Dinamika kapilarnega pomika

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Dinamika kapilarnega pomika"

Transcript

1 UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO ODDELEK ZA FIZIKO Goran Bezjak SEMINARSKA NALOGA Dinamika kapilarnega pomika Mentor: izr. prof. dr. Gorazd Planinšič Ljubljana, december

2 Povzetek V seminarju bo obravnaval položaj tekočine v kapilari v odvisnosti od časa, vendar se bom za lažjo obravnavo osredotočil na tanko cevko, ki jo bom sprva obravnaval v vodoravni legi in pokazal, da je pot sorazmerna s korenom iz časa. Nato bom obravnaval še gibanje tekočine v vertikalni kapilari, ki je povezano s številnimi pojavi. Kazalo 1 Uvod 3 2 Površinska napetost 4 3 Kapilarni dvig 6 4 Dinamika kapilarnega pomika v vodoravni kapilari 8 5 Dinamika kapilarnega pomika v navpični kapilari 11 6 Zaključek 13 2

3 1 Uvod Pojav, ko nam poplava v stanovanju omoči stene nekaj deset centimetrov visoko, je ljudem skoraj normalen, ker so se ga navadili. Podobno je, ko se nam polna skodelica jutranje kave ali čaja prevrne po časopisnem papirju in se voda počasi razleze čez ves papir. Ampak ti pojavi nam v sebi skrivajo preprosto vprašanje: Kako hitro se tekočina premika po porozni snovi? Podobno vprašanje nam zastavijo številni primeri iz vsakdana. Vsakdo, ki je imel kdaj luknjo na podplatu čevlja in je hodil po mokrih tleh, je po nekaj časa občutil mokre nogavice kljub temu, da ni stopil v lužo. Tudi dvigovanje vode v drevesih je nekaj, kar veliko ljudi vidi skozi pojav kapilarnega dviga, čeprav je razlaga veliko zahtevnejša. Zakaj, bo razvidno, ko bomo raziskali dinamiko kapilarnega pomika. 3

4 2 Površinska napetost Površina tekočine se v določenih pogledih obnaša kot napeta opna. To obnašanje lahko razložimo z mikroskopsko sliko. Na molekulo, ki se nahaja nekje znotraj tekočine delujejo kohezijske sile med sosednjimi molekulami. To so Wan Der Waalsove sile. Potencial ima pri določeni medmulekulski razdalji minimum; če približamo molekuli pod to razdaljo, deluje odbojna sila, če ju oddaljimo, pa privlačna sila. V tekočini delujejo na izbrano molekulo kohezijske sile v vseh smereh, torej je rezultanta enaka nič. Molekula nekje na površini tekočine čuti le kohezijsko silo molekul pod njo, zato je rezultanta kohezijskih sil usmerjena navzdol (pravokotno na gladino). Zato so molekule na površini v povprečju rahlo bližje sosedam pod njo, kot molekule globlje v tekočini. V prečni smeri so molekule na površini v povprečju nekoliko bolj razmaknjene kot molekule v globini [1]. Molekule na površini pritiskajo na tekočino in tako skušajo zmanjšati celotno površino tekočine ( zato se npr. kapljice tekočine v breztežnem prostoru oblikujejo v pravilne kroglice) [2]. Slika 1: Sile na molekulo na površini in v notranjosti kapljevine. Če povečujemo površino tekočine, dosežemo, da dodatne molekule iz notranjosti postanejo površinske molekule. Molekule na površini moramo zato razmakniti s silo v smeri premika, 4

5 da naredijo prostor za nove molekule. Opravljeno delo gre za povečanje površine tekočine. Sila, ki je potrebna za premik izbrane meje površine je sorazmerna z dolžino meje in je neodvisna od premika x. Razmerje med silo in dolžino meje je odvisno le od izbrane tekočine, zato je smiselno definirati količnik F γ = (1) l kot površinsko napetost tekočine (enota N/m). Ko povečamo površino tekočine, opravimo delo. Pri tem prenesemo nekaj molekul iz notranjosti, kjer imajo nižjo potencialno energijo, na površino, kjer imajo višjo energijo. Dodatna površina predstavlja zalogo energije. Zato vpeljemo površinsko energijo, ki je enaka W = γ S (2) pov V primeru, ko na tekočino ne delujejo zunanje sile (npr. v breztežnem prostoru) zavzame tekočina takšno obliko, ki bo imela pri dani prostornini najmanjšo površino in zato najmanjšo energijo, saj je energija sorazmerna s površino. Zato tekočina tvori obliko krogle [2, 3]. Tekočina Površinska napetost (N/m) Benzen (20 C) 0,029 Kri (37 C) 0,058 Glicerin (20 C) 0,063 Živo srebro (20 C) 0,47 Voda (20 C) 0,073 Voda (100 C) 0,059 Tabela 1: Vrednosti površinske napetosti za nekaj tekočin [2]. 5

6 3 Kapilarni dvig Doslej smo se zanimali le za mejo med tekočino in plinom. Podobno kot na površini tekočine deluje na molekule tekočine ob steni posode privlak ostalih molekul tekočine le z ene strani. Poleg tega delujejo na tekočinske molekule še privlak molekul (atomov) trdne snovi stene. To so sile med molekulami različnih snovi. Pravimo jim adhezijske sile. V bližini stene deluje na molekulo na površini tekočine rezultanta sil, ki jo lahko razdelimo na dva prispevka: kohezijsko silo ostalih molekul tekočine in adhezijsko silo stene posode (sile med molekulami tekočine in moleklami plina nad tekočino so majhne, zato jih zanemarimo). Če so kohezijske sile močnejše od adhezijskih, kaže rezultanta sil stran od stene. Pravimo, da v tem primeru tekočina stene ne moči (θ>90 ). Če pa so sile šibkejše od adhezijskih, kaže rezultanta sil k steni in tedaj tekočina omoči steno (θ<90 ) (glej sliko 2). Slika 2: Če so kohezijske sile večje od adhezijskih, tekočina stene ne moči (slika na levi). Če prevladajo adhezijske sile, tekočina steno moči (slika na desni). Z F R je označena rezultanta sil. Če sta sili enaki, je gladina tekočine pravokotna na steno posode. 6

7 Gladina bo zavzela takšno lego, da bo pravokotna na rezultanto omenjenih sil, saj tekočina ne prenaša strižnih sil. Izbrana kombinacija snovi tekočina-trda snov določa razmerje med kohezijskimi in adhezijskimi silami in s tem kot omočitve θ [2]. Sila površinske napetosti deluje na mejo tekočine ob steni posode. V primeru, ko tekočina omoči steno kapilare, deluje komponenta sile površinske napetosti navpično navzgor. Tlak pod površino tekočine znotraj cevke postane zato manjši od zunanjega tlaka. Tlačna razlika začne poganjati tekočino po cevki. V primeru, da je cevka navpično postavljena, se tekočina dviguje vse dokler hidrostatski tlak vodnega stolpca nad gladino ostale tekočine ne izenači tlačne razlike. Takrat tekočina preneha teči, saj je vsota sil enaka nič. Iz izenačitve sile teže vodnega stolpca in sile površinske napetosti dobimo enačbo za višino kapilarnega dviga 2γ h = (3) ρ gr v Podobno velja za primer, ko tekočina ne moči stene, le da je tedaj h globina za katero se zniža gladina v kapilari. V nadaljevanju nas bo zanimalo kako se gladina tekočine vzdolž vodoravne kapilare pomika s časom. 7

8 4 Dinamika kapilarnega pomika v vodoravni kapilari Predpostavimo, da je premer kapilare dovolj majhen, da lahko vpliv teže na deformacijo meniskusa v cevi zanemarimo. Poskus izvedemo tako, da na en prosti konec kapilare kanemo kapljico izbrane tekočine. Sila površinske napetosti ustvarja stalno tlačno razliko, ki poganja tekočino vzdolž cevke. Ker pa mora tlačna razlika poganjati vedno večji stolpec tekočine, je sila upora zaradi viskoznosti tekočine tudi vse večja. Uporabimo Poissevilov zakon linearnega upora za pretakanje tekočine po cevi in zapišemo Newtonov zakon. Predpostavimo, da je pospešek tekočine zanemarljivo majhen in prav tako sunek sile, ki je potreben za to, da spravimo v gibanje na novo»posrkano«tekočino. Tako poenostavljen model bo slabo opisal gibanje tekočine na začetku poskusa, ko je v kapilari še malo tekočine in je zato sila upora majhna, pospešek pa velik. Za kasnejše dogajanje pa bo model dober. Izhajajmo iz drugega Newtonovega zakona dg d( mv) dm F = = = v + dt dt dt dv m dt Na levi strani enačbe nastopajo sila površinske napetosti F γ =γ2πr, kjer je 2πr notranji obseg valjaste kapilare in sila linearnega viskoznega upora F η =8πxηv. Tako lahko zapišemo 2 dx dx d x Fγ Fη = ρ S + ρ Sx (5) 2 dt dt dt Kjer prvi člen na desni strani opisuje spreminjanje gibalne količine novo posrkane tekočine, ter drugi člen opisuje spreminjanje (pospeševanje) celotnega stolpca tekočine [3]. Privzamemo lahko, da je pospešek tekočine zanemarljivo majhen in prav tako sunek sile, ki je potreben za to, da spravimo v gibanje na novo»posrkano«tekočino (prispevke bom kasneje podprl s konkretnimi izračuni na primeru). Tako poenostavljen model bo slabo opisal gibanje tekočine na začetku poskusa, ko je v kapilari še malo tekočine in je zato sila upora majhna, pospešek pa velik. Za kasnejše dogajanje pa bo model dober. Člene na desni strani zanemarimo in s tem preverimo dinamiko vodnega stolpca po daljšem času. Enačbo okrajšamo in preuredimo ter jo integriramo. (4) 1 γ r dt = 4η x 0 0 xdx (6) Po integraciji dobimo γ rt x ( t) = (7) 2η 8

9 Iz enačbe vidimo, da se stolpec vode nikoli ne ustavi (oziroma potuje dokler ne doseže nasprotnega konca kapilare ali dokler ne zmanjka tekočine). Pot je sorazmerna s korenom iz časa, zato je hitrost gibanja stolpca vedno manjša. Naš model lahko preverimo s preprostim poskusom. Na vodoravno podlago pritrdimo milimeterski papir in tanko kapilaro (slika 3). S kapalko kanemo kapljico vode na en konec kapilare in beležimo čase, ko meniskus tekočine prečka določene razdalje. Slika 3: Postavitev poskusa s kapilaro. Meritve poskusa so prikazane na sliki 4. odmik [cm] čas [10-2 s] Slika 4: Graf odmika meniskusa od začetne lege v odvisnosti od časa. 9

10 S podatkov vidimo korensko odvisnost poti od časa. Kot smo že napovedali, se korenska odvisnost (ki je rešitev poenostavljenega modela) ne ujema z meritvami v začetnih točkah. Po enačbi (7) bi morala biti hitrost na začetku neskončna, kar pa je iz grafa očitno, da ni. Začetno hitrost lahko ocenimo tako, da v enačbi (5) zanemarimo člene, ki vsebujejo x, saj je x na začetku približno nič. Dobimo: γ v = 2 0 rρ (8) Če v enačbo (8) vstavimo podatke za vodo in radij cevke (r 0,2mm), je izračun za začetno hitrost približno 0.3m/s. Hitrost, izmerjena iz grafa, pa je približno 0.4m/s. Iz grafa lahko cenimo še dx/dt po dveh sekundah in dobimo dx/dt 10-2 m/s, kar je veliko manj, kot na začetku. Za d 2 x/dt 2 je rezultat še manjši, in sicer d 2 x/dt m/s. Če te rezultate vstavimo v enačbo (5), dobimo na desni strani člene reda Prav tako lahko izračunamo velikosti sil, ki pa so reda Očitno je, da lahko v enačbi (5) člene na desni strani zanemarimo, če se ne omejimo na začetne čase. Iz meritev lahko na primer izračunamo viskoznost tekočine, če poznamo radij cevke, površinsko napetost in kontaktni kot za vodo in steklo. Meritev sem izvedel tako, da sem z video kamero posnel gibanje vode v cevki. Nato sem s pomočjo računalnika odčitaval čas in odmik od začetne leg. Meritev ni bila zelo natančna, ker ni bilo lahko oceniti razdaljo meniskusa v kapilari, saj sem bil omejen na ločljivost posnetka. Ampak namen meritve je bil pokazati korensko odvisnost poti od časa. Če uporabimo namesto vode glicerin, lahko meritev izvedemo s štoparico. 10

11 5 Dinamika kapilarnega pomika v navpični kapilari Kot smo omenili že v uvodu, se tekočina v kapilari dvigne do točno določene višine. Pri večini znanih laboratorijskih eksperimentov, ki zajemajo dvig tekočine v kapilarnih cevkah, se ne zanimamo za dinamiko dvigovanja gladine stolpca tekočine. Kot bomo spoznali v nadaljevanju, privede reševanje dinamike kapilarnega pomika v vertikalni kapilari do diferencialne enačbe, ki nima analitičnih rešitev. Izhajajmo iz drugega Newtonovega zakona in zapišimo sile na tekočino v navpični kapilari. dg F g + Fγ Fη = (9) dt Na levi strani enačbe nastopajo sila teže, sila linearnega viskoznega upora in sila površinske napetosti. Tako lahko zapišemo dh dh dh ρ Shg + γ 2π r 8π hη = ρ S + dt dt dt 2 d h ρ Sh (10) 2 dt Za poenostavljen model člene na desni strani zanemarimo, kakor pri vodoravni kapilari. Dobimo diferencialno enačbo, ki nima analitičnih rešitev. Ko voda preneha teči, so vsi členi razen prvih dveh enaki 0. Zato je enačba za višino h 0 enaka enačbi (3). Peiris in Tennakone sta predstavila novo in koristno metodo primerno za merjenje viskoznosti η in površinske napetosti γ tekočine s kotom kapilarnosti manjšim od π/2 proti steklu [4]. Poskus naredimo s stekleno kapilarno cevko in merimo višino stolpca tekočine v odvisnosti od časa t. Njuna metoda analize podatkov je, da narišemo graf višine h kapilarnega dviga kot funkcijo časa in grafično določimo naklon dh/dt krivulje v več točkah. Grafična metoda analize podatkov je potrebna zaradi dejstva, da je zveza, ki podaja h kot fnkcijo časa, nerešljiva za h ali dh/dt, če uporabljamo navadna algebrajična orodja. Pokazali bomo, da je eksplicinta rešitev za h in dh/dt možna s pomočjo Lagrangeove razširitve [4]. Naj bo ς = α + β Φ (ς ), (11) kjer sta α in β parametra neodvisna od ζ in Ф(ζ) je dana funkcija od ζ. Potem lahko f(ζ) izrazimo s Ф(ζ) na naslednji način f ( ς ) = f ( α ) + n = 1 n β d n! dα n 1 n 1 n ( f ( α )[ Φ ( α )] ) V posebnem primeru, v katerem f(ζ) = ζ, enačba (12) dobi obliko n= 1 n ([ Φ ( α )] ) (12) n n 1 β d ς = α + n 1, (13) n! dα 11

12 ki reši enačbo (11) za ζ s pomočjo α in β. Sedaj ta formalizem uporabimo za enačbo (12) Peirisa in Tennakoneja za h kot funkcijo t. Enačba (12) Peirisa in Tennakoneja je h t h = h0 1 exp( ) (14) h0 t0 kjer je v njuni nutaciji h 0 = 2γ/rρg, ρ je gostota tekočine v kapilari, g težni pospešek, γ površinska napetost, r radij cevke in t 0 = 16ηγ/r 3 p 2 g 2 [5]. Naredimo zamenjave za ζ = h/h 0, α=1, β = -exp(-t/t 0 ) in Ф(ζ) = exp(-ζ). Z primerjavo enačbe (11) in (14) ter vstavljanjem njiju v (13) in urejanjem dobimo nt / t0 n 1 n e n e h ( t) = h0 h, (15) n! 0 n = 1 ki je zahtevan izraz za h kot funkcijo t. Z odvajanje enačbe (15) po t dobimo dh dt = h t 0 0 n = 1 e nt / t0 n n e n! n, (16) ki je hitrost višine dviga tekočine v kapilarni cevki povprečena po preseku cevke. Enačbe (15) in (16) lahko uporabimo poljubno, da lahko dobimo vrednosti η in γ od h - t. 12

13 7 Zaključek Pokazali smo, da je gibanje horizontalne»vodne fronte«sorazmerno s korenom iz časa. Sedaj lahko razumemo, zakaj postaja politi časopisni papir s časom širše omočen. Podobna je razlaga, zakaj moramo počakati nekaj časa, da se voda dvigne nekaj deset centimetrov visoko po zidu. Prav tako bi lahko razumeli, zakaj kapilarni dvig ni odločilen pri dvigu vode v rastlinah. Eden razlog je ta, da četudi bi drevo lahko dvignilo vodo malo nad 100 m višine, bi 100 m visoka drevesa potrebovala veliko časa, da bi voda pritekla do vrha, kar bi bilo neugodno za rastlino v poletnih dneh, skozi katero se pretakajo velike količine vode. Drugi razlog pa izhaja povsem iz strukture rastlin. Cevke, ki jim pravimo ksilem, so v rastlini preširoke, da bi vodo dvignile zelo visoko, saj imajo premer od 10μm do 100μm. Če izračunamo maksimalno višino stolpca vode za te cevke, dobimo višino med 0.3 m do 3 m. Naredili smo poskus s toaletnim papirjem, ki bi ga lahko uporabili za določevanje kvalitete papirja. In podobno bi lahko naredili za kakšne druge snovi. Pojavov, ki se navezujejo na kapilarni dvig v tankih cevkah je v naravi polno, zato se mi je zdelo smiselno, da ta pojav raziščemo bolj podrobno in vidimo kaj se dogaja skozi celoten pojav. Model, ki sem ga predstavil, ne vsebuje dogajanja tekočine takoj v začetku dogajanja, ampak opisuje dogajanje od nekega časa dalje. 13

14 8 Literatura [1] Alan j. Walton, Surface tension and capillary rise, Phys. Ed., 491 (1972) [2] Gorazd Planinšič et al., Med-predmetno povezovanje v naravoslovju, Površinska napetost (Fakulteta za kemijo in kemijsko tehnologijo, 2007) [3] Janez Strnad, Fizika (prvi del: mehanika / toplota), (NMFA, Ljubljana, 2002) [4] Clinton M. Case, Rate of rise of liquide in a capillary tube revisted, Am.J.Phys., 58, No. 9, (1990) [5] Peiris and Tennakone, Rate of rise of liquid in a capillary tube, Am.J. Phys. 48, 415 (1980) 14

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

1. Trikotniki hitrosti

1. Trikotniki hitrosti . Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

Slika 5: Sile na svetilko, ki je obešena na žici.

Slika 5: Sile na svetilko, ki je obešena na žici. 4. poglavje: Sile 5. Cestna svetilka visi na sredi 10 m dolge žice, ki je napeta čez cesto. Zaradi teže svetilke (30 N) se žica za toliko povesi, da pride sredina za 30 cm niže kot oba konca. Kako močno

Διαβάστε περισσότερα

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij): 4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n

Διαβάστε περισσότερα

PONOVITEV SNOVI ZA 4. TEST

PONOVITEV SNOVI ZA 4. TEST PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.

Διαβάστε περισσότερα

Najprej zapišemo 2. Newtonov zakon za cel sistem v vektorski obliki:

Najprej zapišemo 2. Newtonov zakon za cel sistem v vektorski obliki: NALOGA: Po cesi vozi ovornjak z hirosjo 8 km/h. Tovornjak je dolg 8 m, širok 2 m in visok 4 m in ima maso 4 on. S srani začne pihai veer z hirosjo 5 km/h. Ob nekem času voznik zaspi in ne upravlja več

Διαβάστε περισσότερα

Mehanika fluidov. Statika tekočin. Tekočine v gibanju. Lastnosti tekočin, Viskoznost.

Mehanika fluidov. Statika tekočin. Tekočine v gibanju. Lastnosti tekočin, Viskoznost. Mehanika fluidov Statika tekočin. Tekočine v gibanju. Lastnosti tekočin, Viskoznost. 1 Statika tekočin Če tekočina miruje, so vse sile, ki delujejo na tekočino v ravnotežju. Masne volumske sile: masa tekočine

Διαβάστε περισσότερα

Fazni diagram binarne tekočine

Fazni diagram binarne tekočine Fazni diagram binarne tekočine Žiga Kos 5. junij 203 Binarno tekočino predstavljajo delci A in B. Ti se med seboj lahko mešajo v različnih razmerjih. V nalogi želimo izračunati fazni diagram take tekočine,

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

Matematika 2. Diferencialne enačbe drugega reda

Matematika 2. Diferencialne enačbe drugega reda Matematika 2 Diferencialne enačbe drugega reda (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) y 6y + 8y = 0, (b) y 2y + y = 0, (c) y + y = 0, (d) y + 2y + 2y = 0. Rešitev:

Διαβάστε περισσότερα

Numerično reševanje. diferencialnih enačb II

Numerično reševanje. diferencialnih enačb II Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke

Διαβάστε περισσότερα

UPOR NA PADANJE SONDE V ZRAKU

UPOR NA PADANJE SONDE V ZRAKU UPOR NA PADANJE SONDE V ZRAKU 1. Hitrost in opravljena pot sonde pri padanju v zraku Za padanje v zraku je odgovorna sila teže. Poleg sile teže na padajoče telo deluje tudi sila vzgona, ki je enaka teži

Διαβάστε περισσότερα

Tema 1 Osnove navadnih diferencialnih enačb (NDE)

Tema 1 Osnove navadnih diferencialnih enačb (NDE) Matematične metode v fiziki II 2013/14 Tema 1 Osnove navadnih diferencialnih enačb (NDE Diferencialne enačbe v fiziki Večina osnovnih enačb v fiziki je zapisana v obliki diferencialne enačbe. Za primer

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

Transformator. Delovanje transformatorja I. Delovanje transformatorja II

Transformator. Delovanje transformatorja I. Delovanje transformatorja II Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,

Διαβάστε περισσότερα

vezani ekstremi funkcij

vezani ekstremi funkcij 11. vaja iz Matematike 2 (UNI) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 ekstremi funkcij več spremenljivk nadaljevanje vezani ekstremi funkcij Dana je funkcija f(x, y). Zanimajo nas ekstremi nad

Διαβάστε περισσότερα

8. Diskretni LTI sistemi

8. Diskretni LTI sistemi 8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z

Διαβάστε περισσότερα

Funkcije več spremenljivk

Funkcije več spremenljivk DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije

Διαβάστε περισσότερα

OSNOVE HIDROSTATIKE. - vede, ki preučuje mirujoče tekočine

OSNOVE HIDROSTATIKE. - vede, ki preučuje mirujoče tekočine OSNOVE HIDROSTATIKE - vede, ki preučuje mirujoče tekočine HIDROSTATIKA Značilnost, da je sila na katero koli točko v tekočini enaka iz vseh smeri. Če ta pogoj o ravnovesju sil ne velja, se tekočina premakne

Διαβάστε περισσότερα

3.1 Površinska napetost

3.1 Površinska napetost 3 Tekočine Lastnosti tekočin so za fiziologijo pomembne, saj kar približno 70 % človeškega telesa sestavlja najpomembnejša tekočina voda. Osnovna lastnost tekočin je, da ohranjajo prostornino, ne pa tudi

Διαβάστε περισσότερα

13. Jacobijeva metoda za računanje singularnega razcepa

13. Jacobijeva metoda za računanje singularnega razcepa 13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva

Διαβάστε περισσότερα

Osnove elektrotehnike uvod

Osnove elektrotehnike uvod Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.

Διαβάστε περισσότερα

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

MATEMATIČNI IZRAZI V MAFIRA WIKIJU

MATEMATIČNI IZRAZI V MAFIRA WIKIJU I FAKULTETA ZA MATEMATIKO IN FIZIKO Jadranska cesta 19 1000 Ljubljan Ljubljana, 25. marec 2011 MATEMATIČNI IZRAZI V MAFIRA WIKIJU KOMUNICIRANJE V MATEMATIKI Darja Celcer II KAZALO: 1 VSTAVLJANJE MATEMATIČNIH

Διαβάστε περισσότερα

POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL

POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL Izdba aje: Ljubjana, 11. 1. 007, 10.00 Jan OMAHNE, 1.M Namen: 1.Preeri paraeogramsko praio za doočanje rezutante nezporedni si s skupnim prijemaiščem (grafično)..dooči

Διαβάστε περισσότερα

diferencialne enačbe - nadaljevanje

diferencialne enačbe - nadaljevanje 12. vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 diferencialne enačbe - nadaljevanje Ortogonalne trajektorije Dana je 1-parametrična družina krivulj F(x, y, C) = 0. Ortogonalne

Διαβάστε περισσότερα

Kvantni delec na potencialnem skoku

Kvantni delec na potencialnem skoku Kvantni delec na potencialnem skoku Delec, ki se giblje premo enakomerno, pride na mejo, kjer potencial naraste s potenciala 0 na potencial. Takšno potencialno funkcijo zapišemo kot 0, 0 0,0. Slika 1:

Διαβάστε περισσότερα

Poglavja: Navor (5. poglavje), Tlak (6. poglavje), Vrtilna količina (10. poglavje), Gibanje tekočin (12. poglavje)

Poglavja: Navor (5. poglavje), Tlak (6. poglavje), Vrtilna količina (10. poglavje), Gibanje tekočin (12. poglavje) Poglavja: Navor (5. poglavje), Tlak (6. poglavje), Vrtilna količina (10. poglavje), Gibanje tekočin (12. poglavje) V./4. Deska, ki je dolga 4 m, je podprta na sredi. Na koncu deske stoji mož s težo 700

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,

Διαβάστε περισσότερα

Jan Kogoj. . Ko vstavimo podano odvisnost pospeška od hitrosti, moramo najprej ločiti spremenljivke - na eno stran denemo v, na drugo pa v(t)

Jan Kogoj. . Ko vstavimo podano odvisnost pospeška od hitrosti, moramo najprej ločiti spremenljivke - na eno stran denemo v, na drugo pa v(t) Naloge - Živilstvo 2013-2014 Jan Kogoj 18. 4. 2014 1. Plavamo čez 5 m široko reko, ki teče s hitrostjo 2 m/s. Hitrost našega plavanja je 1 m/s. (a) Pod katerim kotom glede na tok reke moramo plavati, da

Διαβάστε περισσότερα

Naloge iz vaj: Sistem togih teles C 2 C 1 F A 1 B 1. Slika 1: Sile na levi in desni lok.

Naloge iz vaj: Sistem togih teles C 2 C 1 F A 1 B 1. Slika 1: Sile na levi in desni lok. 1 Rešene naloge Naloge iz vaj: Sistem togih teles 1. Tročleni lok s polmerom R sestavljen iz lokov in je obremenjen tako kot kaže skica. Določi sile podpor. Rešitev: Lok razdelimo na dva loka, glej skico.

Διαβάστε περισσότερα

Vaja: Odbojnostni senzor z optičnimi vlakni. Namen vaje

Vaja: Odbojnostni senzor z optičnimi vlakni. Namen vaje Namen vaje Spoznavanje osnovnih fiber-optičnih in optomehanskih komponent Spoznavanje načela delovanja in praktične uporabe odbojnostnega senzorja z optičnimi vlakni, Delo z merilnimi instrumenti (signal-generator,

Διαβάστε περισσότερα

p 1 ENTROPIJSKI ZAKON

p 1 ENTROPIJSKI ZAKON ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:

Διαβάστε περισσότερα

Tokovi v naravoslovju za 6. razred

Tokovi v naravoslovju za 6. razred Tokovi v naravoslovju za 6. razred Bojan Golli in Nada Razpet PeF Ljubljana 7. december 2007 Kazalo 1 Fizikalne osnove 2 1.1 Energija in informacija............................... 3 2 Projekti iz fizike

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba.

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. 1. Osnovni pojmi Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. Primer 1.1: Diferencialne enačbe so izrazi: y

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA Državni izpitni center *M543* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Petek,. junij 05 SPLOŠNA MATURA RIC 05 M543 M543 3 IZPITNA POLA Naloga Odgovor Naloga Odgovor Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu. Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.

Διαβάστε περισσότερα

PROCESIRANJE SIGNALOV

PROCESIRANJE SIGNALOV Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:

Διαβάστε περισσότερα

Tabele termodinamskih lastnosti vode in vodne pare

Tabele termodinamskih lastnosti vode in vodne pare Univerza v Ljubljani Fakulteta za strojništvo Laboratorij za termoenergetiko Tabele termodinamskih lastnosti vode in vodne pare po modelu IAPWS IF-97 izračunano z XSteam Excel v2.6 Magnus Holmgren, xsteam.sourceforge.net

Διαβάστε περισσότερα

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12 Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola

Διαβάστε περισσότερα

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:

Διαβάστε περισσότερα

VEKTORJI. Operacije z vektorji

VEKTORJI. Operacije z vektorji VEKTORJI Vektorji so matematični objekti, s katerimi opisujemo določene fizikalne količine. V tisku jih označujemo s krepko natisnjenimi črkami (npr. a), pri pisanju pa s puščico ( a). Fizikalne količine,

Διαβάστε περισσότερα

Reševanje sistema linearnih

Reševanje sistema linearnih Poglavje III Reševanje sistema linearnih enačb V tem kratkem poglavju bomo obravnavali zelo uporabno in zato pomembno temo linearne algebre eševanje sistemov linearnih enačb. Spoznali bomo Gaussovo (natančneje

Διαβάστε περισσότερα

FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22. junij Navodila

FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22. junij Navodila FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22 junij 212 Ime in priimek: Vpisna št: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Veljale bodo samo rešitve na papirju, kjer

Διαβάστε περισσότερα

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013 Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:

Διαβάστε περισσότερα

Analiza 2 Rešitve 14. sklopa nalog

Analiza 2 Rešitve 14. sklopa nalog Analiza Rešitve 1 sklopa nalog Navadne diferencialne enačbe višjih redov in sistemi diferencialnih enačb (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) 6 + 8 0, (b)

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

Osnove matematične analize 2016/17

Osnove matematične analize 2016/17 Osnove matematične analize 216/17 Neža Mramor Kosta Fakulteta za računalništvo in informatiko Univerza v Ljubljani Kaj je funkcija? Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja

Διαβάστε περισσότερα

Vaje: Električni tokovi

Vaje: Električni tokovi Barbara Rovšek, Bojan Golli, Ana Gostinčar Blagotinšek Vaje: Električni tokovi 1 Merjenje toka in napetosti Naloga: Izmerite tok, ki teče skozi žarnico, ter napetost na žarnici Za izvedbo vaje potrebujete

Διαβάστε περισσότερα

Splošno o interpolaciji

Splošno o interpolaciji Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo

Διαβάστε περισσότερα

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva

Διαβάστε περισσότερα

Univerza v Ljubljani Fakulteta za računalništvo in informatiko MATEMATIKA. Polona Oblak

Univerza v Ljubljani Fakulteta za računalništvo in informatiko MATEMATIKA. Polona Oblak Univerza v Ljubljani Fakulteta za računalništvo in informatiko MATEMATIKA Polona Oblak Ljubljana, 04 CIP - Kataložni zapis o publikaciji Narodna in univerzitetna knjižnica, Ljubljana 5(075.8)(0.034.) OBLAK,

Διαβάστε περισσότερα

Navadne diferencialne enačbe

Navadne diferencialne enačbe Navadne diferencialne enačbe Navadne diferencialne enačbe prvega reda V celotnem poglavju bo y = dy dx. Diferencialne enačbe z ločljivima spremeljivkama Diferencialna enačba z ločljivima spremeljivkama

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

13. poglavje: Energija

13. poglavje: Energija 13. poglavje: Energija 1. (Naloga 3) Koliko kilovatna je peč za hišno centralno kurjavo, ki daje 126 MJ toplote na uro? Podatki: Q = 126 MJ, t = 3600 s; P =? Če peč z močjo P enakomerno oddaja toploto,

Διαβάστε περισσότερα

SEMINARSKA NALOGA Funkciji sin(x) in cos(x)

SEMINARSKA NALOGA Funkciji sin(x) in cos(x) FAKULTETA ZA MATEMATIKO IN FIZIKO Praktična Matematika-VSŠ(BO) Komuniciranje v matematiki SEMINARSKA NALOGA Funkciji sin(x) in cos(x) Avtorica: Špela Marinčič Ljubljana, maj 2011 KAZALO: 1.Uvod...1 2.

Διαβάστε περισσότερα

ENERGETSKI STROJI. Energetski stroji. UNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo

ENERGETSKI STROJI. Energetski stroji. UNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo ENERGETSKI STROJI Uvod Pregled teoretičnih osnov Hidrostatika Dinamika tekočin Termodinamika Podobnostni zakoni Volumetrični stroji Turbinski stroji Energetske naprave Podobnostni zakoni Kriteriji podobnosti

Διαβάστε περισσότερα

Izpeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega

Izpeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega Izeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega 1. Najosnovnejše o konveksnih funkcijah Definicija. Naj bo X vektorski rostor in D X konveksna množica. Funkcija ϕ: D R je konveksna,

Διαβάστε περισσότερα

MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9

MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9 .cwww.grgor nik ol i c NVERZA V MARBOR FAKTETA ZA EEKTROTEHNKO, RAČNANŠTVO N NFORMATKO 2000 Maribor, Smtanova ul. 17 Študij. lto: 2011/2012 Skupina: 9 MERTVE ABORATORJSKE VAJE Vaja št.: 4.1 Določanj induktivnosti

Διαβάστε περισσότερα

1 Fibonaccijeva stevila

1 Fibonaccijeva stevila 1 Fibonaccijeva stevila Fibonaccijevo število F n, kjer je n N, lahko definiramo kot število načinov zapisa števila n kot vsoto sumandov, enakih 1 ali Na primer, število 4 lahko zapišemo v obliki naslednjih

Διαβάστε περισσότερα

ENOTE IN MERJENJA. Izpeljana enota je na primer enota za silo, newton (N), ki je z osnovnimi enotami podana kot: 1 N = 1kgms -2.

