0: b j = 0 - Uz pogrešku p e možemo tvrdt da je utjecaj predktora j a krterjsku varjablu statstčk začaja
30 SEMINAR Všestruka leara regresjska aalza Stadarda pogreška progoze ( e ) je drug korje z varjace rezdualh vrjedost, a predstavlja mjeru reprezetatvost regresjskog modela gdje je e ( y y' ) ( m ) y - rezultat etteta u krterjskoj varjabl y - progozra rezultat etteta u krterjskoj varjabl =,, - broj etteta, m - broj predktorskh varjabl 2
31 SEMINAR Všestruka leara regresjska aalza Koefcjet multple korelacje () je korelacja zmeđu krterjske varjable varjable progozrah rezultata, a zražava velču leare povezaost skupa predktorskh varjabl s krterjem Koefcjet multple korelacje se kreće u tervalu od 0 do pr čemu 0 ozačava kakavu, a potpuu zavsost krterjske varjable o skupu predktorskh varjabl Kvadrat koefcjeta korelacje (ρ 2 ) azva se koefcjet multple determacje, a predstavlja proporcju varjace krterjske varjable koju je moguće objast putem skupa predktorskh varjabl
32 SEMINAR Všestruka leara regresjska aalza Statstčka začajost koefcjeta multple korelacje () se testra putem Sedecorove F-dstrbucje Pr tome je moguće postavt sljedeću alteratvu (H), odoso ultu (H0) hpotezu: H: ρ 0 - Povezaost zmeđu skupa predktora krterjske varjable je statstčk začaja uz pogrešku p H0: ρ = 0 - Uz pogrešku p e možemo tvrdt da je povezaost zmeđu skupa predktora krterjske varjable statstčk začaja
33 SEMINAR STATISTICA 7 Všestruka leara regresjska aalza Všestruka leara regresjska aalza zvod se sljedom koraka: padajuć zbork Statstcs Multple Regresso U djaloškom okvru koj se pokreće odabrom opcje Varables potrebo je ozačt zavsu varjablu (Depedet var) dvje l vše ezavsh varjabl (Idepedet varable lst) Nako odabra varjabl rezultatma regresjske aalze prstupa se putem opcje Summary: Regresso results Zadatak - U datotec KOSARKAsta utvrdte regresjsku jedadžbu kojom je moguće progozrat uspješost ekpe (K2) a temelju skupa stuacjskh parametara (v-v2)!
34 SEMINAR Lteratura za prpremaje kolokvja Dzdar, D (2006) Kvattatve metode Zagreb: Kezološk fakultet, str Petz, B (2002) Osove statstčke metode za ematematčare Jastrebarsko: str Naklada Slap, Mejovšek, M (2003) Uvod u metode zastveog stražvaja u društvem humastčkm zaostma Jastrebarsko: Naklada Slap, str
10. REGRESIJA I KORELACIJA
0. REGRESIJA I KORELACIJA Jospa Perkov, prof., pred. Jedodmezoala aalza stražvaje vaje jede pojave predočee ee statstčkm zom ezavso od drugh, statstčkm metodama (grafčko tabelaro prkazvaje za, zračuavaje
Prof. dr. sc. Maja Biljan-August Prof. dr. sc. Snježana Pivac Doc. dr. sc. Ana Štambuk 2. IZDANJE. Poglavlje 2.
Prof. dr. sc. Maja Blja-August Prof. dr. sc. Sježaa Pvac Doc. dr. sc. Aa Štambuk UPORABA STATISTIKE U EKONOMIJI. IZDANJE Poglavlje. REGRESIJSKA I KORELACIJSKA ANALIZA Ekoomsk fakultet Sveučlšta u Rjec
Metoda najmanjih kvadrata
Metoda ajmajh kvadrata Moday, May 30, 011 Metoda ajmajh kvadrata (MNK) MNK smo već uvel u proučavaju leare korelacje; gdje smo tražl da suma kvadrata odstupaja ekspermetalh točaka od pravca koj h a ajbolj
Linearna korelacija. Vrijedi: (1) 1 r 1
Leara korelacja Korelacja je mjera leare zavsost dvju serja podataka 1,,..., 1,,...,. Drugm rječma, ako su točke 1, 1,,,..., gruprae oko regresjskog pravca, oda govormo da su podatc korelra learo korelra.
Obrada empirijskih podataka
Obrada emprjskh podataka deskrptva statstka opsvaje podataka z uzorka l populacje u form osovh parametara osove vrste podataka po astaku varjable (upotreba razlčth mjerh ljestvca) se mogu klasfcrat a:.
x pojedinačnih rezultata:
ovarjaca koefcjet korelacje Sredja vrjedost stadardo odstupaje Prlkom poavljaja mjereja, uz ste (kolko je to moguće uvjete (st mjertelj, mjer strumet, mjera metoda okol uvjet, eke stale fzkale velče, dobt
Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam
Polarzacja Proces asajaja polarzrae svjelos: a refleksja b raspršeje c dvolom d dkrozam Freselove jedadžbe Svjelos prelaz z opčkog sredsva deksa loma 1 u sredsvo deksa loma, dolaz do: refleksje (prema
Ekonometrija 5. Ekonometrija, Osnovne studije. Predavač: Aleksandra Nojković
Ekoometja 5 Ekoometja, Osove studje Pedavač: Aleksada Nojkovć Stuktua pedavaja Klasč dvostuk (všestuk) lea egeso model - metod ONK. Petpostavke všestukog KLM. Koelacja u všestukom KLM. Oča kogova. Dvostuk
Korelacijska i regresijska analiza
Korelacjska regresjska analza Odnos među pojavama Odnos među pojavama može bt: determnstčk l funkconaln stohastčk l statstčk Kod determnstčkoga se odnosa za svaku vrjednost jedne pojave točno zna vrjednost
Jednostavna regresiona analiza
Profesor Zorca Mladeovć Jedostava regresoa aalza Zorca Mladeovć Struktura predavaja Polaza deja prmer Populacoa uzoračka regresoa prava Metod očh ajmajh kvadrata Korelacja Jedostave eleare zavsost Ekoomsk
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
Moguća i virtuelna pomjeranja
Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +
F (t) F (t) F (t) OGLEDNI PRIMJER SVEUČILIŠTE J.J.STROSSMAYERA U OSIJEKU ZADATAK
OGLEDNI PRIMJER ZADAAK Odredte dnamčke karakterstke odzv armranobetonskog okvra C-C prkazanog na slc s prpadajućom tlorsnom površnom, na zadanu uzbudu tjekom prve tr sekunde, ako je konstrukcja prje djelovanja
Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu
7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc
1.1. Pregled najvažnijih izraza i pojmova
Teorja formacje, kapactet dskretog komukacjskog kaala, Markovljev lac Pregled ajvažjh zraza pojmova Dskreto bezmemorjsko zvoršte Izvoršte X X = {x,,x,,x } [p(x ) = [p(x) = [p(x ) p(x ) p(x ) X dskreta
RAČUNANJE SA PRIBLIŽNIM VREDNOSTIMA BROJEVA
RAČUNANJE SA PRIBLIŽNIM VREDNOSTIMA BROJEVA PRIBLIŽNI BROJ I GREŠKA tača vredost ekog broja X prblža vredost ekog broja X apsoluta greška Δ = X X graca apsolute greške (gorja graca) relatva greška X X
1. Uvod u multivarijatnu statistiku. Prof.dr.sc. N. Bogunović Prof.dr.sc. B. Dalbelo Bašić
Otkrvaje zaja u skuovma odataka Metoda glavh komoeeta Otkrvaje zaja u skuovma odataka Metoda glavh komoeeta FAKULE ELEKROEHNIKE I RAČUNARSVA Uvod u multvarjatu statstku Profdrs N Boguovć Profdrs B Dalbelo
Elektrotehnički fakultet univerziteta u Beogradu 16.maj Odsek za Softversko inžinjerstvo
Elektrotehnčk fakultet unverzteta u Beogradu 6.maj 8. Odsek za Softversko nžnjerstvo Performanse računarskh sstema Drug kolokvjum Predmetn nastavnk: dr Jelca Protć (35) a) () Posmatra se segment od N uzastonh
Ekonometrija 4. Ekonometrija, Osnovne studije. Predavač: Aleksandra Nojković
Ekonometrja 4 Ekonometrja, Osnovne studje Predavač: Aleksandra Nojkovć Struktura predavanja Nelnearne zavsnost Prmene u ekonomskoj analz Prmer nelnearne zavsnost Isptujemo zavsnost zmeđu potrošnje dohotka.
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Klasični linearni regresioni model (KLRM)
Profesor Zorca Mladeovć Klasč lear regreso model (KLRM) Zorca Mladeovć Ključe teme Postavka pretpostavke KLRM Svojstva ocea parametara u KLRM Elemet statstčkog zaključvaja u KLRM Predvđaje u KLRM Ekoomsk
KRIVULJE RASPODJELE. Doc.dr.sc. Vesna Denić-Jukić
KRIVULJE RASPODJELE Doc.dr.sc. Vesna Denć-Jukć Krvulje raspodjele predstavljaju zakon vjerojatnost pojave neke hdrološke velčne. Za slučajnu varjablu X kažemo da je poznata ako znamo zakon njene raspodjele.
Aritmetički i geometrijski niz
Zadac sa prethodh prjemh spta z matematke a Beogradskom uverztetu Artmetčk geometrjsk z. Artmetčk z. 00. FF Zbr prvh dvadeset člaova artmetčkog za čj je prv čla, a razlka A) 0 B) C) D) 880 E) 878. 000.
Dvanaesti praktikum iz Analize 1
Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.
Glava 4 ANALIZA I OBRADA SIGNALA U VREMENSKOM DOMENU
Glava 4 ANALIZA I OBRADA SIGNALA U VREMENSKOM DOMENU Obrada sgala u vremeskom domeu podrazumjeva određvaje odzva a pobudu prozvoljog oblka. Damčk lear sstem opsa su dferecjalm jedačama određvaje odzva
2. KOLOKVIJ IZ MATEMATIKE 1
2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
II. ANALITIČKA GEOMETRIJA PROSTORA
II. NLITIČK GEMETRIJ RSTR I. I (Točka. Ravia.) d. sc. Mia Rodić Lipaović 9./. Točka u postou ( ; i, j, k ) Kateijev pavokuti koodiati sustav k i j T T (,, ) oložaj točke u postou je jedoačo odeñe jeim
( x) ( ) dy df dg. =, ( x) e = e, ( ) ' x. Zadatak 001 (Marinela, gimnazija) Nađite derivaciju funkcije f(x) = a + b x. ( ) ( )
Zadatak (Mariela, gimazija) Nađite derivaciju fukcije f() a + b c + d Rješeje Neka su f(), g(), h() fukcije ezavise varijable, a f (), g (), h () derivacije tih fukcija po Osova pravila deriviraja Derivacija
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
Osnove kineziometrije i statistike
Osove kezometrje statstke Prručk za sportske treere 0 P a g e 1 Osov kezometrjsk pojmov Kezometrja je zastvea dscpla koja proučava probleme mjereja u kezologj, odoso probleme kostrukcje, evaluacje prmjee
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
Iterativne metode - vježbe
Iterativne metode - vježbe 5. Numeričke metode za ODJ Zvonimir Bujanović Prirodoslovno-matematički fakultet - Matematički odjel 21. studenog 2010. Sadržaj 1 Eulerove metode (forward i backward). Trapezna
AKSIOMATIKA TEORIJE VEROVATNOĆE
AKSIOMATIKA TEORIJE VEROVATNOĆE E Aksomatka teorje verovatoće Polaz se od osovh stavova, tzv. aksoma, a osovu kojh se sve ostale osobe mogu dokazat. Za posmatra prostor el. shoda aksomatzacja daje odgovore
Reverzibilni procesi
Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
Numerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom:
Otporost mterijl. Zdtk ZDTK: U točki čeliče kostrukije postvlje su tri osjetil z mjereje deformij prem slii. ri opterećeju kostrukije izmjeree su reltive ormle (dužiske deformije: b ( - b 3 - -6 - ( b
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
FUNKCIJE UTJECAJA I UTJECAJNE LINIJE
FUNKCIJE UTJECJ I UTJECJNE LINIJE Funkcje ujecaja ujecajne lnje korse se kod proračuna konsrukcja na djelovanje pokrenh operećenja. Zadaak: odred onaj položaj pokrenog operećenja koj će da najnepovoljnj
1. ODREĐIVANJE NETOČNOSTI MJERENJA
. ODREĐIVANJE NETOČNOSTI MJERENJA. Opće Mjereja razh fzkalh ostalh velča rezultat se e ogu provest apsoluto točo. Usljed tehčkh ekooskh razloga potrebo je etočost jereja svest a ajaju oguću jeru, sa što
1 Promjena baze vektora
Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
ΕΙ Η ΠΑΛΙΝ ΡΟΜΗΣΗΣ. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΛΙΝ ΡΟΜΗΣΗ (Simple Linear Regression) ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ (Regression) ΠΑΛΙΝ ΡΟΜΗΣΗ.
ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΛΙΝ ΡΟΜΗΣΗ (Smple Lear Regresso) Να κατανοηθεί η έννοια της παλινδρόµησης Ποιες οι προϋποθέσεις για να εφαρµοσθεί η γραµµική παλινδρόµηση; Τι είναι το γραµµικό µοντέλο και πως εκτιµούνται
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
MODELI TEMELJENI NA DIFERENCIJALNIM JEDNADŽBAMA VIŠEG REDA I NA SUSTAVIMA DIFERENCIJALNIH JEDNADŽBI
MODELI TEMELJENI NA DIFERENCIJALNIM JEDNADŽBAMA VIŠEG REDA I NA SUSTAVIMA DIFERENCIJALNIH JEDNADŽBI MATEMATIČKO NJIHALO Jedadžba koja osuje gbaje matematčkog jala rozlaz z drugog Newtoovog zakoa r ma F
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
( ) BROJNI PRIMER 4. Temeljni nosač na sloju peska. Slika 6.3. Rešenje: Ekvivalentni modul reakcije podloge/peska k i parametar krutosti λ :
BROJNI PRIMER 4 Armrano etonsk temeljn nosač (slka 63), fundran je na dun od D f =15m, u sloju poto-pljenog peska relatvne zjenost D r 75% Odredt sleganje w, nag θ, transverzalnu slu T, moment savjanja
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
Osnovi ekonometrije Glava 8
Osov ekoomerje Glava 8 Osove sudje Predavač: Aleksadra Nojkovć Srukura predavaja Narušavaje preposavk KLRM Heeroskedascos Auokorelacja Preposavke KLRM. E(ε ) = 0. Var(ε ) = = cos. 3. Cov (ε, ε j ) = 0
Linearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
Mašinsko učenje. Regresija.
Mašinsko učenje. Regresija. Danijela Petrović May 17, 2016 Uvod Problem predviđanja vrednosti neprekidnog atributa neke instance na osnovu vrednosti njenih drugih atributa. Uvod Problem predviđanja vrednosti
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
Grafičko prikazivanje atributivnih i geografskih nizova
Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički
TEHNIČKI FAKULTET SVEUČILIŠTA U RIJECI Zavod za elektroenergetiku. Prijelazne pojave. Osnove elektrotehnike II: Prijelazne pojave
THNIČKI FAKUTT SVUČIIŠTA U IJI Zavod za elekroenergek Sdj: Preddplomsk srčn sdj elekroehnke Kolegj: Osnove elekroehnke II Noselj kolegja: v. pred. mr.sc. Branka Dobraš, dpl. ng. el. Prjelazne pojave Osnove
I N Ž E N J E R S K A M A T E M A T I K A 1
I N Ž E N J E R S K A M A T E M A T I K A Oaj koj cje praksu bez teorjskh osova slča je moreplovcu koj ulaz u brod bez krme busole e zajuć kuda se plov. ( LEONARDO DA VINCI ) P r e d a v a j a z a d r
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
PRIMJERI RJEŠENIH ZADATAKA IZ STATISTIKE
PRIMJERI RJEŠENIH ZADATAKA IZ STATISTIKE Obuhvaćene cjelne su: Srednje vrjednost (, Me, Mo ) Mjere dsperzje ( δ², δ, Q, Q, Iq, Vq, V ) Standardzrano oblježje ( z ) Mjere asmetrje zaobljenost ( α α 4 )
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa
5. Karakteristične funkcije
5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična
Gauss, Stokes, Maxwell. Vektorski identiteti ( ),
Vektorski identiteti ( ), Gauss, Stokes, Maxwell Saša Ilijić 21. listopada 2009. Saša Ilijić, predavanja FER/F2: Vektorski identiteti, nabla, Gauss, Stokes, Maxwell... (21. listopada 2009.) Skalarni i
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
Frekvencijska karakteristika Prijenosna funkcija Granična frekvencija Rezonantna frekvencija RLC krugova Električni filtri
5 MREŽNE KARAKTERISTIKE Frekecjska karakterstka Prjeosa fukcja Grača frekecja Rezoata frekecja RLC krugoa Elektrč fltr Mreže karakterstke 5.. Frekecjske karakterstke AC strujh krugoa Mreže karakterstke
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
Glava 5 Z-TRANSFORMACIJA I NJENE PRIMJENE U ANALIZI DISKRETNIH LTI ISTEMA
Glava 5 Z-TRANSFORMACIJA I NJENE PRIMJENE U ANALIZI DISKRETNIH LTI ISTEMA Trasformacoe tehke su moća alat a aalu sgala LTI sstema. U ovoj glav ćemo uvest -trasformacju, opsat jee osobe mogućost prmjee
Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.
Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.
6 Primjena trigonometrije u planimetriji
6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a.
Determinante Determinanta A deta je funkcija definirana na skupu svih kvadratnih matrica, a poprima vrijednosti iz skupa skalara Osim oznake deta za determinantu kvadratne matrice a 11 a 12 a 1n a 21 a
1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i
PRIPREMA ZA II PISMENI IZ ANALIZE SA ALGEBROM. zadatak Re{avawe algebarskih jedna~ina tre}eg i ~etvrtog stepena. U skupu kompleksnih brojeva re{iti jedna~inu: a x 6x + 9 = 0; b x + 9x 2 + 8x + 28 = 0;
MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2
(kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
METODE OPTIMIZACIJE NELINEARNO PROGRAMIRANJE
MEODE OPIMIZACIJE NELINEARNO PROGRAMIRANJE Dr Dšć Dr Mloš Stć Grđevsk kultet Uverztet u Beogrdu 4. UVOD FORMULACIJA PROBLEMA Zdtk optmzcje je prolžeje promeljvh pr kojm clj krterjumsk ukcj uzm ekstremu
Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx.
Odred eni integrli Osnovne osobine odred enog integrl: fx), fx) fx) b c fx), fx) + c fx), 4 ) b αfx) + βgx) α fx) + β gx), 5 fx) F x) b F b) F ), gde je F x) fx), 6 Ako je f prn funkcij fx) f x), x R ),
Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14.
Pojmo:. Vektor se F (transacja). oment se (rotacja) Dnamka krutog tjea. do. oment tromost masa. Rad krutog tjea A 5. Knetka energja k 6. oment kona gbanja 7. u momenta kone gbanja momenta se f ( ) Gbanje
Elektrotehnički fakultet univerziteta u Beogradu 26. jun Katedra za Računarsku tehniku i informatiku
Elektrotehički fakultet uiverziteta u Beogradu 6. ju 008. Katedra za Račuarku tehiku i iformatiku Performae račuarkih itema Rešeja zadataka..videti predavaja.. Kretaje Verovatoća Opi 4 4 Kretaje u itom
Masa, Centar mase & Moment tromosti
FAKULTET ELEKTRTEHNIKE, STRARSTVA I BRDGRADNE - SPLIT Katedra za dinamiku i vibracije Mehanika 3 (Dinamika) Laboratorijska vježba Masa, Centar mase & Moment tromosti Ime i rezime rosinac 008. Zadatak:
POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE
**** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA
Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.
Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +
RAZLICITI PRISTUPI KREDITNOM. - master rad -
UNIVERZITET U NOVOM SADU PRIRODNO MATEMATICKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU RAZLICITI PRISTUPI KREDITNOM SKORING SISTEMU - master rad - Profesor: dr. Zoraa Luža Autor: Jelea Burgjašev
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
Osnove. Uloga algoritama u računarstvu. Algoritmi. Algoritmi kao tehnika
dr Boba Stojaovć Osove Uloga algortama u račuarstvu Algortm Algortam je strogo defsaa kompjuterska procedura koja uzma vredost l skup vredost, kao ulaz prozvod eku vredost l skup vredost, kao zlaz. Drugm
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem