Rozsah chemickej reakcie
|
|
- Μαριάμ Φωτόπουλος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Rozsah chemickej reakcie Ing. Miroslav Tatarko, PhD. Katedra anorganickej chémie FChPT STU Bratislava 1. Jednoduché stechiometrické výpočty Chémia je exaktná veda. Preto k nej patria aj presné a jednoznačné definície. Má aj svoj vlastný pojmový aparát a spôsoby popisu javov, ktorými sa zaoberá. Častokrát sa však v hovorovej reči dopúšťame prehreškov voči krásnej logike prírodovedy. Zamyslime sa napr. nad obsahom takejto vety: Spaľovaním amoniaku v prúde kyslíka vzniká dusík a vodná para. Táto veta sama o sebe síce opisuje chemický dej, nie však úplne. Nie je z nej napr. jasné, či nevzniká ešte nejaký iný produkt, a tiež nám nehovorí nič o tom, koľko kyslíka je potrebné použiť na spálenie daného množstva amoniaku, ani aké množstvo dusíka a vodnej pary pri tom vzniká. Chemik preto potrebuje chemický dej popísať presnejšie chemickou rovnicou. Tá podáva úplnú informáciu; kvalitatívnu (všetky látky, ktoré reagujú a všetky látky, ktoré z nich vznikajú), aj semikvantitatívnu (pomery látkových množstiev všetkých reaktantov a produktov). Vyjadruje zároveň, že nielen počet, ale aj druh atómov, zúčastňujúcich sa chemického deja, ostáva vždy rovnaký. Zápis ľubovoľného chemického deja preto možno nazvať chemickou reakciou len ak spĺňa túto dôležitu podmienku. Ináč je to len schéma, resp. veta z úvodu, prepísaná pomocou vzorcov reaktantov a produktov. Chemická rovnica môže obsahovať aj ďalšie doplňujúce informácie o podmienkach, pri ktorých reakcia prebieha, napr. skupenské stavy látok, stavové podmienky (napr. tlak, teplotu), katalyzátor, bez ktorého by reakcia neprebiehala, hodnotu reakčného tepla atď. Býva tiež zvykom uviesť pod jednotlivé látky, vystupujúce v chemickej rovnici, aj číselné hodnoty ich mólových hmotností. Vetu, uvedenú v úvode, preto chemik napíše napr. takto 4 NH 3 (g) + 3 O (g) = N (g) + 6 H O (g) 17,03 3,00 8,00 18,0 Položme si napr. otázku: Aká je hmotnosť kyslíka, ktorý sa spotrebuje na spálenie amoniaku a aká je hmotnosť dusíka a vodnej pary, ktoré touto reakciou vzniknú? Chemická rovnica jasne hovorí, že na spálenie 4 mólov amoniaku sú potrebné tri móly kyslíka, pričom vznikajú len dva móly dusíka a 6 mólov vody. 1
2 Takýto pomer zostáva vždy rovnaký, nech reakcia prebieha v malej laboratórnej aparatúre, alebo vo veľkom priemyselnom reaktore. Podľa známeho vzťahu jednoducho zistíme, akú hmotnosť predstavujú 4 móly zreagovaného amoniaku m(nh ) = n(nh ) M(NH ) = 4 mol 17,03 g mol = 68,1 g Podobne zistíme, akú hmotnosť predstavujú 3 móly zreagovaného kyslíka, móly vzniknutého dusíka a 6 mólov vzniknutej vody m(o ) = n(o ) M(O ) = 3 mol 3,00 g mol = 96,00 g m(n ) = n(n ) M(N ) = mol 8,00 g mol = 56,00 g m(h O) = n(h O) M(H O) = 6 mol 18,0 g mol = 108,1 g Použijeme najprv postup, používaný na základných a stredných školách tzv. trojčlenku. Zo spomínaného pomeru ľahlo zistíme hmotnosť zreagovaného kyslíka, m(o ) 4 mol 17,03 g mol NH mol 16,00 g mol O (z chemickej rovnice) tj. 68,1 g NH ,00 g O NH 3... x (zo zadania príkladu) m(o ) x = 96,00 g = 70,46 g 68,1 g Podobne zistíme hmotnosť vzniknutého dusíka, m(n ) 4 mol 17,03 g mol NH 3... mol 8,00 g mol N (z chemickej rovnice) tj. 68,1 g NH ,00 g N NH 3... x (zo zadania príkladu) a hmotnosť vzniknutej vody, m (H O) m(n ) x = 56,00 g = 41,10 g 68,1 g 4 mol 17,03 g mol NH mol 18,0 g mol H O (z chemickej rovnice) tj. 68,1 g NH ,1 g H O NH 3... x (zo zadania príkladu) m(ho) x = 108,1 g = 79,36 g 68,1 g Vyriešili sme tak zadanie úlohy: Na spálenie amoniaku je potrebných 70,46 g kyslíka, pričom vznikne 41,10 g dusíka a 79,36 g vodnej pary.
3 . Rozsah chemickej reakcie Všimnime si pozornejšie posledné tri výpočty. Opakuje sa v nich výraz / 68,1 g. Hodnota predstavuje hmotnosť zreagovaného amoniaku. Hodnota 68,1 g je hmotnosť amoniaku, ktorý by musel zreagovať, aby prebehol 1 mól reakcií, tj. aby zreagovali presne 4 móly amoniaku s 3 mólmi kyslíka za vzniku mólov dusíka a 6 mólov vody. Pomer / 68,1 g tak vyjadruje, koľko mólov reakcií prebehlo počas uvažovaného chemického deja. Tento pomer udáva rozsah chemickej reakcie, ktorý značíme ξ. 50 g m(nh ) n(nh ) 3 3 ξ = = = = = 0,7340 mol 68,1 g 4 17,03 g mol ν(nh 3) M (NH 3) ν(nh 3) Ako vidíme, rozsah chemickej reakcie sa všeobecne definuje vzťahom. n(l) ξ = = ν(l) m(l) M (L) ν(l) kde n(l) je zmena látkového množstva ľubovoľnej látky L, zúčastňujúcej sa chemického deja a ν(l) je jej stechiometrický koeficient. Jednotkou rozsahu chemickej reakcie je mól (zn. mol). Znak používame pre korektnosť. Nikde nie je uvedené, či v reaktore bolo práve spomínaných amoniaku, resp. či po reakcii neostala nejaká časť amoniaku nezreagovaná. Zadanie príkladu hovorí, že zreagovalo amoniaku. Nič viac. Nezaujíma nás preto, koľko ho tam bolo pred reakciou a po nej. Zaujíma nás, koľko sa ho zúčastnilo chemického deja, tj. aká je zmena ( ) jeho množstva. Na druhej strane, otázka znie koľko dusíka a vodnej pary vznikne počas uvedeného chemicého deja a nie koľko dusíka a vodnej pary bolo pred reakciou, či po reakcii v reaktore?. Vidíme, že je dôležité aj správne sformulovať otázku. Na druhú otázku sa v tomto prípade jednoducho nedá odpovedať. Zmysel rozsahu chemickej reakcie môžeme ilustrovať aj na takomto príklade: Predstavme si, že v triede je 0 žiakov. Je tam teda 0 hláv, 40 rúk, 40 nôh, 400 prstov atď. Ak uvedieme hociktorý z týchto údajov, bude každému zrejmé, koľko žiakov je v triede, predsa sa však bežne používa práve výraz počet žiakov. Tak aj v našom príklade môžeme namiesto vyššie uvedenej odpovede uviesť, že reakcia sa uskutočnila s rozsahom 0,7340 mol. 3
4 Je treba si ešte uvedomiť toto: symbolom n označujeme zmenu látkového množstva, tj. rozdiel jeho hodnôt na konci a na začiatku uvažovaného chemického deja, n = n koniec n začiatok. Keďže reaktanty počas reakcie zanikajú je ich na konci menej ako na začiatku. To ale znamená, že hodnota n je záporná. Potom by bola záporná aj hodnota rozsahu chemickej reakcie. Ak by sa rozsah chemickej reakcie vyjadroval pomocou produktov reakcie, bola by jeho hodnota kladná. Tá však musí byť vždy rovnaká, nezávislá na tom, ktorú z látok v reakcii použijeme na jej výpočet. Preto sa prijala konvencia, že hodnoty stechiometrických koeficientov reaktantov sú záporné, a produktov kladné. Teda, m(nh 3 ) = a ν(nh 3 ) = 4. Pri bežných výpočtoch sa však kvôli zjednodušeniu používajú absolútne hodnoty týchto veličín. Poúžitím definičného vzťahu pre rozsah chemickej reakcie už ľahko vypočítame hmotnosť zreagovaného kyslíka m(o ), m(o ) = ξ M(O ) ν(o ) = 0,7340 mol 3,00 g mol. ( 3) = 70,46 g hmotnosť vzniknutého dusíka m(n ), m(n ) = ξ M(N ) ν(n ) = 0,7340 mol 8,00 g mol. = 41,10 g a hmotnosť vzniknutej vody m(h O) m(h O) = ξ M(H O) ν(h O) = 0,7340 mol 18,0 g mol. 6 = 79,36 g Tento výpočet nás, samozrejme, priviedol k tej istej odpovedi. 3. Nestechiometrické množstva reaktantov Je zrejmé, že reakcia prebieha, kým sa nespotrebuje niektorý z reaktantov. Na konci tohto deja je teda látkové množstvo tohto reaktanta n koniec = 0 mol, teda n = n začiatok. Tento reaktant nazývame limitujúcou zložkou. Ak však bolo niektorého iného reaktanta viac, ako bolo potrebné na chemickú reakciu, zostalo z neho nejaké množstvo nezreagované. Hovoríme, že ho bolo nestechiometrické množstvo. Veľakrát je potrebné vedieť, koľko nezreagovaného reaktanta zostalo v reakčnej zmesi. Ukážeme si to na príklade. 4
