Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a."

Transcript

1 Determinante Determinanta A deta je funkcija definirana na skupu svih kvadratnih matrica, a poprima vrijednosti iz skupa skalara Osim oznake deta za determinantu kvadratne matrice a 11 a 12 a 1n a 21 a 22 a 2n A = a n1 a n2 a nn često se koristi i oznaka a 11 a 12 a 1n a 21 a 22 a 2n deta = a n1 a n2 a nn Determinanta matrice definira se induktivno, tj determinanta matrice n tog reda definira se pomoću determinante matrice (n 1) og reda Podimo redom Definicija 1 (Determinanta prvog reda) Determinanta matrice A = a je broj a a11 a Definicija 2 (Determinanta drugog reda) Determinantom matrice A = 12 a 21 a 22 zovemo broj A = a 11 a 22 a 12 a 21 Primjer 1 Izračunajmo determinante sljedećih matrica Za A = 5 deta = Za B = detb = Definicija 3 (Determinanta trećeg reda) Determinanta matrice A = a je broj A = a 22 a a 32 a 33 a 21 a 12 a 13 a 32 a 33 +a 31 a 12 a 13 a 22 a 23 Definicija 4 (Determinanta n tog reda) Determinanta matrice a 11 a 12 a 1n a 21 a 22 a 2n A = a n1 a n2 a nn je broj deta = a 11 deta 11 a 21 deta 21 ++( 1) n+1 a n1 deta n1 = 1 a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ( 1) k+1 a k1 deta k1

2 Primjer 2 Izračunajmo sljedeću determinantu = = = 6 Determinantu možemo računati tako da ju razvijemo po bilo kojem redku ili stupcu, naime vrijedi sljedeći teorem Teorem (Laplaceov razvoj determinante) Za matricu A reda n imamo razvoje: po i tom stupcu: deta = po i tom retku: deta = Svojstva determinante ( 1) k+i a ki deta ki, ( 1) k+i a ik deta ik D1 Matrica A i transponirana matrica A T imaju jednake determinante, tj deta = deta T D2 Ako je A = (a ij ) trokutasta matrica n tog reda, onda je deta = a 11 a 22 a nn D3 Ako dva stupca determinante zamjene mjesta, determinanta mijenja predznak D4 Ako matrica A ima dva jednaka stupca, onda je deta = 0 D5 Ako iščezavaju svi elementi nekog stupca matrice A, onda je deta = 0 D6 Determinanta se množi skalarom tako da se samo jedan stupac pomnoži tim skalarom, tj zajednički faktor svih elemenata nekog stupca može se izlučiti ispred determinante D7 Determinanta ne mijenja vrijednost ako nekom stupcu determinante dodamo linearnu kombinaciju preostalih stupaca D8 Ako je neki stupac determinante linearna kombinacija preostalih stupaca te determinante, onda je determinanta jednaka nuli D9 Matrica A je regularna onda i samo onda ako je deta 0 2

3 Primjer 2 Izračunajmo sljedeće determinante matrica trećeg reda : deta = = = = 30 Naravno isto bismo dobili i direktnom primjenom Laplaceovog razvoja detb = = = 0 detc = = ( 2) = 2 ( 1)+1 (7) = 5 UočimoAiC suregularnejersuimdeterminanterazličite odnula, dokb nijeregularna Teorem (Binet-Cauchyjev teorem) Ako su A i B kvadratne matrice istog reda, onda je Uočimo da za regularnu matricu A vrijedi det(ab) = detadet B I = AA 1, tada ako poznamo determinantu matrice A koristeći teorem Binet-Cauchy možemo izračunati deta 1, naime vrijedi: deta 1 = 1 deta Primjer 3 Ako su deta i detc determinante matrica trećeg reda koje smo izračunali u prošlom primjeru, onda det(ac) = detadetc = 30 5 = 150 Takoder možemo izračunati i determinante inverza, npr deta 1 = 1 30 Cramerovo pravilo Najprije ćemo uvesti ovaj pojam promatrajući sustav od dvije linearne jednadžbe s dvije nepoznanice a 11 x 1 +a 12 x 2 = b 1 (1) a 21 x 1 +a 22 x 2 = b 2 Sustav zapisan matrično glasi gdje je A = a11 a 12 a 21 a 22 Ax = b, 3 b = b1 b 2

4 Kako bismo uveli Cramerovo pravilo sustav ćemo riješiti metodom suprotnih koeficijenata Množeći prvu jednadžbu susatava (1) brojem a 22, a drugu brojem ( a 12 ), nakon zbrajanja tako pomnoženih jednadžbi dobivamo (a 11 a 22 a 21 a 12 )x 1 = b 1 a 22 b 2 a 12 (2) Ako sada prizvoljnoj matrici A pridružimo det A imamo a b a b A = det A = c d c d = ad bc, (3) onda (2) možemo zapisati a 11 a 12 a 21 a 22 x b 1 a 12 1 = b 2 a 22, odnosno Dx 1 = D 1, (4) a 11 a 12 gdje je broj D = determinanta sustava Slično ćemo dobiti da je a 21 a 22 Dx 2 = D 2 a 11 b 1 gdje je D 2 = a 21 b 2 (5) Iz (4) i (5) možemo zaključiti: ako je D 0, sustav (1) ima jedinstveno rješenje x 1 = D 1 D, x 2 = D 2 D ; (6) ako je D = 0 i D 1 = D 2 = 0, sustav je rješiv i ima beskonačno mnogo rješenja; ako je D = 0, a pri tome barem jedan od brojeva D 1,D 2 različit od nule, sustav nema rješenja; Prethodno navedene tvrdnje u literaturi su poznate kao Cramerovo pravilo Primjedba 1 Geometrijski bismo mogli dobivena tri slučaja promatrati na sljedeći način: jedinstveno rješenje nema rješenja beskonačno mnogo rješenja 4

5 Primjer 4 Primjenom Cramerovog pravila diskutirat ćemo sljedeći sustav jednadžbi u ovisnosti o parametru λ R λx 1 +4x 2 = 1 Dobivamo 4x 1 +λx 2 = 1 D = λ 2 16, D 1 = λ 4, D 2 = λ 4 PremaCramerovom pravilu sustav ima jedinstvenorješenje x 1 = x 2 = 1 λ+4 za λ R\{ 4,4}, zaλ = 4sustavimabeskonačnomnogorješenjakojaleže napravcu4x 1 +4x 2 = 1, azaλ = 4 sustav nema rješenja Cramerovo pravilo vrijedi i općenito za sustav n jednadžbi s n nepoznanica Neka je zadan sustav od n jednadžbi s n nepoznanica: a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2 (2) a n1 x 1 + a n2 x a nn x n = b n Zapišimo ga u vektorskom obliku: x 1 a 1 +x 2 a 2 ++x n a n = b, gdje su a 1,,a n stupci matrice sustava A, a b vektor slobodnih koeficijenata Neka je a 11 a 12 a 1n a 21 a 22 a 2n D = deta = a n1 a n2 a nn determinanta matrice sustava (2) Nadalje, neka je D i (i = 1,,n) determinanta koja se dobiva iz determinante D zamjenom i tog stupca stupcem slobodnih koeficijenata, odnosno u determinanti D zamjenimo a i sa b 1 Sustav (2) ima jedinstveno rješenje ako i samo ako je D 0 U tom je slučaju rješenje dano s x i = D i D, i = 1,,n 2 Ako je D = 0, da bi sustav (2) bio rješiv, mora vrijediti U suprotnom, sustav (2) nema rješenje D 1 = D 2 = = D n = 0 5

Riješeni zadaci: Linearna algebra

Riješeni zadaci: Linearna algebra Riješeni zadaci: Linearna algebra Matrice Definicija Familiju A od m n realnih (kompleksnih) brojeva a ij, i 1,, m, j 1,, n zapisanih u obliku pravokutne tablice a 11 a 12 a 1n a 21 a 22 a 2n A a m1 a

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

Linearna algebra Materijali za nastavu iz Matematike 1

Linearna algebra Materijali za nastavu iz Matematike 1 Linearna algebra Materijali za nastavu iz Matematike 1 Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 40 Uvod Matrica: matematički objekt koji se sastoji od brojeva koji su rasporedeni u retke

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Geologija, Znanost o okolišu Matematika 1

Geologija, Znanost o okolišu Matematika 1 1 Algebra matrica 11 Osnovni pojmovi Definicija 1 Neka su m i n prirodni brojevi Niz elemenata (a 11, a 12,, a 1n, a 21, a 22,, a 2n,, a m1, a m2,, a mn R m n posloženih u pravokutnu shemu A = a 11 a 12

Διαβάστε περισσότερα

Linearna algebra I, zimski semestar 2007/2008

Linearna algebra I, zimski semestar 2007/2008 Linearna algebra I, zimski semestar 2007/2008 Predavanja: Nenad Bakić, Vježbe: Luka Grubišić i Maja Starčević 22. listopada 2007. 1 Prostor radijvektora i sustavi linearni jednadžbi Neka je E 3 trodimenzionalni

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

LEKCIJE IZ MATEMATIKE 1

LEKCIJE IZ MATEMATIKE 1 LEKCIJE IZ MATEMATIKE Ivica Gusić Lekcija 6 Linearni sustavi i njihovo rješavanje Lekcije iz Matematike. 6. Linearni sustavi i njihovo rješavanje I. Naslov i objašnjenje naslova U lekciji se obradjuje

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

UVOD. Ovi nastavni materijali namijenjeni su studentima

UVOD. Ovi nastavni materijali namijenjeni su studentima UVOD Ovi nastavni materijali namijenjeni su studentima u svrhu lakšeg praćenja i boljeg razumijevanja predavanja iz kolegija matematika. Ovi materijali čine suštinu nastavnog gradiva pa, uz obaveznu literaturu,

Διαβάστε περισσότερα

LINEARNA ALGEBRA 1, ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ, VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ

LINEARNA ALGEBRA 1, ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ, VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ LINEARNA ALGEBRA 1 ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ 2. VEKTORSKI PROSTORI - LINEARNA (NE)ZAVISNOST SISTEM IZVODNICA BAZA Definicija 1. Neka je F

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

Uvod u teoriju brojeva

Uvod u teoriju brojeva Uvod u teoriju brojeva 2. Kongruencije Borka Jadrijević Borka Jadrijević () UTB 2 1 / 25 2. Kongruencije Kongruencija - izjava o djeljivosti; Teoriju kongruencija uveo je C. F. Gauss 1801. De nicija (2.1)

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO Matematičke metode u marketingu Multidimenzionalno skaliranje Lavoslav Čaklović PMF-MO 2016 MDS Čemu služi: za redukciju dimenzije Bazirano na: udaljenosti (sličnosti) među objektima Problem: Traži se

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

Matrice i sustavi linearnih jednadžbi, inverzi i determinante, svojstvene vrijednosti i svojstveni vektori

Matrice i sustavi linearnih jednadžbi, inverzi i determinante, svojstvene vrijednosti i svojstveni vektori Matrice i sustavi linearnih jednadžbi, inverzi i determinante, svojstvene vrijednosti i svojstveni vektori Franka Miriam Brückler Matrični zapis sustava linearnih jednadžbi Neka je dano n nepoznanica x

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

Dijagonalizacija operatora

Dijagonalizacija operatora Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Matrica se definiše kao niz brojeva (ili algebarskih simbola) smještenih u redove i kolone.

Matrica se definiše kao niz brojeva (ili algebarskih simbola) smještenih u redove i kolone. Matrice Uvod u matrice i vektore Pretpostavite da ste odgovorni za iznajmljivanje automobila zaposlenicima svoje firme Sedmični najmovi za različite veličine automobila su: kompaktni 9KM, srednji 60KM,

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Matrice Definicija i primjeri matrica

Matrice Definicija i primjeri matrica 1 Matrice 1Definicijaiprimjerimatrica 1 2Operacijesmatricama 6 3 Algebramatrica 8 4 Matrična jednadžbaiinverzna matrica 14 5 Algebarskestrukture 17 6Blokmatrice 20 11 Definicija i primjeri matrica Matrice

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj

( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj Zadaak (Ines, hoelijerska škola) Ako je g, izračunaj + 5 + Rješenje Korisimo osnovnu rigonomerijsku relaciju: + Znači svaki broj n možemo zapisai n n n ( + ) + + + + 5 + 5 5 + + + + + 7 + Zadano je g Tangens

Διαβάστε περισσότερα

4 Matrice i determinante

4 Matrice i determinante 4 Matrice i determinante 32 4 Matrice i determinante Definicija 1 Pod matricom tipa (formata) m n nad skupom (brojeva) P podrazumevamo funkciju koja preslikava Dekartov proizvod {1, 2,, m} {1, 2,, n} u

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

Vježbe uz kolegij Matematika

Vježbe uz kolegij Matematika Vježbe uz kolegij Matematika Sadržaj LINEARNA ALGEBRA. Uvod i pojam matrice....................... Tipovi matrica........................... Transponirane i simetrične matrice............... 8.4 Vektorski

Διαβάστε περισσότερα

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos . KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..

Διαβάστε περισσότερα

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2. 5 Sistemi linearnih jednačina 47 5 Sistemi linearnih jednačina U opštem slučaju, pod sistemom linearnih jednačina podrazumevamo sistem od m jednačina sa n nepoznatih x 1 + a 12 x 2 + + a 1n x n = b 1 a

Διαβάστε περισσότερα

MATEMATIKA MATEMATIKA. By Štreberaj ID: 10201

MATEMATIKA MATEMATIKA. By Štreberaj ID: 10201 MATEMATIKA MATEMATIKA By Štreberaj 1 ID: 10201 Ovo je samo pregled, a cijela skripta (44 str.) te čeka u našoj SKRIPTARNICI! 1 Bok! Drago nam je što si odabrao SKRIPTARNICU za pronalazak materijala koji

Διαβάστε περισσότερα

1 Obične diferencijalne jednadžbe

1 Obične diferencijalne jednadžbe 1 Obične diferencijalne jednadžbe 1.1 Linearne diferencijalne jednadžbe drugog reda s konstantnim koeficijentima Diferencijalne jednadžbe oblika y + ay + by = f(x), (1) gdje su a i b realni brojevi a f

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

Prikaz sustava u prostoru stanja

Prikaz sustava u prostoru stanja Prikaz sustava u prostoru stanja Prikaz sustava u prostoru stanja je jedan od načina prikaza matematičkog modela sustava (uz diferencijalnu jednadžbu, prijenosnu funkciju itd). Promatramo linearne sustave

Διαβάστε περισσότερα

Determinante. Inverzna matrica

Determinante. Inverzna matrica Determinante Inverzna matrica Neka je A = [a ij ] n n kvadratna matrica Determinanta matrice A je a 11 a 12 a 1n a 21 a 22 a 2n det A = = ( 1) j a 1j1 a 2j2 a njn, a n1 a n2 a nn gde se sumiranje vrši

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

Obične diferencijalne jednadžbe 2. reda

Obične diferencijalne jednadžbe 2. reda VJEŽBE IZ MATEMATIKE 2 Ivana Baranović Miroslav Jerković Lekcija 13 Obične diferencijalne jednadžbe 2. reda Obične diferencijalne jednadžbe 2. reda U ovoj lekciji vježbamo rješavanje jedne klase običnih

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

4. Sustavi linearnih jednadžbi. Definicija Linearna jednadžba nad poljem F u nepoznanicama x 1, x 2,

4. Sustavi linearnih jednadžbi. Definicija Linearna jednadžba nad poljem F u nepoznanicama x 1, x 2, 4 Sustavi linearnih jednadžbi 4 Rješivost i struktura skupa rješenja Definicija 4 Linearna jednadžba nad poljem F u nepoznanicama x, x 2,, x n je jednadžba oblika a x + a 2 x 2 + + a n x n = b pri čemu

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE 1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica

Διαβάστε περισσότερα

LEKCIJE IZ MATEMATIKE 1

LEKCIJE IZ MATEMATIKE 1 LEKCIJE IZ MATEMATIKE 1 Ivica Gusić Lekcija 4 Algebra matrica. Inverzna matrica. Determinanta Lekcije iz Matematike 1. 4. Algebra matrica. Inverzna matrica. Determinanta I. Naslov i obja²njenje naslova

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Geometrija ravnine i prostora I. Vektori u ravnini i prostoru

Geometrija ravnine i prostora I. Vektori u ravnini i prostoru Geometrija ravnine i prostora I. Vektori u ravnini i prostoru Rudolf Scitovski, Darija Brajković 2. prosinca 2013. Sadržaj 1 Uvod 2 2 Operacije s vektorima 4 2.1 Zbrajanje vektora...............................

Διαβάστε περισσότερα

M086 LA 1 M106 GRP Tema: Uvod. Operacije s vektorima.

M086 LA 1 M106 GRP Tema: Uvod. Operacije s vektorima. M086 LA 1 M106 GRP Tema:.. 5. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 2 M086 LA 1, M106 GRP.. 2/17 P 1 www.fizika.unios.hr/grpua/

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

6 Polinomi Funkcija p : R R zadana formulom

6 Polinomi Funkcija p : R R zadana formulom 6 Polinomi Funkcija p : R R zadana formulom p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, gdje su a 0, a 1,..., a n realni brojevi, a n 0, i n prirodan broj ili 0, naziva se polinom n-tog stupnja s

Διαβάστε περισσότερα

3. Matrice Operacije s matricama. Podsjetimo se definicije matrice: Za prirodne brojeve m i n, preslikavanje

3. Matrice Operacije s matricama. Podsjetimo se definicije matrice: Za prirodne brojeve m i n, preslikavanje 3 Matrice 31 Operacije s matricama Podsjetimo se definicije matrice: Za prirodne brojeve m i n, preslikavanje A : {1, 2,, m} {1, 2,, n} F se naziva matrica tipa (m, n) s koeficijentima iz polja F Običaj

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

Vježbe uz kolegij Matematika

Vježbe uz kolegij Matematika Vježbe uz kolegij Matematika Sadržaj LINEARNA ALGEBRA. Uvod i pojam matrice....................... Tipovi matrica...........................3 Transponirane i simetrične matrice............... 8.4 Vektorski

Διαβάστε περισσότερα

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,

Διαβάστε περισσότερα

IZRAČUNAVANJE KONAČNIH SUMA METODIMA DIFERENTNOG RAČUNA

IZRAČUNAVANJE KONAČNIH SUMA METODIMA DIFERENTNOG RAČUNA IZRAČUNAVANJE KONAČNIH SUMA METODIMA DIFERENTNOG RAČUNA Izlaganje - Seminar za matematičare, Fojnica 2017.g. Prof. dr. MEHMED NURKANOVIĆ Prirodno-matematički fakultet Univerziteta u Tuzli 13.01.2015. godine

Διαβάστε περισσότερα

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate

Διαβάστε περισσότερα

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Geodetski akultet, dr sc J Beban-Brkić Predavanja iz Matematike 9 GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Granična vrijednost unkcije kad + = = Primjer:, D( )

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

Matematika 1 Skripta za seminar. Miroslav Jerković

Matematika 1 Skripta za seminar. Miroslav Jerković Matematika Skripta za seminar Miroslav Jerković Matematika - seminar ii Sadržaj Realni i kompleksni brojevi. Realni brojevi............................... Kompleksni brojevi............................3

Διαβάστε περισσότερα

4. poglavlje (korigirano) LIMESI FUNKCIJA

4. poglavlje (korigirano) LIMESI FUNKCIJA . Limesi funkcija (sa svim korekcijama) 69. poglavlje (korigirano) LIMESI FUNKCIJA U ovom poglavlju: Neodređeni oblik Neodređeni oblik Neodređeni oblik Kose asimptote Neka je a konačan realan broj ili

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Linearna algebra. Mirko Primc

Linearna algebra. Mirko Primc Linearna algebra Mirko Primc Sadržaj Dio 1. Linearna algebra 1 7 Poglavlje 1. Rješavanje sistema linearnih jednadžbi 9 1. Sistemi linearnih jednadžbi 9 2. Trokutasti sistemi jednadžbi 11 3. Gaussova metoda

Διαβάστε περισσότερα

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi

Διαβάστε περισσότερα

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA. KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα