6.4 Otázky na precvičenie. Test 1
|
|
- Ευδώρα Λιακόπουλος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 6.4 Otázky na precvičenie Test 1 Pre každú otázku vyznačte všetky správne odpovede; kde je na zistenie správnej odpovede potrebný výpočet, uveďte ho. 1. V galvanickom článku redukcia prebieha na elektróde: a) katóda b) anóda, ktorá je c) kladná d) záporná 2. Elektromotorické napätie galvanického článku je vždy a) priamo úmerné b) nepriamo úmerné zmene c) reakčnej Gibbsovej energie d) štandardnej reakčnej Gibbsovej energie reakcie prebiehajúcej v článku 3. V galvanickom článku, ktorý sa dá znázorniť schémou Cd CdSO 4 (aq) CuSO 4 (aq) Cu, prebieha chemická reakcia a) Cd + CuSO 4 (aq) = CdSO 4 (aq) + Cu c) Cd + Cu 2+ =Cd 2+ + Cu b) Cu + CdSO 4 (aq) = CuSO 4 (aq) + Cd d) Cd 2+ + Cu = Cd + Cu Ak v galvanickom článku Zn ZnSO 4 (aq) CuSO 4 (aq) Cu zdvojnásobíme aktivity (koncentrácie) síranu zinočnatého i meďnatého, elektromotorické napätie článku a) vzrastie dvakrát d) vzrastie o hodnotu (RT/2F) ln 2 b) klesne dvakrát e) klesne o hodnotu (RT/2F) ln 2 c) nezmení sa f ) žiadne z uvedených tvrdení nie je správne 5. Ak pri 25 C v galvanickom článku Pt H 2 (g, p=101,32 kpa) HCl(aq) AgCl(s), Ag(s) zvýšime strednú aktivitu (koncentráciu) kyseliny chlorovodíkovej desaťnásobne, jeho elektromotorické napätie a) vzrastie desaťkrát e) vzrastie o 118,2 mv b) klesne desaťkrát f ) klesne o 118,2 mv c) vzrastie o 59,1 mv g) nezmení sa d) klesne o 59,1 mv h) uvedené údaje nepostačujú na výpočet
2 6. Ak označíme štandardný redukčný potenciál na ľavej strane galvanického článku ako E L a na pravej strane ako E P, potom štandardné elektromotorické napätie článku E je dané výrazom a) E = E P + E L c) E = E L E P b) E = E P E L d) E = (E P + E L ) / 2 7. Potenciál elektródy a) je veličina, ktorej absolútnu hodnotu sa nedá experimentálne určiť. b) sa dá experimentálne stanoviť len relatívne vzhľadom na zvolenú potenciálovú nulu. c) sa rovná elektromotorickému napätiu článku, ktorého pravou elektródou je uvažovaná elektróda a ľavou je štandardná vodíková elektróda. d) je kladný, ak je táto elektróda kladná voči štandardnej vodíkovej elektróde. 8. Štandardné elektromotorické napätie galvanického článku je rovné a) elektromotorickému napätiu článku, v ktorom sú aktivity všetkých súčastí rovné jednej b) výrazu r G / (zf) c) elektromotorickému napätiu článku, v ktorom aktivity všetkých súčastí majú hodnotu zodpovedajúcu rovnováhe chemickej reakcie, ktorá prebieha v článku d) výrazu RT/(zF) ln K, kde K je rovnovážna konštanta reakcie, ktorá prebieha v článku e) rozdielu štandardných potenciálov elektród, z ktorých sa článok skladá 9. Ak sú aktivity všetkých súčastí, ktoré tvoria galvanický článok jednotkové, elektromotorické napätie takéhoto článku je rovné a) jednej b) nule c) štandardnému elektromotorickému napätiu článku d) výrazu RT/(zF) ln K, kde K je rovnovážna konštanta reakcie, ktorá prebieha v článku 10. Ak ponoríme platinový drôtik do roztoku obsahujúceho chlorid železnatý a chlorid železitý v molárnom pomere 10 : 1 a zoxidujeme tento roztok tak, že sa uvedený pomer oboch solí zmení na 1 : 10, potom pôvodný potenciál platinového drôtika pri 25 C a) vzrastie o 0,059 V d) klesne o 0,118 V b) vzrastie o 0,118 V e) nezmení sa c) klesne o 0,059 V
3 Test 2 1. Ak Ti prestala svietiť baterka, pretože sa v nej vybila batéria, znamená to, že a) chemická reakcia, ktorá prebiehala v batérii, dobehla do rovnováhy b) batéria obsahuje už len reakčné produkty reakcie, ktorá v nej prebiehala c) štandardné elektromotorické napätie batérie je nulové d) elektromotorické napätie batérie dosiahlo nulu 2. Ak máme batériu, ktorá sa dá dobíjať (napr. batéria v mobilnom telefóne), môžeme ju používať oveľa dlhšie. Pripojíme ju k vonkajšiemu zdroju napätia (napr. cez adaptér do zásuvky 220 V siete) a tým dosiahneme, že a) batéria prijíma zo siete elektróny a tak sa nabíja na pôvodné napätie b) v batérii prebieha redoxná reakcia v opačnom smere ako pri jej vybíjaní c) v batérii prebieha dej, ktorý nazývame elektrolýza 3. V batérii prebieha redoxná chemická reakcia. Ak je táto reakcia exotermická, batéria poskytuje vyššie napätie pri teplote a) vyššej b) nižšej c) napätie nezávisí od teploty 4. Pri výpočte štandardného elektromotorického napätia galvanického článku nám vyšla záporná hodnota. Znamená to, že: a) chemická reakcia v článku má rovnováhu posunutú na stranu reaktantov ( ) b) rovnovážna konštanta chemickej reakcie, prebiehajúcej v tomto článku je záporná c) rovnovážna konštanta chemickej reakcie, prebiehajúcej v tomto článku je menšia ako jedna d) chemická reakcia prebiehajúca v danom článku je exotermická 5. Katóda je elektródou, a) na ktorej vždy prebieha oxidácia b) ktorá je v galvanickom článku elektródou kladnou c) na ktorej vždy prebieha redukcia d) ktorá je pri elektrolýze elektródou zápornou
4 6. Označte správne tvrdenia: a) Elektródový potenciál E i je rovný elektromotorickému napätiu článku, v schéme ktorého je na pravej strane daná elektróda a na ľavej strane je štandardná vodíková elektróda. b) Ak je potenciál E i kladný, v článku podľa a) prebieha na danej elektróde redukcia. c) Časťou rovnice redoxnej reakcie, prebiehajúcej v článku podľa a) je oxidácia vodíka na H Pri výpočte štandardného elektromotorického napätia galvanického článku nám vyšla záporná hodnota. Znamená to, že a) článok je pokazený b) v schéme článku je kladná elektróda napísaná na ľavej strane c) rovnovážna konštanta chemickej reakcie, prebiehajúcej v tomto článku je väčšia ako jedna d) na pravej elektróde v schéme článku prebieha v skutočnosti oxidácia 8. Anóda je elektródou, a) na ktorej vždy prebieha oxidácia b) ktorá je v galvanickom článku elektródou kladnou c) na ktorej vždy prebieha redukcia d) ktorá je pri elektrolýze elektródou kladnou Test 3 1. Aký je fyzikálny význam Faradayovej konštanty (čoho je hodnotou, v akých jednotkách sa uvádza)? 2. Aká reakcia prebieha pri elektrolýze na katóde: oxidácia alebo redukcia? 3. Vypočítajte dobu potrebnú na vylúčenie všetkého striebra zo 100 cm 3 0,2 molárneho roztoku dusičnanu strieborného prúdom 0,2 A, ak účinnosť elektrolýzy je 90 %.
5 4. V starších učebniciach sa vyskytuje pojem "elektrochemický ekvivalent". Je to hmotnosť látky, ktorá sa premení prechodom elektrického náboja 1 C. Vypočítajte elektrochemický ekvivalent striebra (M Ag = 107,87 g mol 1 ). 5. Študent navrhol pokus na stanovenie veľkosti náboja elektrónu. Vodný roztok bol elektrolyzovaný 6,244 hod prúdom 0,04292 A. Vytvorilo sa 1,269 g I 2. Aká bola experimentálne stanovená hodnota e? (M(I 2 ) = 253,81 g mol -1 ) 6. Z hodnôt náboja elektrónu a Faradayovej konštanty je možné vypočítať: a) náboj iónov b) rýchlosť svetla c) Avogadrovu konštantu d) Planckovu konštantu e) Žiadna z uvedených alternatív nie je správna 7. Pri elektrolýze vody prúdom 1 A prejde elektrolytom náboj zodpovedajúci 1 F (Faradayova konštanta) približne za a) 1 s b) s c) 1 hod. d) 26,8 hod. e) hod. 8. Ak pri elektrolýze vody prejde elektrolyzérom náboj 1 F (t. j C), vyvinie sa približne a) 11,2 dm 3 b) 16,8 dm 3 c) 22,4 dm 3 d) 33,6 dm 3 e) 44,8 dm 3 traskavého plynu (zmes vodíka a kyslíka 2:1) za normálnych podmienok (t = 0 C resp. T = 273,15 K, p = Pa).
6 Riešenie testu 1 1. a), c) 2. a), c) pretože platí r G = z F E t. j. aj E = r G/( z F) 3. a, c 4. Ak v galvanickom článku Zn (s) ZnSO 4 (aq) CuSO 4 (aq) Cu (s) pri 25 C zdvojnásobíme aktivity síranu zinočnatého aj meďnatého, potom jeho elektromotorické napätie c) nezmení sa E = E + (RT/2F) ln a(cu 2+ ) (RT/2F) ln a(zn 2+ ) E = E + (RT/2F) ln 2a(Cu 2+ ) (RT/2F) ln 2a(Zn 2+ ) = = E + (RT/2F) ln a(cu 2+ ) (RT/2F) ln a(zn 2+ ) + (RT/2F) ln 2 (RT/2F) ln 2 = E 5. Elektromotorické napätie článku Pt H 2 (g, p=101,32 kpa) HCl(aq) AgCl(s), Ag(s) má hodnotu: E = E (AgCl/Cl - ) (RT/F) ln a 2 H + Cl = E (AgCl/Cl - ) (2RT/F) ln a HCl. Ak sa aktivita (koncentrácia) HCl zvýši desaťnásobne, napätie f) poklesne o 0,1182 V: E' = E (AgCl/Cl - ) (2R/F) ln (10 a HCl ) = = E (AgCl/Cl - ) (2R/F) ln a HCl (2R/F) ln 10 = E 0,1182 V 6. b 7. a, b, c, d 8. Štandardné elektromotorické napätie galvanického článku je rovné a) elektromotorickému napätiu článku, v ktorom sú aktivity všetkých súčastí rovné 1 b) výrazu r G / (zf) d) výrazu RT/(zF) ln K e) rozdielu štandardných potenciálov elektród, z ktorých sa článok skladá 9. Ak sú aktivity všetkých súčastí, ktoré tvoria galvanický článok jednotkové, elektromotorické napätie takéhoto článku je rovné c) štandardnému elektromotorickému napätiu článku d) výrazu RT/(zF) ln K 10. Potenciál redoxnej železito-železnatej elektródy po zmene pomeru c(fe 2+ )/c(fe 3+ ) z 10 na 0,1 pri 25 C b) vzrastie o 0,118 V odvodenie: E(Fe 3+ /Fe 2+ ) = E (Fe 3+ /Fe 2+ ) + (RT/F) ln [c(fe 3+ ) /c(fe 2+ )]
7 E 1 (Fe 3+ /Fe 2+ ) = E (Fe 3+ /Fe 2+ ) + (RT/F) ln 0,1 E 2 (Fe 3+ /Fe 2+ ) = E (Fe 3+ /Fe 2+ ) + (RT/F) ln 10 = = E (Fe 3+ /Fe 2+ ) + (RT/F) ln 10 + (RT/F) ln 0,1 (RT/F) ln 0,1 = = E (Fe 3+ /Fe 2+ ) + (RT/F) ln 0,1 + (RT/F) ln (10 / 0,1) = = E 1 (Fe 3+ /Fe 2+ ) + (RT/F) ln 100 = E 1 (Fe 3+ /Fe 2+ ) + 0,1183 V Riešenie testu 2 1. Ak Ti prestala svietiť baterka, pretože sa v nej vybila batéria, znamená to, že a) chemická reakcia, ktorá prebiehala v batérii, dobehla do rovnováhy d) elektromotorické napätie batérie dosiahlo nulu 2. Ak máme batériu, ktorá sa dá dobíjať, pripojíme ju k vonkajšiemu zdroju napätia a tým dosiahneme, že