5 Príklad: Práškový zinok nasypaný do roztoku (modrého) síranu meďnatého vyredukuje z neho kovovú meď, čo vyjadruje chemická rovnica Zn (s) + CuSO 4 (aq) = Cu (s) + ZnSO 4 (aq) Odfarbí sa roztok, obsahujúci 5,0 g síranu meďnatého, ak k nemu pridáme 1,5 g práškového zinku? Riešenie: Je potrebné zistiť, ktorý z reaktantov je v nadbytku teda v nestechiometrickom množstve. Ak je v nadbytku práškový zinok, potom zreaguje so všetkým síranom meďnatým a ešte ostane na dne kadičky jeho nezreagovaná časť roztok sa teda úplne odfarbí. Limitujúcou zložkou je v tomto prípade síran meďnatý. Ak je v nadbytku síran meďnatý, potom sa spotrebuje všetok zinok, pričom časť síranu ostane v roztoku nezreagovaná a teda roztok bude naďalej modrý. Limitujúcou zložkou je tu zinok. Ak by zreagoval všetok nasypaný síran meďnatý, bol by rozsah tejto chemickej reakcie n(cuso ) m(cuso ) 5,0 g 4 4 ξ = = = = 0,0313 mol ν(cuso 4) ν(cuso 4) M (CuSO 4) 159,61 g mol Naopak, ak by zreagoval všetok zinok, rozsah reakcie by bol n(zn) m(zn),5 g ξ = = = = 0,09 mol ν(zn) ν(zn) M (Zn) 65,39 g mol Odpoveď: Aj keď síranu meďnatého je toľko, že by mohol reagovať až do rozsahu 0,0313 mol, reakcia bude prebiehať len kým jej rozsah bude 0,09 mol. Vtedy sa totiž minie všetok zinok. Roztok bude obsahovať nezreagovaný síran meďnatý a preto sa úplne neodfarbí. Všimnime si, že skutočným rozsahom reakcie je vždy najmenší z vypočítaných rozsahov, tak ako celkovú rýchlosť výroby na bežiacom páse určuje jej najpomalší článok. Veličina rozsah chemickej reakcie nebola do chémie vnesená umelo, jej potreba vyplynula z praktických dôvodov. Množstvo vzťahov v chémii obsahuje túto veličinu, ktorá jednoznačne popisuje prebiehajúci chemický dej. Jej potreba pri výpočtoch sa však ukáže až pri hlbšom štúdiu chemických procesov, ale je správne zoznámiť s ňou už študentov základných a stredných škôl a to aj napriek tomu, že na tomto stupni vzdelávania ju nepotrebujú nevyhnutne používať. 5
CHÉMIA Ing. Iveta Bruončová
Výpočet hmotnostného zlomku, látkovej koncentrácie, výpočty zamerané na zloženie roztokov CHÉMIA Ing. Iveta Bruončová Moderné vzdelávanie pre vedomostnú spoločnosť/projekt je spolufinancovaný zo zdrojov
Matematika Funkcia viac premenných, Parciálne derivácie
Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x
SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA. 54. ročník, školský rok 2017/2018 Kategória C. Študijné kolo
SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA 5. ročník, školský rok 017/018 Kategória C Študijné kolo RIEŠENIE A HODNOTENIE PRAKTICKÝCH ÚLOH RIEŠENIE A HODNOTENIE ÚLOH PRAKTICKEJ ČASTI Chemická
,Zohrievanie vody indukčným varičom bez pokrievky,
Farba skupiny: zelená Označenie úlohy:,zohrievanie vody indukčným varičom bez pokrievky, Úloha: Zistiť, ako závisí účinnosť zohrievania vody na indukčnom variči od priemeru použitého hrnca. Hypotéza: Účinnosť
6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu
6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis
Ekvačná a kvantifikačná logika
a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných
Cvičenie č. 4,5 Limita funkcie
Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(
Príklad 7 - Syntézny plyn 1
Príklad 7 - Syntézny plyn 1 3. Bilančná schéma 1. Zadanie príkladu n 1A = 100 kmol/h n 1 = n 1A/x 1A = 121.951 kmol/h x 1A = 0.82 x 1B = 0.18 a A = 1 n 3=? kmol/h x 3D= 1 - zmes metánu a dusíka 0.1 m 2C
KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita
132 1 Absolútna chyba: ) = - skut absolútna ochýlka: ) ' = - spr. relatívna chyba: alebo Chyby (ochýlky): M systematické, M náhoné, M hrubé. Korekcia: k = spr - = - Î' pomerná korekcia: Správna honota:
ARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely
Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.
14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12
7. FUNKCIE POJEM FUNKCIE
7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje
3. Striedavé prúdy. Sínusoida
. Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa
Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop
1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s
1. písomná práca z matematiky Skupina A
1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi
SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA. 51. ročník, školský rok 2014/2015 Kategória C. Domáce kolo
SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA 51. ročník, školský rok 014/015 Kategória C Domáce kolo RIEŠENIE A HODNOTENIE PRAKTICKÝCH ÚLOH RIEŠENIE A HODNOTENIE ÚLOH PRAKTICKEJ ČASTI Chemická
Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad
Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov
Príklad 2 - Neutralizácia
Príklad 2 - Neutralizácia 3. Bilančná schéa 1. Zadanie príkladu 3 = 1 + 2 1 = 400 kg a k = 1 3 = 1600 kg w 1 = 0.1 w 3 =? w 1B = 0.9 w 3B =? w 3 =? 1 - vodný H 2SO w 3D =? roztok 4 V zariadení prebieha
Obvod a obsah štvoruholníka
Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka
Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A
M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18
1. Limita, spojitost a diferenciálny počet funkcie jednej premennej
. Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny
ARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 ARMA modely časť 2: moving average modely(ma) p.1/25 V. Moving average proces prvého rádu - MA(1) ARMA modely
Tomáš Madaras Prvočísla
Prvočísla Tomáš Madaras 2011 Definícia Nech a Z. Čísla 1, 1, a, a sa nazývajú triviálne delitele čísla a. Cele číslo a / {0, 1, 1} sa nazýva prvočíslo, ak má iba triviálne delitele; ak má aj iné delitele,
M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou
M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny
Goniometrické rovnice a nerovnice. Základné goniometrické rovnice
Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami
Motivácia pojmu derivácia
Derivácia funkcie Motivácia pojmu derivácia Zaujíma nás priemerná intenzita zmeny nejakej veličiny (dráhy, rastu populácie, veľkosti elektrického náboja, hmotnosti), vzhľadom na inú veličinu (čas, dĺžka)
6.4 Otázky na precvičenie. Test 1
6.4 Otázky na precvičenie Test 1 Pre každú otázku vyznačte všetky správne odpovede; kde je na zistenie správnej odpovede potrebný výpočet, uveďte ho. 1. V galvanickom článku redukcia prebieha na elektróde:
u R Pasívne prvky R, L, C v obvode striedavého prúdu Činný odpor R Napätie zdroja sa rovná úbytku napätia na činnom odpore.
Pasívne prvky, L, C v obvode stredavého prúdu Čnný odpor u u prebeh prúdu a napäta fázorový dagram prúdu a napäta u u /2 /2 t Napäte zdroja sa rovná úbytku napäta na čnnom odpore. Prúd je vo fáze s napätím.
SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE Fakulta chemickej a potravinárskej technológie Oddelenie anorganickej chémie ÚACHTM
SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE Fakulta chemickej a potravinárskej technológie Oddelenie anorganickej chémie ÚACHTM Program výučby predmetu SEMINÁR Z CHÉMIE Bakalárske štúdium 1. ročník, zimný
Úvod do lineárnej algebry. Monika Molnárová Prednášky
Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Prednášky: 3 17 marca 2006 4 24 marca 2006 c RNDr Monika Molnárová, PhD Obsah 2 Sústavy lineárnych rovníc 25 21 Riešenie sústavy lineárnych rovníc
Harmonizované technické špecifikácie Trieda GP - CS lv EN Pevnosť v tlaku 6 N/mm² EN Prídržnosť
Baumit Prednástrek / Vorspritzer Vyhlásenie o parametroch č.: 01-BSK- Prednástrek / Vorspritzer 1. Jedinečný identifikačný kód typu a výrobku: Baumit Prednástrek / Vorspritzer 2. Typ, číslo výrobnej dávky
7 Derivácia funkcie. 7.1 Motivácia k derivácii
Híc, P Pokorný, M: Matematika pre informatikov a prírodné vedy 7 Derivácia funkcie 7 Motivácia k derivácii S využitím derivácií sa stretávame veľmi často v matematike, geometrii, fyzike, či v rôznych technických
Kontrolné otázky z jednotiek fyzikálnych veličín
Verzia zo dňa 6. 9. 008. Kontrolné otázky z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej odpovede sa môže v kontrolnom teste meniť. Takisto aj znenie nesprávnych odpovedí. Uvedomte si
Prechod z 2D do 3D. Martin Florek 3. marca 2009
Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica
SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE Fakulta chemickej a potravinárskej technológie Oddelenie anorganickej chémie ÚACHTM
SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE Fakulta chemickej a potravinárskej technológie Oddelenie anorganickej chémie ÚACHTM Program výučby predmetu PROSEMINÁR Z CHÉMIE Bakalárske štúdium 1. ročník,
x x x2 n
Reálne symetrické matice Skalárny súčin v R n. Pripomeniem, že pre vektory u = u, u, u, v = v, v, v R platí. dĺžka vektora u je u = u + u + u,. ak sú oba vektory nenulové a zvierajú neorientovaný uhol
Matematika 2. časť: Analytická geometria
Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové
SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA. 49. ročník, školský rok 2012/2013 Kategória C. Krajské kolo
SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA 49. ročník, školský rok 1/1 Kategória C Krajské kolo RIEŠENIE A HODNOTENIE TEORETICKÝCH ÚLOH RIEŠENIE A HODNOTENIE ÚLOH Z ANORGANICKEJ A VŠEOBECNEJ
UČEBNÉ TEXTY. Pracovný zošit č.2. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková
Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.2 Vzdelávacia
Gramatická indukcia a jej využitie
a jej využitie KAI FMFI UK 29. Marec 2010 a jej využitie Prehľad Teória formálnych jazykov 1 Teória formálnych jazykov 2 3 a jej využitie Na počiatku bolo slovo. A slovo... a jej využitie Definícia (Slovo)
Funkcie - základné pojmy
Funkcie - základné pojmy DEFINÍCIA FUNKCIE Nech A, B sú dve neprázdne číselné množiny. Ak každému prvku x A je priradený najviac jeden prvok y B, tak hovoríme, že je daná funkcia z množiny A do množiny
Komplexné čísla, Diskrétna Fourierova transformácia 1
Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené
REZISTORY. Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických
REZISTORY Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických obvodoch. Základnou vlastnosťou rezistora je jeho odpor. Odpor je fyzikálna vlastnosť, ktorá je daná štruktúrou materiálu
SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA. 48. ročník, školský rok 2011/2012 Kategória C. Študijné kolo RIEŠENIE A HODNOTENIE
SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA 48. ročník, školský rok 011/01 Kategória C Študijné kolo RIEŠENIE A HODNOTENIE TEORETICKÝCH A PRAKTICKÝCH ÚLOH RIEŠENIE A HODNOTENIE TEORETICKÝCH
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2013/2014 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/27
AerobTec Altis Micro
AerobTec Altis Micro Záznamový / súťažný výškomer s telemetriou Výrobca: AerobTec, s.r.o. Pionierska 15 831 02 Bratislava www.aerobtec.com info@aerobtec.com Obsah 1.Vlastnosti... 3 2.Úvod... 3 3.Princíp
Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla
Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti príloha č. 7 k vyhláške č. 428/2010 Názov prevádzkovateľa verejného : Spravbytkomfort a.s. Prešov Adresa: IČO: Volgogradská 88, 080 01 Prešov 31718523
Slovenská komisia ChO RIEŠENIE A HODNOTENIE TEORETICKÝCH ÚLOH CHEMICKEJ OLYMPIÁDY V KATEGÓRII EF
Slovenská komisia ChO RIEŠENIE A HODNOTENIE TEORETICKÝCH ÚLOH CHEMICKEJ OLYMPIÁDY V KATEGÓRII EF CELOŠTÁTNE KOLO Bratislava,. marca 010 RIEŠENIE A HODNOTENIE ÚLOH Z TECHNOLOGICKÝCH VÝPOČTOV (I) Chemická
Integrovanie racionálnych funkcií
Integrovanie racionálnych funkcií Tomáš Madaras 2009-20 Z teórie funkcií už vieme, že každá racionálna funkcia (t.j. podiel dvoch polynomických funkcií) sa dá zapísať ako súčet polynomickej funkcie a funkcie
PRIEMER DROTU d = 0,4-6,3 mm
PRUŽINY PRUŽINY SKRUTNÉ PRUŽINY VIAC AKO 200 RUHOV SKRUTNÝCH PRUŽÍN PRIEMER ROTU d = 0,4-6,3 mm èíslo 3.0 22.8.2008 8:28:57 22.8.2008 8:28:58 PRUŽINY SKRUTNÉ PRUŽINY TECHNICKÉ PARAMETRE h d L S Legenda
Vyhlásenie o parametroch stavebného výrobku StoPox GH 205 S
1 / 5 Vyhlásenie o parametroch stavebného výrobku StoPox GH 205 S Identifikačný kód typu výrobku PROD2141 StoPox GH 205 S Účel použitia EN 1504-2: Výrobok slúžiaci na ochranu povrchov povrchová úprava
HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S
PROUKTOVÝ LIST HKL SLIM č. sklad. karty / obj. číslo: HSLIM112V, HSLIM123V, HSLIM136V HSLIM112Z, HSLIM123Z, HSLIM136Z HSLIM112S, HSLIM123S, HSLIM136S fakturačný názov výrobku: HKL SLIMv 1,2kW HKL SLIMv
Zrýchľovanie vesmíru. Zrýchľovanie vesmíru. o výprave na kraj vesmíru a čo tam astronómovia objavili
Zrýchľovanie vesmíru o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru
Základné poznatky molekulovej fyziky a termodynamiky
Základné poznatky molekulovej fyziky a termodynamiky Opakovanie učiva II. ročníka, Téma 1. A. Príprava na maturity z fyziky, 2008 Outline Molekulová fyzika 1 Molekulová fyzika Predmet Molekulovej fyziky
RIEŠENIE A HODNOTENIE TEORETICKÝCH ÚLOH Chemická olympiáda kategória Dg 49. ročník šk. rok 2012/13 Krajské kolo
RIEŠENIE A HODNOTENIE TEORETICKÝCH ÚLOH Chemická olympiáda kategória Dg 49. ročník šk. rok 2012/1 Krajské kolo Helena Vicenová Maximálne 60 bodov Doba riešenia: 60 minút Riešenie úlohy 1 (22 b) 2 b a)
3. prednáška. Komplexné čísla
3. predáška Komplexé čísla Úvodé pozámky Vieme, že existujú také kvadratické rovice, ktoré emajú riešeie v obore reálych čísel. Študujme kvadratickú rovicu x x + 5 = 0 Použitím štadardej formule pre výpočet
MIDTERM (A) riešenia a bodovanie
MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude
Deliteľnosť a znaky deliteľnosti
Deliteľnosť a znaky deliteľnosti Medzi základné pojmy v aritmetike celých čísel patrí aj pojem deliteľnosť. Najprv si povieme, čo znamená, že celé číslo a delí celé číslo b a ako to zapisujeme. Nech a
FUNKCIE N REÁLNYCH PREMENNÝCH
FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKÉHO V BRATISLAVE FUNKCIE N REÁLNYCH PREMENNÝCH RNDr. Kristína Rostás, PhD. PREDMET: Matematická analýza ) 2010/2011 1. DEFINÍCIA REÁLNEJ FUNKCIE
Pevné ložiská. Voľné ložiská
SUPPORTS D EXTREMITES DE PRECISION - SUPPORT UNIT FOR BALLSCREWS LOŽISKA PRE GULIČKOVÉ SKRUTKY A TRAPÉZOVÉ SKRUTKY Výber správnej podpory konca uličkovej skrutky či trapézovej skrutky je dôležité pre správnu
SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA. 53. ročník, školský rok 2016/2017 Kategória B. Krajské kolo RIEŠENIE A HODNOTENIE
SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA 5. ročník, školský rok 016/017 Kategória B Krajské kolo RIEŠENIE A HODNOTENIE TEORETICKÝCH A PRAKTICKÝCH ÚLOH RIEŠENIE A HODNOTENIE ÚLOH ZO VŠEOBECNEJ
Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita.
Teória prednáška č. 9 Deinícia parciálna deriácia nkcie podľa premennej Nech nkcia Ak eistje limita je deinoaná okolí bod [ ] lim. tak túto limit nazýame parciálno deriácio nkcie podľa premennej bode [
2 Chyby a neistoty merania, zápis výsledku merania
2 Chyby a neistoty merania, zápis výsledku merania Akej chyby sa môžeme dopustiť pri meraní na stopkách? Ako určíme ich presnosť? Základné pojmy: chyba merania, hrubé chyby, systematické chyby, náhodné
Ján Buša Štefan Schrötter
Ján Buša Štefan Schrötter 1 KOMPLEXNÉ ČÍSLA 1 1.1 Pojem komplexného čísla Väčšine z nás je známe, že druhá mocnina ľubovoľného reálneho čísla nemôže byť záporná (ináč povedané: pre každé x R je x 0). Ako
SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY
SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA 54. ročník, školský rok 2017/2018 Kategória C Krajské kolo TEORETICKÉ ÚLOHY ÚLOHY Z ANORGANICKEJ, VŠEOBECNEJ A ORGANICKEJ CHÉMIE Chemická olympiáda
M O N I T O R 2002 pilotné testovanie maturantov MONITOR Chémia. 2. časť. Realizácia projektu: EXAM, Bratislava. (2002) Štátny pedagogický ústav
M O N I T O R 2002 pilotné testovanie maturantov MONITOR 2002 Chémia 2. časť Odborný garant projektu: Realizácia projektu: Štátny pedagogický ústav, Bratislava EXAM, Bratislava 1 MONITOR 2002 Voda je jedna
SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA. 48. ročník, školský rok 2011/2012 Kategória C. Krajské kolo RIEŠENIE A HODNOTENIE
SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA 48. ročník, školský rok 011/01 Kategória C Krajské kolo RIEŠENIE A HODNOTENIE TEORETICKÝCH A PRAKTICKÝCH ÚLOH RIEŠENIE A HODNOTENIE ÚLOH Z TEORETICKEJ
Chí kvadrát test dobrej zhody. Metódy riešenia úloh z pravdepodobnosti a štatistiky
Chí kvadrát test dobrej zhody Metódy riešenia úloh z pravdepodobnosti a štatistiky www.iam.fmph.uniba.sk/institute/stehlikova Test dobrej zhody I. Chceme overiť, či naše dáta pochádzajú z konkrétneho pravdep.
Kompilátory. Cvičenie 6: LLVM. Peter Kostolányi. 21. novembra 2017
Kompilátory Cvičenie 6: LLVM Peter Kostolányi 21. novembra 2017 LLVM V podstate sada nástrojov pre tvorbu kompilátorov LLVM V podstate sada nástrojov pre tvorbu kompilátorov Pôvodne Low Level Virtual Machine
Margita Vajsáblová. ρ priemetňa, s smer premietania. Súradnicová sústava (O, x, y, z ) (O a, x a, y a, z a )
Mrgit Váblová Váblová, M: Dekriptívn geometri pre GK 101 Zákldné pom v onometrii Váblová, M: Dekriptívn geometri pre GK 102 Definíci 1: onometri e rovnobežné premietnie bodov Ε 3 polu prvouhlým úrdnicovým
4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti
4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti Výroková funkcia (forma) ϕ ( x) je formálny výraz (formula), ktorý obsahuje znak x, pričom x berieme z nejakej množiny M. Ak za x zvolíme
Termodynamika. Doplnkové materiály k prednáškam z Fyziky I pre SjF Dušan PUDIŠ (2008)
ermodynamika nútorná energia lynov,. veta termodynamická, Izochorický dej, Izotermický dej, Izobarický dej, diabatický dej, Práca lynu ri termodynamických rocesoch, arnotov cyklus, Entroia Dolnkové materiály
RIEŠENIE WHEATSONOVHO MOSTÍKA
SNÁ PMYSLNÁ ŠKOL LKONKÁ V PŠŤNO KOMPLXNÁ PÁ Č. / ŠN WSONOVO MOSÍK Piešťany, október 00 utor : Marek eteš. Komplexná práca č. / Strana č. / Obsah:. eoretický rozbor Wheatsonovho mostíka. eoretický rozbor
Analýza údajov. W bozóny.
Analýza údajov W bozóny http://www.physicsmasterclasses.org/index.php 1 Identifikácia častíc https://kjende.web.cern.ch/kjende/sl/wpath_teilchenid1.htm 2 Identifikácia častíc Cvičenie 1 Na web stránke
CHEMICKÁ OLYMPIÁDA. 47. ročník, školský rok 2010/2011. Kategória A. Krajské kolo RIEŠENIE A HODNOTENIE TEORETICKÝCH ÚLOH
CHEICKÁ LYPIÁDA 47. ročník, školský rok 2010/2011 Kategória A Krajské kolo RIEŠEIE A HDTEIE TERETICKÝCH ÚLH 47. ročník Chemickej olympiády, Riešenie a hodnotenie teoretických úloh krajského kola kategórie
18. kapitola. Ako navariť z vody
18. kapitola Ako navariť z vody Slovným spojením navariť z vody sa zvyknú myslieť dve rôzne veci. Buď to, že niekto niečo tvrdí, ale nevie to poriadne vyargumentovať, alebo to, že niekto začal s málom
Súťažné úlohy Chemickej olympiády v kategórii E
Súťažné úlohy Chemickej olympiády v kategórii E Pre 2. a 3. ročníky stredných škôl s chemickým zameraním Školské kolo Riešenie a hodnotenie úloh 44. ročník - 2007/08 Vydala Iuventa v spolupráci so Slovenskou
KATALÓG KRUHOVÉ POTRUBIE
H KATALÓG KRUHOVÉ POTRUBIE 0 Základné požiadavky zadávania VZT potrubia pre výrobu 1. Zadávanie do výroby v spoločnosti APIAGRA s.r.o. V digitálnej forme na tlačive F05-8.0_Rozpis_potrubia, zaslané mailom
Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej transformácie,
Kapitola Riešenie diferenciálnych rovníc pomocou Laplaceovej tranformácie Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej tranformácie, keď charakteritická rovnica má rôzne
SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA. 54. ročník, školský rok 2017/2018 Kategória B. Krajské kolo RIEŠENIE A HODNOTENIE
SLVENSKÁ KMISIA CHEMICKEJ LYMPIÁDY CHEMICKÁ LYMPIÁDA 54. ročník, školský rok 2017/2018 Kategória B Krajské kolo RIEŠENIE A HDNTENIE TERETICKÝCH A PRAKTICKÝCH ÚLH RIEŠENIE A HDNTENIE ÚLH Z VŠEBECNEJ A ANRGANICKEJ
Meranie na jednofázovom transformátore
Fakulta elektrotechniky a informatiky TU v Košiciach Katedra elektrotechniky a mechatroniky Meranie na jednofázovom transformátore Návod na cvičenia z predmetu Elektrotechnika Meno a priezvisko :..........................
RIEŠENIE A HODNOTENIE ÚLOH Z ANORGANICKEJ A ANALYTICKEJ CHÉMIE
RIEŠENIE A DNTENIE ÚL Z ANRGANIKEJ A ANALYTIKEJ ÉMIE hemická olympiáda kategória A 47. ročník školský rok 010/011 eloštátne kolo Maximálne 18 bodov (b), resp. 54 pomocných bodov (pb). Pri prepočte pomocných
Podnikateľ 90 Mobilný telefón Cena 95 % 50 % 25 %
Podnikateľ 90 Samsung S5230 Samsung C3530 Nokia C5 Samsung Shark Slider S3550 Samsung Xcover 271 T-Mobile Pulse Mini Sony Ericsson ZYLO Sony Ericsson Cedar LG GM360 Viewty Snap Nokia C3 Sony Ericsson ZYLO
Obyčajné diferenciálne rovnice
(ÚMV/MAN3b/10) RNDr. Ivan Mojsej, PhD ivan.mojsej@upjs.sk 14.3.2013 Úvod patria k najdôležitejším a najviac prepracovaným matematickým disciplínam. Nielen v minulosti, ale aj v súčastnosti predstavujú
SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA. 53. ročník, školský rok 2016/2017. Kategória D. Okresné kolo
SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA 53. ročník, školský rok 2016/2017 Kategória D Okresné kolo RIEŠENIE A HODNOTENIE TEORETICKÝCH A PRAKTICKÝCH ÚLOH RIEŠENIE A HODNOTENIE TEORETICKÝCH
C. Kontaktný fasádny zatepľovací systém
C. Kontaktný fasádny zatepľovací systém C.1. Tepelná izolácia penový polystyrén C.2. Tepelná izolácia minerálne dosky alebo lamely C.3. Tepelná izolácia extrudovaný polystyrén C.4. Tepelná izolácia penový
SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY
SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA 54. ročník, školský rok 2017/2018 Kategória D Krajské kolo TEORETICKÉ A PRAKTICKÉ ÚLOHY TEORETICKÉ ÚLOHY Chemická olympiáda kategória D 54. ročník
24. Základné spôsoby zobrazovania priestoru do roviny
24. Základné spôsoby zobrazovania priestoru do roviny Voľné rovnobežné premietanie Presné metódy zobrazenia trojrozmerného priestoru do dvojrozmernej roviny skúma samostatná matematická disciplína, ktorá
Kinetika fyzikálno-chemických procesov
Kinetika fyzikálno-chemických procesov Chemická a biochemická kinetika Reálne biologické a fyzikálno-chemické procesy sú závislé na čase. Termodynamika poskytuje informácie len o možnostiach priebehu procesov,
Poznámky k prednáškam z Termodynamiky z Fyziky 1.
Poznámky k prednáškam z Termodynamiky z Fyziky 1. Peter Bokes, leto 2010 1 Termodynamika Doposial sme si budovali predstavu popisu látky pomocou mechanických stupňov vol nosti, ako boli súradnice hmotného
Obsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8
Obsah 1 Číselné obory 7 1.1 Reálne čísla a ich základné vlastnosti............................ 7 1.1.1 Komplexné čísla................................... 8 1.2 Číselné množiny.......................................
Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava
Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné
ANALYTICKÁ CHÉMIA V PRÍKLADOCH
SPŠ CHEMICKÁ A POTRAVINÁRSKA HUMENNÉ ANALYTICKÁ CHÉMIA V PRÍKLADOCH Humenné 2005 Ing. Renáta Mariničová OBSAH ÚVOD... 2 1 ROZTOKY... 1.1 Hmotnostný a objemový zlomok... 4 1.2 Látková koncentrácia... 8
VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR. Michal Zajac. 3 T b 1 = T b 2 = = = 2b
VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR Michal Zajac Vlastné čísla a vlastné vektory Pripomeňme najprv, že lineárny operátor T : L L je vzhl adom na bázu B = {b 1, b 2,, b n } lineárneho priestoru L určený
SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA. 52. ročník, školský rok 2015/2016. Kategória D. Krajské kolo
SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA 52. ročník, školský rok 2015/2016 Kategória D Krajské kolo RIEŠENIE A HODNOTENIE TEORETICKÝCH A PRAKTICKÝCH ÚLOH RIEŠENIE A HODNOTENIE TEORETICKÝCH
Hydromechanika II. Viskózna kvapalina Povrchové napätie Kapilárne javy. Doplnkové materiály k prednáškam z Fyziky I pre EF Dušan PUDIŠ (2013)
Hyomechanika II Viskózna kvaaina Povchové naäie Kaiáne javy Donkové maeiáy k enáškam z yziky I e E Dušan PUDIŠ (013 Lamináne vs. Tubuenné úenie Pi úení eánej kvaainy ôsobia mezi voma susenými vsvami i
Súťažné úlohy Chemickej olympiády v kategórii E. Školské kolo
Súťažné úlohy Chemickej olympiády v kategórii E Pre 2. a 3. ročníky stredných odborných škôl chemického zamerania Školské kolo Riešenie a hodnotenie teoretických a praktických úloh 2006/07 Vydala Iuventa
Riešenie rovníc s aplikáciou na elektrické obvody
Zadanie č.1 Riešenie rovníc s aplikáciou na elektrické obvody Nasledujúce uvedené poznatky z oblasti riešenia elektrických obvodov pomocou metódy slučkových prúdov a uzlových napätí je potrebné využiť