ENOTE IN MERJENJA. Izpeljana enota je na primer enota za silo, newton (N), ki je z osnovnimi enotami podana kot: 1 N = 1kgms -2. ENOTE IN MERJENJA Fizika temelji na merjenjih Vsa važnejša fizikalna dognanja in zakoni temeljijo na ustreznem razumevanju in interpretaciji meritev Tudi vsako novo dognanje je treba preveriti z meritvami

Διαβάστε περισσότερα

8. Posplošeni problem lastnih vrednosti

8. Posplošeni problem lastnih vrednosti 8. Posplošeni problem lastnih vrednosti Bor Plestenjak NLA 13. april 2010 Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april 2010 1 / 15 Matrični šop Dani sta kvadratni n n matriki

Διαβάστε περισσότερα

Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti

Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti Poglavje XI Kvadratne forme V zadnjem poglavju si bomo ogledali še eno vrsto preslikav, ki jih tudi lahko podamo z matrikami. To so tako imenovane kvadratne forme, ki niso več linearne preslikave. Kvadratne

Διαβάστε περισσότερα

VAJE IZ NIHANJA. 3. Pospešek nihala na vijačno vzmet je: a. stalen, b. največji v skrajni legi, c. največji v ravnovesni legi, d. nič.

VAJE IZ NIHANJA. 3. Pospešek nihala na vijačno vzmet je: a. stalen, b. največji v skrajni legi, c. največji v ravnovesni legi, d. nič. VAJE IZ NIHANJA Izberi pravilen odgovor in fizikalno smiselno utemelji svojo odločitev. I. OPIS NIHANJA 1. Slika kaže nitno nihalo v ravnovesni legi in skrajnih legah. Amplituda je razdalja: a. Od 1 do

Διαβάστε περισσότερα

Navadne diferencialne enačbe

Navadne diferencialne enačbe Poglavje 6 Navadne diferencialne enačbe 6.1 Uvod Splošna rešitev navadne diferencialne enačbe n-tega reda F(x, y, y, y,..., y (n) ) = 0 je n-parametrična družina funkcij. Kadar želimo iz splošne rešitve

Διαβάστε περισσότερα

Univerza v Ljubljani Fakulteta za matematiko in fiziko Oddelek za fiziko

Univerza v Ljubljani Fakulteta za matematiko in fiziko Oddelek za fiziko Univerza v Ljubljani Fakulteta za matematiko in fiziko Oddelek za fiziko Seminar HIDRODINAMIKA OBALNIH VALOV Mateja Erjavec Mentor: prof. dr. Rudolf Podgornik Februar 2010 Povzetek V začetnem delu seminarja

Διαβάστε περισσότερα

Univerza v Novi Gorici Fakulteta za znanosti o okolju Okolje (I. stopnja) Meteorologija 2013/2014. Energijska bilanca pregled

Univerza v Novi Gorici Fakulteta za znanosti o okolju Okolje (I. stopnja) Meteorologija 2013/2014. Energijska bilanca pregled Univerza v Novi Gorici Fakulteta za znanosti o okolu Okole (I. stopna) Meteorologia 013/014 Energiska bilanca pregled 1 Osnovni pomi energiski tok: P [W = J/s] gostota energiskega toka: [W/m ] toplota:q

Διαβάστε περισσότερα

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta Matematika Gabrijel Tomšič Bojan Orel Neža Mramor Kosta 6. november 200 Poglavje 2 Zaporedja in številske vrste 2. Zaporedja 2.. Uvod Definicija 2... Zaporedje (a n ) = a, a 2,..., a n,... je predpis,

Διαβάστε περισσότερα

Laboratorijske vaje pri predmetu Mehanika, termodinamika in elektromagnetno polje pri poučevanju za doizobraževanje tretjega premeta

Laboratorijske vaje pri predmetu Mehanika, termodinamika in elektromagnetno polje pri poučevanju za doizobraževanje tretjega premeta Laboratorijske vaje pri predmetu Mehanika, termodinamika in elektromagnetno polje pri poučevanju za doizobraževanje tretjega premeta B Golli, A Kregar, PeF 1 marec 2012 Kazalo 1 Napake izmerjenih količin

Διαβάστε περισσότερα

11. Vaja: BODEJEV DIAGRAM

11. Vaja: BODEJEV DIAGRAM . Vaja: BODEJEV DIAGRAM. Bodejev diagram sestavljata dva grafa: a) amplitudno frekvenčni diagram in b) fazno frekvenčni diagram Decibel je enota za razmerje dveh veličin. Definicija: B B 0log0 A A db Bodejeve

Διαβάστε περισσότερα

1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου...

1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... ΑΠΟΖΗΜΙΩΣΗ ΘΥΜΑΤΩΝ ΕΓΚΛΗΜΑΤΙΚΩΝ ΠΡΑΞΕΩΝ ΣΛΟΒΕΝΙΑ 1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... 3 1 1. Έντυπα αιτήσεων

Διαβάστε περισσότερα

v = x t = x i+1 x i t i+1 t i v(t i ) = x t = x i+1 x i 1 t i+1 t i 1 Pospešek je definiran kot

v = x t = x i+1 x i t i+1 t i v(t i ) = x t = x i+1 x i 1 t i+1 t i 1 Pospešek je definiran kot 1 Kinematika 11 Premo gibanje Merjenje hitrosti Merimo lego telesa x kot funkcijo časa t Hitrost telesa je definirana kot odvod lege po času v(t) = dx(t) (1) dt Ker merimo lege le ob določenih časih, t

Διαβάστε περισσότερα

Osnove sklepne statistike

Osnove sklepne statistike Univerza v Ljubljani Fakulteta za farmacijo Osnove sklepne statistike doc. dr. Mitja Kos, mag. farm. Katedra za socialno farmacijo e-pošta: mitja.kos@ffa.uni-lj.si Intervalna ocena oz. interval zaupanja

Διαβάστε περισσότερα

Univerza v Ljubljani Fakulteta za matematiko in fiziko Oddelek za fiziko

Univerza v Ljubljani Fakulteta za matematiko in fiziko Oddelek za fiziko Univerza v Ljubljani Fakulteta za matematiko in fiziko Oddelek za fiziko Seminar HIDRODINAMIKA OBALNIH VALOV Mateja Erjavec Mentor: prof. dr. Rudolf Podgornik Februar 2010 Povzetek V začetnem delu seminarja

Διαβάστε περισσότερα

Pisni izpit iz Mehanike in termodinamike (UNI), 9. februar 07. Izpeljite izraz za kinetično energijo polnega homogenega valja z maso m, ki se brez podrsavanja kotali po klancu navzdol v trenutku, ko ima

Διαβάστε περισσότερα

primer reševanja volumskega mehanskega problema z MKE

primer reševanja volumskega mehanskega problema z MKE Reševanje mehanskih problemov z MKE primer reševanja volumskega mehanskega problema z MKE p p RAK: P-XII//74 Reševanje mehanskih problemov z MKE primer reševanja volumskega mehanskega problema z MKE L

Διαβάστε περισσότερα

Kotni funkciji sinus in kosinus

Kotni funkciji sinus in kosinus Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje

Διαβάστε περισσότερα

IZRAČUN MEHANSKIH LASTNOSTI IN DEFORMACIJ ENOSTRANSKO IN DVOSTRANSKO VPETEGA NOSILCA

IZRAČUN MEHANSKIH LASTNOSTI IN DEFORMACIJ ENOSTRANSKO IN DVOSTRANSKO VPETEGA NOSILCA Univerza v Ljubljani Fakulteta za elektrotehniko IZRAČUN MEHANSKIH LASTNOSTI IN DEFORMACIJ ENOSTRANSKO IN DVOSTRANSKO VPETEGA NOSILCA Seminarska naloga pri predmetu Razdelilna in industrijska omrežja Maks

Διαβάστε περισσότερα

Fizikalne osnove. Uvod. 1. Fizikalne količine Fizikalne spremenljivke, enote, merjenje Zapis količin, natančnost

Fizikalne osnove. Uvod. 1. Fizikalne količine Fizikalne spremenljivke, enote, merjenje Zapis količin, natančnost Fizikalne osnove Uvod V prvih dveh poglavjih ponovimo nekaj osnovnih fizikalnih pojmov, ki jih bomo kasneje srečevali pri obravnavi tako snovnih kot električnih in toplotnih tokov. V prvem poglavju obravnavamo

Διαβάστε περισσότερα

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1 Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije

Διαβάστε περισσότερα

386 4 Virtualni pomiki in virtualne sile. A 2 x E 2 = 0. (4.99)

386 4 Virtualni pomiki in virtualne sile. A 2 x E 2 = 0. (4.99) 386 4 Virtualni pomiki in virtualne sile oziroma Ker je virtualna sila δf L poljubna, je enačba 4.99) izpolnjena le, če je δf L u L F ) L A x E =. 4.99) u L = F L A x E. Iz prikazanega primera sledi, da

Διαβάστε περισσότερα

UVOD V ENERGIJSKE METODE V MEHANIKI KONSTRUKCIJ

UVOD V ENERGIJSKE METODE V MEHANIKI KONSTRUKCIJ 1. UVOD V ENERGIJSKE METODE V MEHANIKI KONSTRUKCIJ Vosnovnemtečaju mehanike trdnih teles smo izpeljali sistem petnajstih osnovnih enačb, s katerimi lahko načeloma določimo napetosti, deformacije in pomike

Διαβάστε περισσότερα

4. HIDROMEHANIKA trdno, kapljevinsko in plinsko tekočine Hidrostatika Tlak v mirujočih tekočinah - pascal

4. HIDROMEHANIKA trdno, kapljevinsko in plinsko tekočine Hidrostatika Tlak v mirujočih tekočinah - pascal 4. HIDROMEHANIKA V grobem ločimo tri glana agregatna stanja snoi: trdno, kapljeinsko in plinsko. V trdni snoi so atomi blizu drug drugemu in trdno poezani med seboj ter ne spreminjajo sojega relatinega

Διαβάστε περισσότερα

Domača naloga 6: dušeno nihanje

Domača naloga 6: dušeno nihanje Domača naloga 6: dušeno nihanje Vaje iz predmeta Numerične metode v fiziki Igor Grešovnik Kazalo: 1 Naloga 6a Nihanje... 1.1 Enačbe nihanja... 1. Numerično reševanje problema... 3 1..1 Reševanje sistema

Διαβάστε περισσότερα

Matematika. Funkcije in enačbe

Matematika. Funkcije in enačbe Matematika Funkcije in enačbe (1) Nariši grafe naslednjih funkcij: (a) f() = 1, (b) f() = 3, (c) f() = 3. Rešitev: (a) Linearna funkcija f() = 1 ima začetno vrednost f(0) = 1 in ničlo = 1/. Definirana

Διαβάστε περισσότερα

Matematika vaja. Matematika FE, Ljubljana, Slovenija Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija

Matematika vaja. Matematika FE, Ljubljana, Slovenija Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija Matematika 1 3. vaja B. Jurčič Zlobec 1 1 Univerza v Ljubljani, Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija Matematika FE, Ljubljana, Slovenija 2011 Določi stekališča zaporedja a

Διαβάστε περισσότερα