b) v batérii prebieha redoxná reakcia v opačnom smere ako pri jej vybíjaní c) v batérii prebieha dej, ktorý nazývame elektrolýza 3. V batérii prebieha redoxná chemická reakcia. Ak je táto reakcia exotermická, batéria poskytuje vyššie napätie pri teplote b) nižšej pretože pre r H < 0 pre T 2 < T 1 je K 2 > K 1 a teda E 2 > E 1 4. Pri výpočte štandardného elektromotorického napätia galvanického článku nám vyšla záporná hodnota. Znamená to, že a) chemická reakcia v článku má rovnováhu posunutú na stranu reaktantov ( ) c) rovnovážna konštanta reakcie, prebiehajúcej v tomto článku je menšia ako jedna 5. Katóda je elektródou, b) ktorá je v galvanickom článku elektródou kladnou c) na ktorej vždy prebieha redukcia d) ktorá je pri elektrolýze elektródou zápornou 6. Správne sú všetky tri tvrdenia: a) Elektródový potenciál E i je rovný elektromotorickému napätiu článku, v schéme ktorého je na pravej strane daná elektróda a na ľavej strane je štandardná vodíková elektróda. b) Ak je potenciál E i kladný, v článku podľa a) prebieha na danej elektróde redukcia. c) Časťou rovnice redoxnej reakcie, prebiehajúcej v článku podľa a) je oxidácia vodíka na H Pri výpočte štandardného elektromotorického napätia galvanického článku nám vyšla záporná hodnota. Znamená to, že
8 b) v schéme článku je kladná elektróda napísaná na ľavej strane d) na pravej elektróde v schéme článku prebieha v skutočnosti oxidácia 8. Anóda je elektródou, a) na ktorej vždy prebieha oxidácia d) ktorá je pri elektrolýze elektródou kladnou Riešenie testu 3 1. Faradayova konštanta predstavuje náboj, potrebný na vylúčenie 1 mólu látky z roztoku jej jednomocných iónov; je to teda náboj jedného mólu elektrónov F = ,309 C mol 1 2. Na katóde prebieha vždy redukcia 3. Q = I t = n z F n = c V = 0,2. 0,1 = 0,02 mol Q = n z F = 0, ,3 = 1929,7 C t skut = t teor / η = (Q/I)/ η = 1929,7 /(0,2.0,9) = 10720,6 s = 178,677 min = 2,9779 hod 4. Elektrochemický ekvivalent striebra vypočítame zo vzťahu Q = (m / M) z F m = Q M /(z F) = 1.107,87/( ,3) = 1, g = 1,118 mg Ag 5. Z Faradayovho zákona Q = I t = n z F = (m / M) z N A e dostaneme e = I t M / (z m N A ) = 0, , ,81/(2.1,269. 6, ) = 1, C 6. c 7. b, d 8. b Pri elektrolýze vody na elektródach prebiehajú reakcie: na katóde redukcia 4 H e - = 2 H 2 na anóde oxidácia 4 OH 4 e - = 2 H 2 O + O 2 (čo spolu dáva rovnicu 2 H 2 O = 2 H 2 + O 2 ) Pri prechode 4 elektrónov sa teda vylúčia tri molekuly plynnej zmesi. Pri prechode náboja Q = 1 F = ,3 C mol 1 sa vylúči n = 3Q/zF= 3F/ 4F = 0,75 mol traskavého plynu. Za uvedených podmienok bude jeho objem V = nrt/p = 0,75.8, ,15/ = 16, m 3 = 16,8 dm 3 (= 0,75.22,4 dm 3 )
CHÉMIA Ing. Iveta Bruončová
Výpočet hmotnostného zlomku, látkovej koncentrácie, výpočty zamerané na zloženie roztokov CHÉMIA Ing. Iveta Bruončová Moderné vzdelávanie pre vedomostnú spoločnosť/projekt je spolufinancovaný zo zdrojov
Διαβάστε περισσότεραS t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
Διαβάστε περισσότεραMatematika Funkcia viac premenných, Parciálne derivácie
Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x
Διαβάστε περισσότεραELEKTRICKÉ POLE. Elektrický náboj je základná vlastnosť častíc, je viazaný na častice látky a vyjadruje stav elektricky nabitých telies.
ELEKTRICKÉ POLE 1. ELEKTRICKÝ NÁBOJ, COULOMBOV ZÁKON Skúmajme napr. trenie celuloidového pravítka látkou, hrebeň suché vlasy, mikrotén slabý prúd vody... Príčinou spomenutých javov je elektrický náboj,
Διαβάστε περισσότεραSLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA. 54. ročník, školský rok 2017/2018 Kategória C. Študijné kolo
SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA 5. ročník, školský rok 017/018 Kategória C Študijné kolo RIEŠENIE A HODNOTENIE PRAKTICKÝCH ÚLOH RIEŠENIE A HODNOTENIE ÚLOH PRAKTICKEJ ČASTI Chemická
Διαβάστε περισσότερα3. Striedavé prúdy. Sínusoida
. Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa
Διαβάστε περισσότεραObvod a obsah štvoruholníka
Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka
Διαβάστε περισσότεραSLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA. 51. ročník, školský rok 2014/2015 Kategória C. Domáce kolo
SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA 51. ročník, školský rok 014/015 Kategória C Domáce kolo RIEŠENIE A HODNOTENIE PRAKTICKÝCH ÚLOH RIEŠENIE A HODNOTENIE ÚLOH PRAKTICKEJ ČASTI Chemická
Διαβάστε περισσότεραStart. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop
1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s
Διαβάστε περισσότεραSLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA. 48. ročník, školský rok 2011/2012 Kategória C. Krajské kolo RIEŠENIE A HODNOTENIE
SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA 48. ročník, školský rok 011/01 Kategória C Krajské kolo RIEŠENIE A HODNOTENIE TEORETICKÝCH A PRAKTICKÝCH ÚLOH RIEŠENIE A HODNOTENIE ÚLOH Z TEORETICKEJ
Διαβάστε περισσότερα1.1.a Vzorka vzduchu pri 25 C a 1,00 atm zaberá objem 1,0 L. Aký tlak je potrebný na jeho stlačenie na 100 cm 3 pri tejto teplote?
Príklady z fyzikálnej chémie, ktoré sa počítajú na výpočtových seminároch z fyzikálnej chémie pre II. ročník. Literatúra: P.W. Atkins, Fyzikálna chémia 6.vyd., STU Bratislava 1999 R = 8,314 J K -1 mol
Διαβάστε περισσότεραKontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,
Διαβάστε περισσότεραCvičenie č. 4,5 Limita funkcie
Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(
Διαβάστε περισσότερα1. písomná práca z matematiky Skupina A
1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi
Διαβάστε περισσότεραEkvačná a kvantifikačná logika
a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných
Διαβάστε περισσότεραJednotkový koreň (unit root), diferencovanie časového radu, unit root testy
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18
Διαβάστε περισσότερα7. FUNKCIE POJEM FUNKCIE
7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje
Διαβάστε περισσότερα1. Limita, spojitost a diferenciálny počet funkcie jednej premennej
. Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny
Διαβάστε περισσότεραMatematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad
Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov
Διαβάστε περισσότεραHASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S
PROUKTOVÝ LIST HKL SLIM č. sklad. karty / obj. číslo: HSLIM112V, HSLIM123V, HSLIM136V HSLIM112Z, HSLIM123Z, HSLIM136Z HSLIM112S, HSLIM123S, HSLIM136S fakturačný názov výrobku: HKL SLIMv 1,2kW HKL SLIMv
Διαβάστε περισσότεραKATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita
132 1 Absolútna chyba: ) = - skut absolútna ochýlka: ) ' = - spr. relatívna chyba: alebo Chyby (ochýlky): M systematické, M náhoné, M hrubé. Korekcia: k = spr - = - Î' pomerná korekcia: Správna honota:
Διαβάστε περισσότεραTermodynamika. Doplnkové materiály k prednáškam z Fyziky I pre SjF Dušan PUDIŠ (2008)
ermodynamika nútorná energia lynov,. veta termodynamická, Izochorický dej, Izotermický dej, Izobarický dej, diabatický dej, Práca lynu ri termodynamických rocesoch, arnotov cyklus, Entroia Dolnkové materiály
Διαβάστε περισσότεραMotivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.
14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12
Διαβάστε περισσότεραVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY KONSTRUKCE HHO GENERÁTORU DESIGN OF HHO GENERATOR
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF SOLID MECHANICS,
Διαβάστε περισσότερα6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu
6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis
Διαβάστε περισσότεραRIEŠENIE A HODNOTENIE ÚLOH Z ANORGANICKEJ A ANALYTICKEJ CHÉMIE
RIEŠENIE A DNTENIE ÚL Z ANRGANIKEJ A ANALYTIKEJ ÉMIE hemická olympiáda kategória A 47. ročník školský rok 010/011 eloštátne kolo Maximálne 18 bodov (b), resp. 54 pomocných bodov (pb). Pri prepočte pomocných
Διαβάστε περισσότεραMotivácia pojmu derivácia
Derivácia funkcie Motivácia pojmu derivácia Zaujíma nás priemerná intenzita zmeny nejakej veličiny (dráhy, rastu populácie, veľkosti elektrického náboja, hmotnosti), vzhľadom na inú veličinu (čas, dĺžka)
Διαβάστε περισσότεραGoniometrické rovnice a nerovnice. Základné goniometrické rovnice
Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami
Διαβάστε περισσότεραM6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou
M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny
Διαβάστε περισσότεραMatematika 2. časť: Analytická geometria
Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové
Διαβάστε περισσότεραRozsah chemickej reakcie
Rozsah chemickej reakcie Ing. Miroslav Tatarko, PhD. Katedra anorganickej chémie FChPT STU Bratislava 1. Jednoduché stechiometrické výpočty Chémia je exaktná veda. Preto k nej patria aj presné a jednoznačné
Διαβάστε περισσότεραRozsah akreditácie 1/5. Príloha zo dňa k osvedčeniu o akreditácii č. K-003
Rozsah akreditácie 1/5 Názov akreditovaného subjektu: U. S. Steel Košice, s.r.o. Oddelenie Metrológia a, Vstupný areál U. S. Steel, 044 54 Košice Rozsah akreditácie Oddelenia Metrológia a : Laboratórium
Διαβάστε περισσότεραElektrický prúd v kovoch
Elektrický prúd v kovoch 1. Aký náboj prejde prierezom vodiča za 2 h, ak ním tečie stály prúd 20 ma? [144 C] 2. Prierezom vodorovného vodiča prejde za 1 s usmerneným pohybom 1 000 elektrónov smerom doľava.
Διαβάστε περισσότερα,Zohrievanie vody indukčným varičom bez pokrievky,
Farba skupiny: zelená Označenie úlohy:,zohrievanie vody indukčným varičom bez pokrievky, Úloha: Zistiť, ako závisí účinnosť zohrievania vody na indukčnom variči od priemeru použitého hrnca. Hypotéza: Účinnosť
Διαβάστε περισσότεραRiešenie rovníc s aplikáciou na elektrické obvody
Zadanie č.1 Riešenie rovníc s aplikáciou na elektrické obvody Nasledujúce uvedené poznatky z oblasti riešenia elektrických obvodov pomocou metódy slučkových prúdov a uzlových napätí je potrebné využiť
Διαβάστε περισσότεραKinetika fyzikálno-chemických procesov
Kinetika fyzikálno-chemických procesov Chemická a biochemická kinetika Reálne biologické a fyzikálno-chemické procesy sú závislé na čase. Termodynamika poskytuje informácie len o možnostiach priebehu procesov,
Διαβάστε περισσότεραu R Pasívne prvky R, L, C v obvode striedavého prúdu Činný odpor R Napätie zdroja sa rovná úbytku napätia na činnom odpore.
Pasívne prvky, L, C v obvode stredavého prúdu Čnný odpor u u prebeh prúdu a napäta fázorový dagram prúdu a napäta u u /2 /2 t Napäte zdroja sa rovná úbytku napäta na čnnom odpore. Prúd je vo fáze s napätím.
Διαβάστε περισσότερα1. VZNIK ELEKTRICKÉHO PRÚDU
ELEKTRICKÝ PRÚD 1. VZNIK ELEKTRICKÉHO PRÚDU ELEKTRICKÝ PRÚD - Je usporiadaný pohyb voľných častíc s elektrickým nábojom. Podmienkou vzniku elektrického prúdu v látke je: prítomnosť voľných častíc s elektrickým
Διαβάστε περισσότεραOhmov zákon pre uzavretý elektrický obvod
Ohmov zákon pre uzavretý elektrický obvod Fyzikálny princíp: Každý reálny zdroj napätia (batéria, akumulátor) môžeme považova za sériovú kombináciu ideálneho zdroja s elektromotorickým napätím U e a vnútorným
Διαβάστε περισσότεραARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely
Διαβάστε περισσότεραTomáš Madaras Prvočísla
Prvočísla Tomáš Madaras 2011 Definícia Nech a Z. Čísla 1, 1, a, a sa nazývajú triviálne delitele čísla a. Cele číslo a / {0, 1, 1} sa nazýva prvočíslo, ak má iba triviálne delitele; ak má aj iné delitele,
Διαβάστε περισσότεραSLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY
SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA 54. ročník, školský rok 2017/2018 Kategória C Krajské kolo TEORETICKÉ ÚLOHY ÚLOHY Z ANORGANICKEJ, VŠEOBECNEJ A ORGANICKEJ CHÉMIE Chemická olympiáda
Διαβάστε περισσότεραSLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA. 49. ročník, školský rok 2012/2013 Kategória C. Krajské kolo
SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA 49. ročník, školský rok 1/1 Kategória C Krajské kolo RIEŠENIE A HODNOTENIE TEORETICKÝCH ÚLOH RIEŠENIE A HODNOTENIE ÚLOH Z ANORGANICKEJ A VŠEOBECNEJ
Διαβάστε περισσότεραModerné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A
M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x
Διαβάστε περισσότεραΜΑΞΙΜΟΣ ΚΟΤΕΛΙΔΑΣ. β) Να βρεθεί σε ποια οµάδα και σε ποια περίοδο του Περιοδικού Πίνακα ανήκουν.
ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΜΑΤΑ: 03490 ΗΜΕΡΟΜΗΝΙΑ: 27/5/2014 ΟΙ ΚΑΘΗΓΗΤΕΣ: ΜΑΞΙΜΟΣ ΚΟΤΕΛΙΔΑΣ ΕΚΦΩΝΗΣΕΙΣ Θέμα 2ο Α) Για τα στοιχεία: 12 Μg και 8 Ο α) Να κατανεµηθούν τα ηλεκτρόνιά τους σε στιβάδες. (µονάδες 2) β)
Διαβάστε περισσότεραElektromagnetické pole
Elektromagnetické pole Elektromagnetická vlna. Maxwellove rovnice v integrálnom tvare a diferenciálnom tvare. Vlnové rovnice pre E a. Vjadrenie rýchlosti elektromagnetickej vln. Vlastnosti a znázornenie
Διαβάστε περισσότεραPodnikateľ 90 Mobilný telefón Cena 95 % 50 % 25 %
Podnikateľ 90 Samsung S5230 Samsung C3530 Nokia C5 Samsung Shark Slider S3550 Samsung Xcover 271 T-Mobile Pulse Mini Sony Ericsson ZYLO Sony Ericsson Cedar LG GM360 Viewty Snap Nokia C3 Sony Ericsson ZYLO
Διαβάστε περισσότεραKomplexné čísla, Diskrétna Fourierova transformácia 1
Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené
Διαβάστε περισσότεραPriamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava
Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné
Διαβάστε περισσότερα1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2
1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2 Rozdiel LMT medzi dvoma miestami sa rovná rozdielu ich zemepisných dĺžok. Pre prevod miestnych časov platí, že
Διαβάστε περισσότεραEliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
Διαβάστε περισσότεραPoznámky k prednáškam z Termodynamiky z Fyziky 1.
Poznámky k prednáškam z Termodynamiky z Fyziky 1. Peter Bokes, leto 2010 1 Termodynamika Doposial sme si budovali predstavu popisu látky pomocou mechanických stupňov vol nosti, ako boli súradnice hmotného
Διαβάστε περισσότεραKlasifikácia látok LÁTKY. Zmesi. Chemické látky. rovnorodé (homogénne) rôznorodé (heterogénne)
Zopakujme si : Klasifikácia látok LÁTKY Chemické látky Zmesi chemické prvky chemické zlúčeniny rovnorodé (homogénne) rôznorodé (heterogénne) Chemicky čistá látka prvok Chemická látka, zložená z atómov,
Διαβάστε περισσότεραPrechod z 2D do 3D. Martin Florek 3. marca 2009
Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica
Διαβάστε περισσότεραΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΧλΘ(ε) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΧΗΜΕΙΑ Ηµεροµηνία: Τετάρτη 8 Απριλίου
Διαβάστε περισσότεραpanagiotisathanasopoulos.gr
. Παναγιώτης Αθανασόπουλος Χηµικός ιδάκτωρ Παν. Πατρών. Οξειδοαναγωγή Παναγιώτης Αθανασόπουλος Χημικός, Διδάκτωρ Πανεπιστημίου Πατρών 95 Χηµικός ιδάκτωρ Παν. Πατρών 96 Χηµικός ιδάκτωρ Παν. Πατρών. Τι ονοµάζεται
Διαβάστε περισσότεραSLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY
SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA 50. ročník, školský rok 2013/2014 Kategória A Študijné kolo TEORETICKÉ ÚLOHY ÚLOHY Z ANORGANICKEJ A ANALYTICKEJ CHÉMIE Chemická olympiáda kategória
Διαβάστε περισσότεραREZISTORY. Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických
REZISTORY Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických obvodoch. Základnou vlastnosťou rezistora je jeho odpor. Odpor je fyzikálna vlastnosť, ktorá je daná štruktúrou materiálu
Διαβάστε περισσότερα7 Derivácia funkcie. 7.1 Motivácia k derivácii
Híc, P Pokorný, M: Matematika pre informatikov a prírodné vedy 7 Derivácia funkcie 7 Motivácia k derivácii S využitím derivácií sa stretávame veľmi často v matematike, geometrii, fyzike, či v rôznych technických
Διαβάστε περισσότεραCHEMICKÁ OLYMPIÁDA. 47. ročník, školský rok 2010/2011. Kategória A. Krajské kolo RIEŠENIE A HODNOTENIE TEORETICKÝCH ÚLOH
CHEICKÁ LYPIÁDA 47. ročník, školský rok 2010/2011 Kategória A Krajské kolo RIEŠEIE A HDTEIE TERETICKÝCH ÚLH 47. ročník Chemickej olympiády, Riešenie a hodnotenie teoretických úloh krajského kola kategórie
Διαβάστε περισσότερα3 o Μάθημα : Αντιδράσεις απλής αντικατάστασης
3 o Μάθημα : Αντιδράσεις απλής αντικατάστασης 1. Στόχοι του μαθήματος Οι μαθητές να γνωρίσουν:i) πότε πραγματοποιείται μια αντίδραση απλής αντικατάστασης, με βάση τη σειρά δραστικότητας των μετάλλων και
Διαβάστε περισσότεραSLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA. 48. ročník, školský rok 2011/2012 Kategória C. Študijné kolo RIEŠENIE A HODNOTENIE
SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA 48. ročník, školský rok 011/01 Kategória C Študijné kolo RIEŠENIE A HODNOTENIE TEORETICKÝCH A PRAKTICKÝCH ÚLOH RIEŠENIE A HODNOTENIE TEORETICKÝCH
Διαβάστε περισσότερα2 Chyby a neistoty merania, zápis výsledku merania
2 Chyby a neistoty merania, zápis výsledku merania Akej chyby sa môžeme dopustiť pri meraní na stopkách? Ako určíme ich presnosť? Základné pojmy: chyba merania, hrubé chyby, systematické chyby, náhodné
Διαβάστε περισσότεραPRIEMER DROTU d = 0,4-6,3 mm
PRUŽINY PRUŽINY SKRUTNÉ PRUŽINY VIAC AKO 200 RUHOV SKRUTNÝCH PRUŽÍN PRIEMER ROTU d = 0,4-6,3 mm èíslo 3.0 22.8.2008 8:28:57 22.8.2008 8:28:58 PRUŽINY SKRUTNÉ PRUŽINY TECHNICKÉ PARAMETRE h d L S Legenda
Διαβάστε περισσότερα2.1. Να χαρακτηρίσετε τις επόμενες προτάσεις ως σωστές (Σ) ή λανθασμένες (Λ);
Θέμα 2ο 2.1. Να χαρακτηρίσετε τις επόμενες προτάσεις ως σωστές (Σ) ή λανθασμένες (Λ); α) Η διαφορά του ατομικού αριθμού από το μαζικό αριθμό ισούται με τον αριθμό νετρονίων του ατόμου. β) Το 19 Κ + έχει
Διαβάστε περισσότεραSLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA. 51. ročník, školský rok 2014/2015. Kategória A. Domáce kolo
SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA 51. ročník, školský rok 2014/2015 Kategória A Domáce kolo RIEŠENIE A HODNOTENIE TEORETICKÝCH ÚLOH RIEŠENIE A HODNOTENIE ÚLOH Z ANORGANICKEJ CHÉMIE
Διαβάστε περισσότεραXHMEIA. 1 ο ΔΙΑΓΩΝΙΣΜΑ. ΘΕΜΑ 1 ο. Να δώσετε τη σωστή απάντηση στις παρακάτω περιπτώσεις.
ΘΕΜΑ ο Α ΛΥΚΕΙΟΥ-ΧΗΜΕΙΑ ο ΔΙΑΓΩΝΙΣΜΑ Να δώσετε τη σωστή απάντηση στις παρακάτω περιπτώσεις.. Η πυκνότητα ενός υλικού είναι 0 g / cm. Η πυκνότητά του σε g/ml είναι: a. 0,00 b., c. 0,0 d. 0,000. Ποιο από
Διαβάστε περισσότεραTECHNICKÁ CHÉMIA. Doc. RNDr. Tatiana Liptáková, PhD. Katedra materiálového inžinierstva
TECHNICKÁ CHÉMIA Doc. RNDr. Tatiana Liptáková, PhD. Katedra materiálového inžinierstva Literatúra: Gažo, J. a kol.: Všeobecná a anorganická chémia, ALFA SNTL, BA, 1981 Ondrejovič, G. a kol.: Anorganická
Διαβάστε περισσότεραSTRIEDAVÝ PRÚD - PRÍKLADY
STRIEDAVÝ PRÚD - PRÍKLADY Príklad0: V sieti je frekvencia 50 Hz. Vypočítajte periódu. T = = = 0,02 s = 20 ms f 50 Hz Príklad02: Elektromotor sa otočí 50x za sekundu. Koľko otáčok má za minútu? 50 Hz =
Διαβάστε περισσότεραγ) Βa(ΟΗ) 2 (aq) + ΗBr(aq)
Θέμα 2 ο 2.1. Να συμπληρώσετε τις χημικές εξισώσεις (προϊόντα και συντελεστές) των παρακάτω αντιδράσεων που γίνονται όλες. α) CaI 2 (aq) + AgNO 3 (aq) β) Cl 2 (g) + H 2 S(aq) γ) Βa(ΟΗ) 2 (aq) + ΗBr(aq)
Διαβάστε περισσότεραΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)
ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.
Διαβάστε περισσότεραΧημεία Β Λυκείου Γενικής Παιδείας: Διαγώνισμα 1. Θέματα
Χημεία Β Λυκείου Γενικής Παιδείας: Διαγώνισμα 1 Θέματα Θέμα 1 ο 1. Ποιες από τις παρακάτω ενώσεις είναι ακόρεστες και ποιες κορεσμένες; C O HO C 1... 5. 5 μονάδες. Σε ποια ομόλογη σειρά ανήκει καθεμιά
Διαβάστε περισσότεραZákladné poznatky molekulovej fyziky a termodynamiky
Základné poznatky molekulovej fyziky a termodynamiky Opakovanie učiva II. ročníka, Téma 1. A. Príprava na maturity z fyziky, 2008 Outline Molekulová fyzika 1 Molekulová fyzika Predmet Molekulovej fyziky
Διαβάστε περισσότεραΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014. ÄÉÁÍüÇÓÇ
ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ Ηµεροµηνία: Τετάρτη 23 Απριλίου 2014 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιο σας τον αριθµό κάθε µίας από τις ερωτήσεις A1 έως A4 και δίπλα
Διαβάστε περισσότεραÚvod do lineárnej algebry. Monika Molnárová Prednášky
Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Prednášky: 3 17 marca 2006 4 24 marca 2006 c RNDr Monika Molnárová, PhD Obsah 2 Sústavy lineárnych rovníc 25 21 Riešenie sústavy lineárnych rovníc
Διαβάστε περισσότεραC M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ
»»...» -300-0 () -300-03 () -3300 3.. 008 4 54. 4. 5 :.. ;.. «....... :. : 008. 37.. :....... 008.. :. :.... 54. 4. 5 5 6 ... : : 3 V mnu V mn AU 3 m () ; N (); N A 6030 3 ; ( ); V 3. : () 0 () 0 3 ()
Διαβάστε περισσότεραEstimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design
Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH
Διαβάστε περισσότεραAkumulátory. Membránové akumulátory Vakové akumulátory Piestové akumulátory
www.eurofluid.sk 20-1 Membránové akumulátory... -3 Vakové akumulátory... -4 Piestové akumulátory... -5 Bezpečnostné a uzatváracie bloky, príslušenstvo... -7 Hydromotory 20 www.eurofluid.sk -2 www.eurofluid.sk
Διαβάστε περισσότεραΦΡΟΝΤΙΣΤΗΡΙΟ Μ.Ε. ΣΥΜΒΟΛΟ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Α ΛΥΚΕΙΟΥ ΑΝΤΙ ΡΑΣΕΙΣ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Α ΛΥΚΕΙΟΥ ΑΝΤΙ ΡΑΣΕΙΣ Όλες οι αντιδράσεις που ζητούνται στη τράπεζα θεµάτων πραγµατοποιούνται. Στην πλειοψηφία των περιπτώσεων απαιτείται αιτιολόγηση της πραγµατοποίησης των αντιδράσεων.
Διαβάστε περισσότεραŽivot vedca krajší od vysnívaného... s prírodou na hladine α R-P-R
Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R Ako nadprirodzené stretnutie s murárikom červenokrídlym naformátovalo môj profesijný i súkromný život... Osudové stretnutie s murárikom
Διαβάστε περισσότεραARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 ARMA modely časť 2: moving average modely(ma) p.1/25 V. Moving average proces prvého rádu - MA(1) ARMA modely
Διαβάστε περισσότερααριθμός δοχείου #1# control (-)
Μόνο απιονισμένο νερό #1# control (-) Μακροστοχεία: Ν, P, K, Ca, S, Εάν κάποια έλλειψη μετά 1 μήνα έχει σημαντικές επιπτώσεις προσθέτουμε σε δόσεις την έλλειψη έως ότου ανάπτυξη ΟΚ #2# control (+) Μακροστοχεία:
Διαβάστε περισσότεραCHEMICKÁ OLYMPIÁDA kategória EF, úrove E školské kolo
CHEMICKÁ OLYMPIÁDA 46. ročník, školský rok 009/010 kategória EF, úrove E školské kolo TEORETICKÉ A PRAKTICKÉ ÚLOHY Riešenie a hodnotenie úloh RIEŠEIE A HODOTEIE ÚLOH Z TECHOLOGICKÝCH ÝPO TO Chemická olympiáda
Διαβάστε περισσότεραElektrický prúd v kovoch
Vznik jednosmerného prúdu: Elektrický prúd v kovoch. Usporiadaný pohyb voľných častíc s elektrickým nábojom sa nazýva elektrický prúd. Podmienkou vzniku elektrického prúdu v látke je prítomnosť voľných
Διαβάστε περισσότεραM O N I T O R 2002 pilotné testovanie maturantov MONITOR Chémia. 2. časť. Realizácia projektu: EXAM, Bratislava. (2002) Štátny pedagogický ústav
M O N I T O R 2002 pilotné testovanie maturantov MONITOR 2002 Chémia 2. časť Odborný garant projektu: Realizácia projektu: Štátny pedagogický ústav, Bratislava EXAM, Bratislava 1 MONITOR 2002 Voda je jedna
Διαβάστε περισσότεραΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ
ΤΑΞΗ: ΜΑΘΗΜΑ: A ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ Ημερομηνία: Σάββατο 20 Απριλίου 2019 Διάρκεια Εξέτασης: 2 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α1. Δίνεται στοιχείο Χ το οποίο έχει οκτώ ηλεκτρόνια στην εξωτερική του στιβάδα.
Διαβάστε περισσότερα18. kapitola. Ako navariť z vody
18. kapitola Ako navariť z vody Slovným spojením navariť z vody sa zvyknú myslieť dve rôzne veci. Buď to, že niekto niečo tvrdí, ale nevie to poriadne vyargumentovať, alebo to, že niekto začal s málom
Διαβάστε περισσότεραKontrolné otázky z jednotiek fyzikálnych veličín
Verzia zo dňa 6. 9. 008. Kontrolné otázky z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej odpovede sa môže v kontrolnom teste meniť. Takisto aj znenie nesprávnych odpovedí. Uvedomte si
Διαβάστε περισσότεραIntegrovanie racionálnych funkcií
Integrovanie racionálnych funkcií Tomáš Madaras 2009-20 Z teórie funkcií už vieme, že každá racionálna funkcia (t.j. podiel dvoch polynomických funkcií) sa dá zapísať ako súčet polynomickej funkcie a funkcie
Διαβάστε περισσότερα2. ELEKTROANALYTICKÁ CHÉMIA
2. ELEKTROANALYTICKÁ CHÉMIA Elektrochemická analýza je založená na meraní elektroanalytických veličín (potenciál, prúd, náboj, odpor, kapacita atď.). Využíva vzťah medzi kvalitou alebo množstvom analyzovanej
Διαβάστε περισσότεραΧηµεία Α Γενικού Λυκείου
Χηµεία Α Γενικού Λυκείου Απαντήσεις στα θέματα της Τράπεζας Θεμάτων Συγγραφή απαντήσεων: 'Αρης Ασλανίδης Χρησιμοποιήστε τους σελιδοδείκτες (bookmarks) στο αριστερό μέρος της οθόνης για την πλοήγηση μέσα
Διαβάστε περισσότερα21. Planckova konštanta Autor pôvodného textu: Ondrej Foltin
. Planckova konštanta Autor pôvodného textu: Ondrej Foltin Úloha: Určiť Planckovu konštantu pomocou vonkajšieho fotoelektrického javu Teoretický úvod Pri vonkajšom fotoelektrickom jave sa uvolňujú elektróny
Διαβάστε περισσότεραv d v. t Obrázok 14.1: Pohyb nabitých častíc vo vodiči.
219 14 Elektrický prúd V predchádzajúcej kapitole Elektrické pole sme preberali elektrostatické polia nábojov, ktoré boli v pokoji. V tejto kapitole sa budeme zaoberať pohybom elektrických nábojov, ktorý
Διαβάστε περισσότεραVyhlásenie o parametroch stavebného výrobku StoPox GH 205 S
1 / 5 Vyhlásenie o parametroch stavebného výrobku StoPox GH 205 S Identifikačný kód typu výrobku PROD2141 StoPox GH 205 S Účel použitia EN 1504-2: Výrobok slúžiaci na ochranu povrchov povrchová úprava
Διαβάστε περισσότεραZBIERKA ÚLOH Z FYZIKY PRE 4.ROČNÍK
Kód ITMS projektu: 26110130519 Gymnázium Pavla Jozefa Šafárika moderná škola tretieho tisícročia ZBIERKA ÚLOH Z FYZIKY PRE 4.ROČNÍK (zbierka úloh) Vzdelávacia oblasť: Predmet: Ročník: Vypracoval: Človek
Διαβάστε περισσότεραTECHNICKÁ CHÉMIA. prof. RNDr. Tatiana Liptáková, PhD. Katedra materiálového inžinierstva
TECHNICKÁ CHÉMIA prof. RNDr. Tatiana Liptáková, PhD. Katedra materiálového inžinierstva Literatúra: Gažo, J. a kol.: Všeobecná a anorganická chémia, ALFA SNTL, BA, 1981 Ondrejovič, G. a kol.: Anorganická
Διαβάστε περισσότεραPoužité fyzikálne veličiny a parametre
2. Použité fyzikálne veličiny a parametre značka jednotka názov α [K -1 ] teplotný súčiniteľ odporu γ [S.m -1 ] konduktivita (v staršej literatúre: merná elektrická vodivosť) λt [Wm -1 K -1 ] merná tepelná
Διαβάστε περισσότεραÓõíåéñìüò ΕΚΦΩΝΗΣΕΙΣ. 2NH + 3Cl N + 6HCl. 3 (g) 2 (g) 2 (g) (g) 2A + B Γ + 3. (g) (g) (g) (g) ποια από τις παρακάτω εκφράσεις είναι λανθασµένη;
Επαναληπτικά Θέµατα ΟΕΦΕ Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ ο ΧΗΜΕΙΑ ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις..4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.
Διαβάστε περισσότερα6. ΤΕΛΙΚΗ ΙΑΘΕΣΗ ΤΑΦΗ. 6.1. Γενικά
6. ΤΕΛΙΚΗ ΙΑΘΕΣΗ ΤΑΦΗ 6.1. Γενικά Είναι γεγονός ότι ανέκαθεν ο τελικός αποδέκτης των υπολειµµάτων της κατανάλωσης και των καταλοίπων της παραγωγικής διαδικασίας υπήρξε το περιβάλλον. Στις παλιότερες κοινωνίες
Διαβάστε περισσότεραΦυσικές και χημικές ιδιότητες
Φυσικές και χημικές ιδιότητες Φυσικές ιδιότητες Οι ιδιότητες που προσδιορίζονται χωρίς αλλοίωση της χημικής σύστασης της ουσίας (π.χ. σ. τήξεως, σ. ζέσεως, πυκνότητα, χρώμα, γεύση, σκληρότητα). Χημικές
Διαβάστε περισσότερα