VJEŽBA 6: ODREĐIVANJE OGRJEVNE MOĆI PLINOVITIH GORIVA

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "VJEŽBA 6: ODREĐIVANJE OGRJEVNE MOĆI PLINOVITIH GORIVA"

Transcript

1 VJEŽBA 6: ODREĐIVANJE OGRJEVNE MOĆI PLINOVITI GORIVA 16. PLINOVITA GORIVA Najčešća plinovita goriva koja se danas koriste su: ukapljeni naftni plin (LPG, kratica od Liquefied Petroleum Gas) je naftni plin, smjesa plinovitih parafinskih (propan, butan, izobutan) i olefinskih ugljikovodika (propilen, butilen, izobutilen). Ovi plinovi su kod atmosferskog tlaka i temperature okoline od ºC plinoviti, ali kod okolišnje temperature i srazmjerno niskih tlakova ( - 8 bar) mogu se ukapljiti. Za ukapljeni naftni plin u primjeni se najčešće koriste smjese propana i butana. Tekućim plinovima smatraju se ugljikovodici kojima je kritična temperatura niža od 5 C ili im je pri 5 C tlak para viši od bara ( kpa). Kritična točka (LPG) je na +96,8 C pri tlaku od 4, bara. Tekuće stanje LPG postiže se tlačenjem plina na temperaturi okoline u granicama 1,7 bara za butan i 7,5 bara za propan, odnosno do tlaka ovisnog omjeru tih plinova u smjesi. Ukapljivanje se može postići i hlađenjem plina ispod temperature ukapljivanja na atmosferskom tlaku, a u pojedinim slučajevima mogu se upotrebljavati i kombinacije obiju metoda. Pri normnom je stanju LPG plinovit i teži je od zraka. Proizvodi se tijekom prerade sirovoga prirodnog plina i prerade nafte. Bez boje je i mirisa pa mu se zbog toga dodaje miris kako bi se lakše otkrio u slučaju propuštanja. Budući da je gušći od zraka, pri propuštanju se skuplja na dnu prostorija. Područje eksplozivnosti u smjesi sa zrakom je od % do 1% koncentracije u zraku. Ukapljeni prirodni plin (LNG, kratica od Liquefied Natural Gas): je prirodni plin vrlo različitog sastava ovisno o porijeklu i području iz kojeg se nalazi, čiji je osnovni sastojak najčešće metan i homolozi. Uobičajeno se transportira u prirodnom, tj. plinovitom agregatnome stanju sustavom plinovoda, ili u ukapljenom stanju LNG specijalnim brodovima. Ukapljuje se hlađenjem na oko -16 C, čime se njegov obujam smanjuje za približno 58 puta, što omogućuje ekonomičan prijevoz brodovima, ali istodobno nameće visoke zahtjeve u pogledu vrste materijala od kojega se izrađuju spremnici za plin na brodu i obalni uređaji. Kritična točka je na temperaturi -8 C i pri tlaku od 47, bara. Područje eksplozivnosti je 5% do 15% koncentracije u zraku. Miješani plin, dobiva se miješanjem UNP-a i zraka u volumnom omjeru 45 : 55 % Područje eksplozivnosti je 5% do 5% koncentracije u zraku. Ima Wobbeov indeks kao i prirodni plin, pa se koristi u instalacijama kod kojih je planiran budući prelazak na prirodni plin. Gradski plin satoji se od sljedećih plinova: ( 5%, CO 16%, C n m+ 1%, C n m %, O 1%, CO + N 19% (označeni su volumni udjeli). Osnovne tehničke karakteristike plinovitih goriva, pored ogrjevne moći, su sljedeće: 1

2 - mala gustoća u odnosu na ostala goriva, - u smjesi sa zrakom u određenim koncintracijama su eksplozivna, - toksičnost, - lagano izgaraju uz mali pretičak uzduha, λ 1,1-1,5, nije potrebna posebna priprema goriva, nemaju krutog balasta (pepela i čađe), ne postoji opasnost od visoko ili nisko temperaturne korozije materijala ložišta u kojem izgaraju. U tablici 16.1 dan je detaljan prikaz podjele plinovitih goriva. 11

3 VRSTA Plinovi iz krutih goriva NAČIN PROIZVODNJE Isplinjavanjem Rasplinavanje NAZIV PODVRSTA d [MJ/m ] SIROVINA Destilacijski plinovi Plinovi od tinjanja Mršavi plinovi Vodeni plinovi PROSJEČNI KEMIJSKI SASTAV % NAPOMENA (način dobivanja plina) C 4 C n m CO CO N Koksni plin Kameni ugljen ,8-5, Rasvjetni plin Kameni ugljen Destilacijski plin Briketi mrkog ugljena 16 mrkog ugljena 16,-5, Destilacijski plin Treset treseta Od kamenog ugljena Kameni ugljen ,-,5 Od mrkog ugljena Mrki ugljen Od drveta Drvo ,-,8 Od treseta Treset Plinovi koji nastaju grijanjem goriva na 8-1º C Plinovi koji se nazivaju primarni plinovi Grotleni plin,-,8 Koks dobiva se iz visokih peći Generatorski plin,5-7,5 Koks Antracit Drvo (bukva) Mrki ugljen Drveni ugljen Treset Mondov plin,5-7,5 Kameni ugljen Vodeni plin 1,5-1, Koks Karburirani Vodeni plin, Antracit+benzen ili benzin Dvoplin 1,5-14,5 Bituminoizni ugljen Nastaje rasplinjavanjem goriva sa zrakom ili sa zrakom i vodenom parom Nastaje u u generatorskom pogonu kod dodavanja viška vodene pare Nastaje iz vodene pare i visoko ugrijanog goriva Nastaje obogaćivanjem vodenog plina s parama Proizvodi se kao vodeni plin uz istodobno dobivanje destilacijskih plinova Plinovi iz tekućih sirovina Isparivanje Termičko rastvaranje ladno zasićeni plinovi Plinovi od krekiranja Benzinski plin Benzenski plin Uljni plin, rafinerijski plin 8,-1,5 5,-5,5 Benzin + zrak Benzen + zrak Nafta i naftni derivati, katrani Vrlo različitog sastava, uglavnom ugljikovodici i vodik Dobiva se zasićenjem zraka s parama benzola ili benzina Ovi plinovi nastaju termičkim razgrađivanjem tekućih goriva Prirodni plinovi Plinovi iz negorivih sirovina Dobivanjem iz unutrašnjosti zemlje Zemni/Prirodni plin,močvarni i barski plin 9,-7,5 - Vrlo različitog sasatava, uglavnom metan i homolozi Rastvaranjem karbida Karb. plin 54,4 Kalcijev karbid Nezasićeni ugljikovodik... Vodik Vodik 1, Voda

4 16.1 Izgaranje plinovitih goriva Sastav plinovitog goriva prije procesa izgaranja: CO + + C 4 + Cx y + O + N + CO 1 (16.1) Minimalna potrebna količina kisika za izgaranje: 1 y Omin ( CO + ) + C 4 + C 4 + x + Cx y O 4 (16.) Minimalna potrebna količina zraka za izgaranje: Stvarna potrebna količina zraka za izgaranje: 16. Ogrjevna moć plinovitih goriva Omin L min (16.),1 L λl min (16.4) Ogrjevna moć goriva je količina topline koja se oslobađa pri potpunom izgaranju jedinice količine goriva kada se dimni plinovi ohlade na temperaturu s kojom su gorivo i zrak dovedeni u ložište. Određivanje ogrjevne moći može se provesti: - analitički za goriva s točno poznatim kemijskim sastavom prema izrazima (16.5) ili - laboratorijski (kalorimetrijskom bombom, kalorimetrom) - za goriva s nepoznatim kemijskim sastavom. Analitički izraz za određivanje gornje ogrjevne moći plinovitih goriva s poznatim sastavom smjese i poznatim ogrjevnim moćima sudionika u smjesi: r + r + r ( r ) (16.5) g 1 g1 g g i gi gdje je: r i - molni udjeli pojedinih plinova sudionika, gi - gornje ogrijevne moći pojedinih plinova sudionika u kj/m n Analitički izraz za određivanje donje ogrjevne moći goriva poznatog kemijskog sastava: o d 9c h + 15s - 5 [kj/kg] (16.6) 8 gdje su: c, h, o, s i maseni udjeli ugljika, vodika, kisika, sumpora i vode dobiveni elementarnom analizom goriva. 1

5 17. LABORATORIJSKA VJEŽBA IZ ODREĐIVANJA OGRJEVNE MOĆI PLINOVITI GORIVA Cilj laboratorijske vježbe je određivanje ogrjevne moći plinovitog goriva nepoznatog kemijskog sastava Tok laboratorijske vježbe i mjerni instrumenti Pri izvođenju laboratorijske vježbe koristi se Junkersov kalorimetar opremljen termometrima za očitanja ulazne i izlazne temperature rashladne vode i temperature dimnih plinova, regulatorom protoka rashladne vode, plinskim plamenikom kako je prikazano na slici (17.1), koristi se barometar za utvrđivanje tlaka okolnog zraka, manometar za mjerenje pretlaka plina, volumetrijsko mjerilo protoka plina kojim se mjeri količina izgorenog plina i menzure kojima se mjeri ukupna masa rashladne vode koja tijekom mjerenja proteče kroz kalorimetar, koristi se i mala menzura za određivanje količine kondenzata iz plinova izgaranja. Sl Junkersov kalorimetar - shematski prikaz 14

6 Sva toplina koja nastaje izgaranjem plina prenosi se u Junkersovom kalorimetru na rashladnu vodu, a voda u plinovima izgaranja kondenzira. Toplina predana rashladnoj vodi određuje se tako da se mjere ulazne i izlazne temperature rashladne vode za svakih l plina koji izgori na plameniku. Izračunava se srednja razlika temperatura rashladne vode na ulazu i izlazu iz kalorimetra, a zatim se množi sa specifičnim toplinskim kapacitetom vode i masom vode. 17. Proračun ogrjevne moći Proračun donje i gornje ogrjevne moći na osnovu izmjerenih veličina izvodi se prema izrazima (17.1) do (17.5) kako je prikazano u nastavku. Bilanca topline je: odakle slijedi gornja ogrjevna moć plinovitog goriva: V WΔϑ, (17.1) g g WΔϑ (17.) V gdje je: W G c V ρ c (17.) V - količina vode koja u mjernom periodu proteče kroz kalorimetar [m ] ρ - gustoća vode za srednju temperaturu vode [kg/m ] - iz tablica c - specifični toplinski kapacitet vode [kj/kgk] Δϑ - razlika temperatura rashladne vode izmjerenih na izlazu i ulazu u kalorimetar V - volumen plina koji izgara sveden na normno stanje [m n ] Dijeljenjem jednadžbe stanja za normno stanje (17.4) s jednadžbom stanja za stanje plina kod mjerenja (17.5) dobiva se izraz (17.6) za određivanje V : p (17.4) V GRT pv GRT (17.5) gdje je: T p V V (17.6) Tp V- izmjereni volumen plina koji izgara [m ] p - tlak normnog stanja [Pa] (p 11 Pa) T - temperatura normnog stanja [K] (T 7,15 K) T- temperatura plina [K] 15

7 p- tlak plina [Pa] p p b + Δp Δs (17.7) p b - barometarski tlak [Pa] Δp- pretlak plina izmjen manometrom [Pa] Δs- tlak zasićenja vodene pare za temperaturu plina T [Pa] -očitan iz parnih tablica Donja ogrjevna moć plinovitog goriva: gdje je: d M k g r (17.8) V M k - masa kondenzirane vodene pare nakon ohlađivanja plinova izgaranja [kg] k k m V ρ (17.9) k V k - volumen kondenzirane vode [m ] izmjeren menzurom ρ k - gustoća kondenzirane vode za srednju temperaturu vode [kg/m ] - iz tablica r- toplina isparivanja vode [kj/kg] (r 5 kj/kg) Srednja temperatura rashladne vode na ulazu u kalorimetar: Srednja temperatura rashladne vode na izlazu iz kalorimetra: Razlika temperatura vode na izlazu i ulazu u kalorimetar: Srednja temperatura vode: Srednja vrijednost gornje ogrjevne moći (iz tri mjerenja): ϑul ϑ ul (17.1) 1 ϑizl ϑ izl (17.11) 1 Δ ϑ ϑ izl ϑ ul (17.1) ϑ ul + ϑ ϑ izl sr (17.1) g1 + g + g g (17.14) 16

8 Srednja vrijednost donje ogrjevne moći (tri mjerenja): d1 + d + d d (17.15) 17. Primjer rezultata mjerenja Provode se tri mjerenja. U svakom mjerenju izgara l propan-butan plina iz boce. Protok plina koji izgara mjeri se mjerilom protoka plina. U svakom mjerenju provodi se 1 očitanja za svakih, l izgorenog plina. Mjeri se ulazna i izlazna temperatura rashladne vode. Količina rashladne vode koja proteče mjeri se menzurom. Količina nastalog kondenzata mjeri se tijekom sva tri mjerenja malom menzurom, pa se na kraju svakom mjerenju pripisuje jedna trećina ukupne mase kondenzata vode iz plinova izgaranja. Mjerilo protoka plina Termometri Kalorimetar Plinska boca Menzure za kondenzat Sl. 17. Junkersov kalorimetar 17

9 Za svako mjerenje izračunava se gornja i donja ogrjevna moć. Prosječna gornja i donja ogrijevna moć plinovitog goriva određuje se kao aritmetička sredine gornje i donje ogrjevne moći izračunate za pojedina mjerenja. Zajednički podaci za sve tri faze mjerenja: - temperatura normnog stanja T 7,15 K - tlak normnog stanja p 115 Pa - volumen izgorenog plina V, m - barometarski tlak p b 756 mm g - pretlak plina izmjeren U-cijevnim manometrom Δp 5 mm O Tab Rezultati i obrada 1. mjerenja: V [l] t ul [ o C] t izl [ o C] 1 14, 5, 14, 5, 14, 5, 4 14, 5, 5 14, 5, 6 14, 5, 7 14, 5, 8 14, 5, 9 14, 5,1 1 14, 5,1 ϑ izl ϑ ul ϑ ul 14 ϑ izl 5, Temperatura plina ϑ, C Volumen rashladne vode koja je protekla kroz kalorimetar V 4 ml Δϑ ϑ izl ϑ ϑ ϑ ul + ϑ ul 5,19 14, 11,19 14, + 5,19 izl sr o C 19,595 o C Za srednju temperaturu vode 19,595 o C i tlak 1 bar pomoću softvera REFPROP određuje se gustoća vode ρ 998, 9 kg/m i c 4, 184kJ/kgK. 4, 998,9 4,184 W G c Vρc 17,544 kj/k 1 p pb + Δp Δs 756 1,6 9,81+ 5,9989 9,81 81, 186, ,1 68, ,1 18

10 T p 7, ,1 V V,,194 m n Tp 9,5 115 WΔϑ 17,544 11,19 V,194 g kj/m n Tab Rezultati. mjerenja: V [l] t ul [ o C] t izl [ o C] 1 14, 5,1 14, 5, 14, 5,1 4 14, 5,1 5 14, 5, 6 14, 5,1 7 14, 5, 8 14, 5,1 9 14, 5,1 1 14, 5,1 ϑ izl ϑ ul ϑ ul 14 ϑ izl 5,1 1 1 Temperatura plina ϑ, C Volumen rashladne vode koja je protekla kroz kalorimetar V 8 ml Δϑ ϑ izl ϑ ul 5,1 14, 11,1 o C ϑ ϑ ul + ϑ 14, + 5,1 izl sr 19,565 o C Za srednju temperaturu vode 19,565 o C i tlak 1 bar pomoću softvera REFPROP određuje se gustoća vode ρ 998, kg/m i c 4, 1844 kj/kgk.,8 998, 4,1844 W G c Vρc 15,957 kj/k 1 p pb + Δp Δs 756 1,6 9,81+ 5,9989 9,81 81, 186, ,1 68, ,1 T p 7, ,1 V V,,194 m n Tp 9,5 115 WΔϑ 15,957 11,1 V,194 g 9149 kj/m n 19

11 Tab Rezultati. mjerenja: V [l] t ul [ o C] t izl [ o C] 1 14, 5, 14, 5, 14, 5,1 4 14, 5,1 5 14, 5,1 6 14, 5,1 7 14, 5, 8 14, 5,1 9 14, 5,1 1 14, 5, ϑ izl ϑ ul ϑ ul 14 ϑ izl 5, Temperatura plina ϑ, C Volumen rashladne vode koja je protekla kroz kalorimetar V 4 ml Δϑ ϑ izl ϑ ul 5,14 14, 11,14 o C ϑ ϑ ul + ϑ 14, + 5,14 izl sr 19,57 o C Za srednju temperaturu vode 19,57 o C i tlak 1 bar pomoću softvera REFPROP određuje se gustoća vode ρ 998, 9 kg/m i c 4, 1844 kj/kgk. 4, 998,9 4,1844 W G c Vρc 17,6697 kj/k 1 p pb + Δp Δs 756 1,6 9,81+ 5,9989 9,81 81, 186, ,1 68, ,1 T p 7, ,1 V V,,194 m n Tp 9,5 115 WΔϑ 17, ,14 V,194 g 1144 kj/m n Na kraju sva tri mjerenja Volumen kondenzirane vode iz plinova izgaranja Vkuk 14, ml kuk 14 Vk V 4,667 ml 1

12 ' 6 mk Vk ρk 4, , Donje ogrjevne moći,4659 kg M k,4659 d1 g1 r kj/m n V,194 M k,4659 d g r kj/m n V,194 M k,4659 d g r kj/m n V,194 Odstupanje drugog mjerenja je veliko i trebalo bi ga ponoviti. 11

VJEŽBA 5: ODREĐIVANJE OGRJEVNE MOĆI KRUTIH GORIVA

VJEŽBA 5: ODREĐIVANJE OGRJEVNE MOĆI KRUTIH GORIVA VJEŽBA 5: ODREĐIVANJE OGRJEVNE MOĆI KRUTIH GORIVA 14. VRSTE GORIVA I IZGARANJE 14.1 Definicija i podjela goriva Gorivo je materija koja ima mogućnost oslobađanja energije kao posljedice promjene kemijske

Διαβάστε περισσότερα

ENERGETIKA. Studij: Kemijsko inženjerstvo (V semestar) prof. dr. sc. Igor Sutlović

ENERGETIKA. Studij: Kemijsko inženjerstvo (V semestar) prof. dr. sc. Igor Sutlović Fakultet kemijskog inženjerstva i tehnologije Zavod za termodinamiku, strojarstvo i energetiku ENERGETIKA Studij: Kemijsko inženjerstvo (V semestar) prof. dr. sc. Igor Sutlović Prirodni plin nije jedino

Διαβάστε περισσότερα

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE)

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) (Enegane) List: PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) Na mjestima gdje se istovremeno troši električna i toplinska energija, ekonomičan način opskrbe energijom

Διαβάστε περισσότερα

TOPLINSKA BILANCA, GUBICI, ISKORISTIVOST I POTROŠNJA GORIVA U GENERATORU PARE

TOPLINSKA BILANCA, GUBICI, ISKORISTIVOST I POTROŠNJA GORIVA U GENERATORU PARE (Generatori are) List: TOPLINSKA BILANCA, GUBICI, ISKORISTIVOST I POTROŠNJA GORIVA U GENERATORU PARE Generator are je energetski uređaj u kojemu se u sklou Clausius-Rankineova kružnog rocesa redaje tolina

Διαβάστε περισσότερα

Prof. dr. sc. Z. Prelec ENERGETSKA POSTROJENJA Poglavlje: 7 (Regenerativni zagrijači napojne vode) List: 1

Prof. dr. sc. Z. Prelec ENERGETSKA POSTROJENJA Poglavlje: 7 (Regenerativni zagrijači napojne vode) List: 1 (Regenerativni zagrijači napojne vode) List: 1 REGENERATIVNI ZAGRIJAČI NAPOJNE VODE Regenerativni zagrijači napojne vode imaju zadatak da pomoću pare iz oduzimanja turbine vrše predgrijavanje napojne vode

Διαβάστε περισσότερα

EMISIJA ŠTETNIH SASTOJAKA U ATMOSFERU IZ PROCESA IZGARANJA IZGARANJE - IZVOR EMISIJE

EMISIJA ŠTETNIH SASTOJAKA U ATMOSFERU IZ PROCESA IZGARANJA IZGARANJE - IZVOR EMISIJE Prof. dr. sc. Z. Prelec INŽENJERSTO ZAŠTITE OKOLIŠA Poglavlje: (Emisija u atmosferu) List: 1 EMISIJA ŠTETNIH SASTOJAKA U ATMOSFERU IZ PROCESA IZGARANJA IZGARANJE - IZOR EMISIJE Izgaranje - najveći uzrok

Διαβάστε περισσότερα

Fakultet kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu Seminar 06 Plinski zakoni dr. sc. Biserka Tkalčec dr. sc.

Fakultet kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu Seminar 06 Plinski zakoni dr. sc. Biserka Tkalčec dr. sc. Fakultet kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu Seminar 06 Plinski zakoni dr. sc. Biserka Tkalčec dr. sc. Lidija Furač Pri normalnim uvjetima tlaka i temperature : 11 elemenata su plinovi

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

GOSPODARENJE PLINOVIMA 1 DEFINICIJE, PODJELA I SVOJSTVA PLINOVA. Sveučilište u Zagrebu Rudarsko-geološko-naftni fakultet

GOSPODARENJE PLINOVIMA 1 DEFINICIJE, PODJELA I SVOJSTVA PLINOVA. Sveučilište u Zagrebu Rudarsko-geološko-naftni fakultet Sveučilište u Zagrebu Rudarsko-geološko-naftni fakultet GOSPODARENJE PLINOVIMA Predavanje: DEFINICIJE, PODJELA I SVOJSTVA PLINOVA Doc. dr. sc. Daria Karasalihović Sedlar Zagreb, 00. DEFINICIJE PLINOVI

Διαβάστε περισσότερα

Utjecaj izgaranja biomase na okoliš

Utjecaj izgaranja biomase na okoliš 7. ZAGREBAČKI ENERGETSKI TJEDAN 2016 Utjecaj izgaranja biomase na okoliš Ivan Horvat, mag. ing. mech. prof. dr. sc. Damir Dović, dipl. ing. stroj. Sadržaj Uvod Karakteristike biomase Uporaba Prednosti

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

ENERGETIKA. Studij: Kemijsko inženjerstvo (V semestar) prof. dr. sc. Igor Sutlović

ENERGETIKA. Studij: Kemijsko inženjerstvo (V semestar) prof. dr. sc. Igor Sutlović Fakultet keijskog inženjerstva i tehnologije Zavod za terodinaiku, strojarstvo i energetiku ENERGETIKA Studij: Keijsko inženjerstvo (V seestar) prof. dr. sc. Igor Sutlović Goriva se dijele na: kruta, tekuća

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

Vježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom

Vježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom Kolegij: Obrada industrijskih otpadnih voda Vježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom Zadatak: Ispitati učinkovitost procesa koagulacije/flokulacije na obezbojavanje

Διαβάστε περισσότερα

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste PREDNAPETI BETON Primjer nadvožnjaka preko autoceste 7. VJEŽBE PLAN ARMATURE PREDNAPETOG Dominik Skokandić, mag.ing.aedif. PLAN ARMATURE PREDNAPETOG 1. Rekapitulacija odabrane armature 2. Određivanje duljina

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Zg-St. USPOREDBA RAZLIČITIH ENERGENATA ZA POTREBE GRIJANJA OBITELJSKE KUĆE BRUTO POVRŠINE 150 m 2 NA LOKACIJAMA ZAGREB I SPLIT.

Zg-St. USPOREDBA RAZLIČITIH ENERGENATA ZA POTREBE GRIJANJA OBITELJSKE KUĆE BRUTO POVRŠINE 150 m 2 NA LOKACIJAMA ZAGREB I SPLIT. USPOREDBA RAZLIČITIH ENERGENATA ZA POTREBE GRIJANJA OBITELJSKE KUĆE BRUTO POVRŠINE 15 m 2 NA LOKACIJAMA ZAGREB I SPLIT TIPSKA MJERA U Hrvatskoj se grijanje obiteljskih kuća najčešće provodi korištenjem

Διαβάστε περισσότερα

Program testirati pomoću podataka iz sledeće tabele:

Program testirati pomoću podataka iz sledeće tabele: Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

ENERGETSKI SUSTAVI ZA PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE

ENERGETSKI SUSTAVI ZA PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE Prof. dr. sc. Zmagoslav Prelec List: ENERGETSKI SUSTAVI ZA PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE ENERGETSKI SUSTAVI S PARNIM PROCESOM - Gorivo: - fosilno (ugljen, loživo ulje, prirodni plin) - nuklearno(u

Διαβάστε περισσότερα

odvodi u okoliš? Rješenje 1. zadatka Zadano: q m =0,5 kg/s p 1 =1 bar =10 5 Pa zrak w 1 = 15 m/s z = z 2 -z 1 =100 m p 2 =7 bar = Pa

odvodi u okoliš? Rješenje 1. zadatka Zadano: q m =0,5 kg/s p 1 =1 bar =10 5 Pa zrak w 1 = 15 m/s z = z 2 -z 1 =100 m p 2 =7 bar = Pa .vježba iz Terodiaike rješeja zadataka 1. Zadatak Kopresor usisava 0,5 kg/s zraka tlaka 1 bar i 0 o C, tlači ga i istiskuje u eizolirai tlači cjevovod. Na ulazo presjeku usise cijevi brzia je 15 /s. Izlazi

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

EKONOMIČNA PROIZVODNJA I RACIONALNO KORIŠTENJE ENERGIJE

EKONOMIČNA PROIZVODNJA I RACIONALNO KORIŠTENJE ENERGIJE List:1 EKONOMIČNA PROIZVODNJA I RACIONALNO KORIŠTENJE ENERGIJE NEKI PRIMJERI ZA RACIONALNO KORIŠTENJE ENERGIJE UTJECAJNI FATORI EKONOMIČNOSTI POGONA: Konstrukcijska izvedba energetskih ureñaja, što utječe

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE Dobro došli na... Konstruisanje GRANIČNI I KRITIČNI NAPON slajd 2 Kritični naponi Izazivaju kritične promene oblika Delovi ne mogu ispravno da vrše funkciju Izazivaju plastične deformacije Može doći i

Διαβάστε περισσότερα

Masa, Centar mase & Moment tromosti

Masa, Centar mase & Moment tromosti FAKULTET ELEKTRTEHNIKE, STRARSTVA I BRDGRADNE - SPLIT Katedra za dinamiku i vibracije Mehanika 3 (Dinamika) Laboratorijska vježba Masa, Centar mase & Moment tromosti Ime i rezime rosinac 008. Zadatak:

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Impuls i količina gibanja

Impuls i količina gibanja FAKULTET ELEKTROTEHNIKE, STROJARSTVA I BRODOGRADNJE - SPLIT Katedra za dinamiku i vibracije Mehanika 3 (Dinamika) Laboratorijska vježba 4 Impuls i količina gibanja Ime i prezime prosinac 2008. MEHANIKA

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Periodičke izmjenične veličine

Periodičke izmjenične veličine EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Upotreba tablica s termodinamičkim podacima

Upotreba tablica s termodinamičkim podacima Upotreba tablica s termodinamičkim podacima Nije moguće znati apsolutnu vrijednost specifične unutarnje energije u procesnog materijala, ali je moguće odrediti promjenu ove veličine, koja odgovara promjenama

Διαβάστε περισσότερα

TEHNIČKA TERMODINAMIKA

TEHNIČKA TERMODINAMIKA FAKULTET KEMIJSKOG INŽENJERSTVA I TEHNOLOGIJE Zavod za termodinamiku, strojarstvo i energetiku PREDLOŠCI ZA VJEŽBE iz kolegija TEHNIČKA TERMODINAMIKA Priredili: Prof. dr. sc. Boris Halasz Dr. sc. Saša

Διαβάστε περισσότερα

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica

Διαβάστε περισσότερα

SEKUNDARNE VEZE međumolekulske veze

SEKUNDARNE VEZE međumolekulske veze PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

Katedra za biofiziku i radiologiju. Medicinski fakultet Sveučilišta Josipa Jurja Strossmayera u Osijeku. Vlaga zraka

Katedra za biofiziku i radiologiju. Medicinski fakultet Sveučilišta Josipa Jurja Strossmayera u Osijeku. Vlaga zraka Katedra za biofiziku i radiologiju Medicinski fakultet Sveučilišta Josipa Jurja Strossmayera u Osijeku Vlaga zraka Vlagu zraka čini vodena para koja se, uz ostale plinove, nalazi u zraku. Masa vodene pare

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

11. DINAMIKA KOMPRESIBILNIH FLUIDA

11. DINAMIKA KOMPRESIBILNIH FLUIDA Dinamika kompresibilnih fluida 11-1 11. DINAMIKA KOMPRESIBILNIH FLUIDA 11.1 Mlaznice i difuzori Mlaznica je dio cijevi u kojemu kompresibilni fluid može izvršiti ekspanziju uz povećanje brzine strujanja.

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

Zadatci za vježbanje Termodinamika

Zadatci za vježbanje Termodinamika Zadatci za vježbanje Termodinamika 1. Električnim bojlerom treba zagrijati 22 litre vode 15 ⁰C do 93 ⁰C. Koliku snagu mora imati grijač da bi se to postiglo za 2 sata zagrijavanja? Specifični toplinski

Διαβάστε περισσότερα

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II 1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Prosti cevovodi

MEHANIKA FLUIDA. Prosti cevovodi MEHANIKA FLUIDA Prosti ceooi zaatak Naći brzin oe kroz naglaak izlaznog prečnika =5 mm, postaljenog na kraj gmenog crea prečnika D=0 mm i žine L=5 m na čijem je prenjem el građen entil koeficijenta otpora

Διαβάστε περισσότερα

Zadatci za vježbanje - termičko širenje / plinski zakoni / tlak idealnog plina

Zadatci za vježbanje - termičko širenje / plinski zakoni / tlak idealnog plina Zadatci za vježbanje - termičko širenje / plinski zakoni / tlak idealnog plina Pun spremnik benzina sadrži 60 litara. Ako je napunjen pri temperaturi 5 C i ostavljen na suncu tako da se temperatura povisi

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

ODVOD PRODUKATA IZGARANJA ZEMNOG PLINA

ODVOD PRODUKATA IZGARANJA ZEMNOG PLINA MEĐIMURSKO VELEUČILIŠTE U ČAKOVCU ODRŽIVI RAZVOJ TERMOTEHNIČKO INŽENJERSTVO SINIŠA HORVAT ODVOD PRODUKATA IZGARANJA ZEMNOG PLINA ZAVRŠNI RAD ČAKOVEC, 2016. MEĐIMURSKO VELEUČILIŠTE U ČAKOVCU ODRŽIVI RAZVOJ

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -

Διαβάστε περισσότερα

LANCI & ELEMENTI ZA KAČENJE

LANCI & ELEMENTI ZA KAČENJE LANCI & ELEMENTI ZA KAČENJE 0 4 0 1 Lanci za vešanje tereta prema standardu MSZ EN 818-2 Lanci su izuzetno pogodni za obavljanje zahtevnih operacija prenošenja tereta. Opseg radne temperature se kreće

Διαβάστε περισσότερα

ENERGETSKA POSTROJENJA

ENERGETSKA POSTROJENJA (Rashladni tornjevi) List: 1 RASHLADNI TORNJEVI Rashladni tornjevi su uređaji (izmjenjivači topline voda/zrak) pomoću kojih se neiskorištena energija (toplina) iz energetskih postrojenja, preko rashladne

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan

Διαβάστε περισσότερα

Reverzibilni procesi

Reverzibilni procesi Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

3. OSNOVNI POKAZATELJI TLA

3. OSNOVNI POKAZATELJI TLA MEHANIKA TLA: Onovni paraetri tla 4. OSNONI POKAZATELJI TLA Tlo e atoji od tri faze: od čvrtih zrna, vode i vazduha i njihovo relativno učešće e opiuje odgovarajući pokazateljia.. Specifična težina (G)

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

konst. Električni otpor

konst. Električni otpor Sveučilište J. J. Strossmayera u sijeku Elektrotehnički fakultet sijek Stručni studij Električni otpor hmov zakon Pri protjecanju struje kroz vodič pojavljuje se otpor. Georg Simon hm je ustanovio ovisnost

Διαβάστε περισσότερα

=1), što znači da će duljina cijevi L odgovarati kritičnoj duljini Lkr. koji vlada u ulaznom presjeku, tako da vrijedi

=1), što znači da će duljina cijevi L odgovarati kritičnoj duljini Lkr. koji vlada u ulaznom presjeku, tako da vrijedi Primjer. Zrak (R=87 J/(kg K), κ=,4) se iz atmosfere ( =, bar, T =88 K) usisava oz cijev romjera D = mm, duljine L = m, rema slici. Treba odrediti maksimalno mogući maseni rotok m max oz cijev uz retostavku

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD. Juraj Ladika. Zagreb, 2012.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD. Juraj Ladika. Zagreb, 2012. SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD Juraj Ladika Zagreb, 2012. SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD Mentor: Prof. dr. sc. Dražen Lončar

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

II. ODREĐIVANJE POLOŽAJA TEŽIŠTA

II. ODREĐIVANJE POLOŽAJA TEŽIŠTA II. ODREĐIVANJE POLOŽAJA TEŽIŠTA Poožaj težišta vozia predstavja jednu od bitnih konstruktivnih karakteristika vozia s obzirom da ova konstruktivna karakteristika ima veiki uticaj na vučne karakteristike

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

PRERADA GROŽðA. Sveučilište u Splitu Kemijsko-tehnološki fakultet. Zavod za prehrambenu tehnologiju i biotehnologiju. Referati za vježbe iz kolegija

PRERADA GROŽðA. Sveučilište u Splitu Kemijsko-tehnološki fakultet. Zavod za prehrambenu tehnologiju i biotehnologiju. Referati za vježbe iz kolegija Sveučilište u Splitu Kemijsko-tehnološki fakultet Zavod za prehrambenu tehnologiju i biotehnologiju Referati za vježbe iz kolegija PRERADA GROŽðA Stručni studij kemijske tehnologije Smjer: Prehrambena

Διαβάστε περισσότερα

POMOĆNI SUSTAVI U ENERGETSKIM PROCESIMA SUSTAV ZA REKUPERACIJU KONDENZATA

POMOĆNI SUSTAVI U ENERGETSKIM PROCESIMA SUSTAV ZA REKUPERACIJU KONDENZATA Prof. dr. sc. Z. Prelec, dipl. ing. List: 1 POMOĆNI SUSTAVI U ENERGETSKIM PROCESIMA Sustav za rekuperaciju kondenzata Rashladni sustav SUSTAV ZA REKUPERACIJU KONDENZATA U raznim energetskim, procesnim

Διαβάστε περισσότερα

FAKULTET PROMETNIH ZNANOSTI

FAKULTET PROMETNIH ZNANOSTI SVUČILIŠT U ZAGU FAKULTT POMTNIH ZNANOSTI predmet: Nastavnik: Prof. dr. sc. Zvonko Kavran zvonko.kavran@fpz.hr * Autorizirana predavanja 2016. 1 Pojačala - Pojačavaju ulazni signal - Zahtjev linearnost

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

PITANJA IZ TERMIČKIH POJAVA I MOLEKULARNO-KINETIČKE TEORIJE

PITANJA IZ TERMIČKIH POJAVA I MOLEKULARNO-KINETIČKE TEORIJE PITANJA IZ TERMIČKIH POJAVA I MOLEKULARNO-KINETIČKE TEORIJE 1. Što je temperatura i kako je mjerimo? 2. Na koji način se mjeri temperatura i kakva je Celzijeva termometrijska ljestvica? 3. Napišite i objasnite

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

VJEŽBA 9: ODREĐIVANJE SASTAVA DIMNIH PLINOVA

VJEŽBA 9: ODREĐIVANJE SASTAVA DIMNIH PLINOVA VJEŽBA 9: ODREĐIVANJE SASTAVA DIMNIH PLINOVA 1. OSNOVNI POJMOVI Osnovni pojmovi koji se vežu uz zaštitu zraka, odnosno atmosfere navedeni su u nastavku i najbolje ih je prikazati kao na sljedećoj slici.

Διαβάστε περισσότερα

II. ODREĐIVANJE POLOŽAJA TEŽIŠTA

II. ODREĐIVANJE POLOŽAJA TEŽIŠTA II. ODREĐIVANJE POLOŽAJA TEŽIŠTA Poožaj težišta vozia predstavja jednu od bitnih konstruktivnih karakteristika vozia s obzirom da ova konstruktivna karakteristika ima veiki uticaj na vučne karakteristike

Διαβάστε περισσότερα

Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam

Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam Polarzacja Proces asajaja polarzrae svjelos: a refleksja b raspršeje c dvolom d dkrozam Freselove jedadžbe Svjelos prelaz z opčkog sredsva deksa loma 1 u sredsvo deksa loma, dolaz do: refleksje (prema

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα