Godišnji plan i program rada
|
|
- Ελεφθέριος Κασιδιάρης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 GIMNAZIJA VELIKA GORICA Ulica kralja Stjepana Tomaševića VELIKA GORICA Godišnji plan i program rada Velika Gorica, rujan 2016.
2 SADRŽAJ 1. GODIŠNJI PLAN I PROGRAM RADA ZA ŠKOLSKU GODINU 2016./ DJELATNICI GIMNAZIJE VELIKA GORICA RAZREDNA VIJEĆA Opća gimnazija Prirodoslovno-matematička gimnazija NASTAVNI PLAN Opća gimnazija Prirodoslovno-matematička gimnazija školske godine 2016./ Prirodoslovno-matematička gimnazija školske godine 2013./ KALENDAR RADA ZA ŠKOLSKU GODINU 2016./ PRIJEDLOG RADA ŠKOLSKOG ISPITNOG POVJERENSTVA I DEŽURNIH NASTAVNIKA TIJEKOM ŠKOLSKE GODINE 2016./ Ljetni rok državne mature u školskoj godini 2016./ Jesenski rok državne mature u školskoj godini 2016./ Broj razrednih odjela i učenika školske godine 2015./2016. i 2016./ DODATNA NASTAVA IZVANNASTAVNE AKTIVNOSTI ORGANIZACIJA ODGOJNO-OBRAZOVNOG RADA ŠKOLSKI PREVENTIVNI PROGRAM PROGRAM EKSKURZIJA I STRUČNIH POSJETA PROGRAM ODGOJNIH AKTIVNOSTI ŠKOLE PLAN I PROGRAM RADA RAZREDNIH ODJELA PRVIH RAZREDA PLAN I PROGRAM RADA RAZREDNIH ODJELA DRUGIH RAZREDA PLAN I PROGRAM RADA RAZREDNIH ODJELA TREĆIH RAZREDA PLAN I PROGRAM RADA RAZREDNIH ODJELA ČETVRTIH RAZREDA STRUČNO USAVRŠAVANJE PLAN I PROGRAM RADA STRUČNIH VIJEĆA PROGRAM ODGOJA ZA UNAPRJEĐIVANJE ZDRAVLJA UČENIKA PLAN I PROGRAM PROFESIONALNE ORIJENTACIJE PLAN I PROGRAMA RADA RAVNATELJICE PLAN I PROGRAM RADA TAJNIKA ŠKOLE PLAN I PROGRAM RADA STRUČNOG SURADNIKA PEDAGOGA PLAN I PROGRAM RADA STRUČNOGA SURADNIKA KNJIŽNIČARA PROGRAM RADA KULTURNIH AKTIVNOSTI
3 27. PLAN I PROGRAM RADA NASTAVNIČKOG VIJEĆA PLAN I PROGRAM RADA RAZREDNIH VIJEĆA PLAN RADA ŠKOLSKOG ODBORA PLAN I PROGRAM RADA VIJEĆA RODITELJA PLAN I PROGRAM RADA VIJEĆA UČENIKA MJERE ZA SPRJEČAVANJE KORUPCIJE I ZAŠTITA SIGURNOSTI PROJEKTI U ŠKOLSKOJ GODINI 2016./
4 Na temelju 143. članka Statuta Gimnazije Velike Gorice, nakon što je na sjednici Nastavničkog vijeća 27. rujna razmatran prijedlog Godišnjeg plana i programa, Školski odbor, na sjednici održanoj dana 29. rujna 2016., donosi: 1. GODIŠNJI PLAN I PROGRAM RADA ZA ŠKOLSKU GODINU 2016./2017. Gimnazija Velika Gorica djeluje u Ulici kralja Stjepana Tomaševića 21. Tijekom školske godine 2016./2017. u Gimnaziji Velika Gorica izvodi se nastava za učenike upisane u opću gimnaziju i za učenike upisane u prirodoslovno-matematičku gimnaziju. Nastava se izvodi u kabinetima te u 8 klasičnih učionica; kabinetu informatike, kabinetu za glazbenu i likovnu umjetnost i u kabinetu kemije. Kabinet biologije koristi se kao klasična učionica, a samo po potrebi i kao kabinet. Kabinet fizike koristi se dijelom kao klasična učionica, a dijelom kao kabinet. Nastava TIZK-a izvodi se u školskoj sportskoj dvorani koju zajednički koriste četiri škole: Ekonomska škola, Strukovna škola, Zrakoplovna škola i Gimnazija Velika Gorica. Kako bismo unaprijedili odgojno-obrazovni proces, planiramo opremanje kabineta i LCD projektore za potrebe svih predmeta, te uređenje učionica. Opremanje škole pametnom pločom, novim TV prijamnicima, pokretnim računalima, novom informatičkom opremom, te e-dnevnicima, uvelike će promijeniti nastavni proces, a posebno kabinetsku nastavu. 2. DJELATNICI GIMNAZIJE VELIKA GORICA U školskoj godini 2016./2017. nastavu će realizirati 36 nastavnika. U školi, uz ravnatelja, rade pedagog, tajnik, računovotkinja, administrator i jižničar. 4
5 KADROVSKA STRUKTURA DJELATNIKA RED. BR. PREZIME I IME ZVANJE NASTAVNI PREDMET 1. LUČIĆ, KRISTINA DIPL. ING. RAČUNARSTVA INFORMATIKA 2. BAČURIN, LJERKA PROF. ENGLESKOG I FRANCUSKOG JEZIKA I KNJIŽEVNOSTI ENGLESKI JEZIK 3. SUBOTIĆ, IGOR PROF. HRVATSKE KULTURE, SOCIOLOGIJE I FILOZOFIJE 4. CEROVSKI, RENATA PROF. FILOZOF. I KOMP. KNJIŽEV. HRVATSKI JEZIK I ETIKA FILOZOFIJA, LOGIKA, ETIKA 5. BURIĆ, ANDREJA PROF. SOCIOLOGIJE POL. I GOSP. I SOCIOLOG. 6. CUNDEKOVIĆ, DUBRAVKA PROF. HRVATSKOGA JEZIKA HRVATSKI JEZIK 7. GRČIĆ, NINA PROF. POVIJESTI I GEOGRAFIJE POVIJEST 8. DORA, MIDHETA PROF. FIZIKE FIZIKA 9. IDŽAKOVIĆ ROŽANKOVIĆ, SNJEŽANA PROF. ZEMLJOPISA GEOGRAFIJA 10. JAKOPOVIĆ, MELITA PROF. HRVATSKOGA JEZIKA HRVATSKI JEZIK 11. KIRIN, VESNA PROF. FIZIČKE KULTURE TJEL. I ZDRAVSTVENA KULTURA 12. DUBRAVICA, IVA PROF. TALIJANSKOG I FRANCUSKOG JEZIKA I KNJIŽEVNOSTI TALIJANSKI JEZIK 13. PETRAVIĆ, IVANA PROF. GLAZBENE KULTURE GLAZBENA UMJETNOST 14. LASTRIĆ, VESNA DIPL. ING. KEMIJE KEMIJA 15. LEDER, ANA DIPL. TEOLOG VJERONAUK 16. LACKOVIĆ, MARTINA PROF. ENGLESKOG I NJEMAČKOG NATASHA JEZIKA I KNJIŽ. 17. MASKALAN, ĐURĐICA PROF. BIOLOGIJE I KEMIJE BIOLOGIJA 18. MATOKOVIĆ, INES PROF. FIZIKE FIZIKA 19. LUČIĆ, ANITA PROF. GEOGRAFIJE GEOGRAFIJA 20. ROŽIĆ, IVA PROF. ENGLESKOG JEZIKA ENGLESKI JEZIK 21. PAVLINIĆ, ŽELJKA PROF. POVIJESTI POVIJEST 22. ŠAFRANIĆ, TATJANA PROF. LATINSKOG JEZIKA I RIMSKE KNJIŽEVNOSTI I GRČKOGA JEZIKA I KNJIŽEVNOSTI 23. POLAN, GORDAN PROF. FIZIČKE KULTURE ENGLESKI I NJEMAČKI JEZIK LATINSKI JEZIK TJEL. I ZDRAVSTV. KULTURA 24. POSTIĆ, MARA PROF. MATEM. I FIZIKE MATEMATIKA 25. JUTRIŠA, DUNJA PROF. PSIHOLOGIJE PSIHOLOGIJA 26. STOJANOVIĆ, DOLORES PROF. TAL. I NJEMAČKOG JEZIKA TAL. I NJEM. JEZIK 27. GOLUBIĆ, KRISTIAN MAG. EDUC. MATEMATIKE I MATEMATIKA I INFORMATIKE INFORMATIKA 28. ŠTAJDOHAR, VIŠNJA PROF. MATEM. I INFORMATIKE MATEMATIKA 29. HABČIĆ, HELENA PROF. BIOLOGIJE I KEMIJE KEMIJA 30. VLAŠIĆ, GORDANA PROF. HRVATSKOGA JEZIKA HRVATSKI JEZIK 31. ZUBEK, ELEN PROF. LIKOVNE KULTURE LIKOVNA UMJETNOST 32. DIJANEŽEVIĆ, BISERKA PROF. MATEMATIKE I FIZIKE MATEMATIKA 33. VLAISAVLJEVIĆ BACAN, EMILIJA PROF. BIOLOGIJE BIOLOGIJA 34. ČURIĆ, NATAŠA DIPL. TEOLOG VJERONAUK 35. DŽINIĆ, MARIJA MAG. EDUC. NJEMAČKOG JEZIKA I BOHEMISTIKE NJEMAČKI JEZIK 36. MATKOVIĆ, IVONA MAG. EKSPERIMENTALNE BIOLOGIJE BIOLOGIJA (zamjena) 5
6 OSTALI RADNICI R.B. PREZIME I IME STRUČNA SPREMA / ZVANJE RADNO MJESTO 1. ŽUGAJ, BRANKICA DOKTORICA ZNANOSTI RAVNATELJICA 2. HORVAT KARDOŠ, OLIETA PROF. PEDAGOGIJE PEDAGOGINJA 3. JURČEVIĆ, MARA PRAVNIK TAJNICA 4. BAN, JASNA SREDNJA STRUČNA SPREMA VODITELJICA RAČUNOVODSTVA 5. ĐURINEC, ANITA EKONOMIST ADMINISTRATORICA 6. PODVORAC, HELENA PROF. LATINSKOGA JEZIKA I RIMSKE KNJIŽEVNOSTI I DIPL. BIBLIOTEKAR KNJIŽNIČARKA 6
7 3. RAZREDNA VIJEĆA 3.1. Opća gimnazija 1.A 1.B 1.C PREDMET NASTAVNIK PREDMET NASTAVNIK PREDMET NASTAVNIK HRVATSKI JEZIK VLAŠIĆ HRVATSKI JEZIK CUNDEKOVIĆ HRVATSKI JEZIK CUNDEKOVIĆ ENGLESKI JEZIK LACKOVIĆ ENGLESKI JEZIK LACKOVIĆ ENGLESKI JEZIK ROŽIĆ NJEMAČKI JEZIK (P) STOJANOVIĆ NJEMAČKI JEZIK (P) STOJANOVIĆ TALIJANSKI JEZIK STOJANOVIĆ LATINSKI JEZIK ŠAFRANIĆ LATINSKI JEZIK ŠAFRANIĆ LATINSKI JEZIK ŠAFRANIĆ LIKOVNA UMJETNOST ZUBEK LIKOVNA UMJETNOST ZUBEK LIKOVNA UMJETNOST ZUBEK GLAZBENA GLAZBENA GLAZBENA PETRAVIĆ PETRAVIĆ UMJETNOST UMJETNOST UMJETNOST PETRAVIĆ POVIJEST PAVLINIĆ POVIJEST PAVLINIĆ POVIJEST PAVLINIĆ GEOGRAFIJA IDŽAKOVIĆ IDŽAKOVIĆ IDŽAKOVIĆ GEOGRAFIJA GEOGRAFIJA ROŽANKOVIĆ ROŽANKOVIĆ ROŽANKOVIĆ MATEMATIKA ŠTAJDOHAR MATEMATIKA DIJANEŽEVIĆ MATEMATIKA DIJANEŽEVIĆ FIZIKA MATOKOVIĆ FIZIKA MATOKOVIĆ FIZIKA MATOKOVIĆ KEMIJA HABČIĆ KEMIJA HABČIĆ KEMIJA HABČIĆ BIOLOGIJA MATKOVIĆ BIOLOGIJA MATKOVIĆ BIOLOGIJA HABČIĆ INFORMATIKA LUČIĆ K. INFORMATIKA LUČIĆ K. INFORMATIKA LUČIĆ K. TIZK POLAN TIZK POLAN TIZK POLAN IZBORNA NASTAVA VJERONAUK/ETIKA LEDER, SUBOTIĆ IZBORNA NASTAVA: VJERONAUK LEDER IZBORNA NASTAVA: VJERONAUK/ETIKA LEDER SUBOTIĆ RAZREDNIK ŠTAJDOHAR RAZREDNIK LACKOVIĆ RAZREDNIK ŠAFRANIĆ 7
8 2.A 2.B 2.C PREDMET NASTAVNIK PREDMET NASTAVNIK PREDMET NASTAVNIK HRVATSKI JEZIK VLAŠIĆ HRVATSKI JEZIK VLAŠIĆ HRVATSKI JEZIK VLAŠIĆ ENGLESKI JEZIK BAČURIN ENGLESKI JEZIK BAČURIN ENGLESKI JEZIK ROŽIĆ NJEMAČKI JEZIK (P) DŽINIĆ TALIJANSKI/NJEMAČKI JEZIK DUBRAVICA DŽINIĆ NJEMAČKI JEZIK (P) DŽINIĆ LATINSKI JEZIK ŠAFRANIĆ LATINSKI JEZIK ŠAFRANIĆ LATINSKI JEZIK ŠAFRANIĆ LIKOVNA UMJETNOST ZUBEK LIKOVNA UMJETNOST ZUBEK LIKOVNA UMJETNOST ZUBEK GLAZBENA UMJETNOST PETRAVIĆ GLAZBENA UMJETNOST PETRAVIĆ GLAZBENA UMJETNOST PETRAVIĆ POVIJEST GRČIĆ POVIJEST GRČIĆ POVIJEST GRČIĆ GEOGRAFIJA LUČIĆ, A. GEOGRAFIJA LUČIĆ A. GEOGRAFIJA LUČIĆ A. PSIHOLOGIJA JUTRIŠA PSIHOLOGIJA JUTRIŠA PSIHOLOGIJA JUTRIŠA MATEMATIKA POSTIĆ MATEMATIKA POSTIĆ MATEMATIKA GOLUBIĆ FIZIKA DORA FIZIKA DORA FIZIKA DORA KEMIJA LASTRIĆ KEMIJA LASTRIĆ KEMIJA LASTRIĆ BIOLOGIJA MASKALAN BIOLOGIJA MASKALAN BIOLOGIJA MASKALAN TIZK KIRIN TIZK KIRIN TIZK KIRIN IZBORNA NASTAVA VJERONAUK LEDER IZBORNA NASTAVA VJERONAUK/ETIKA LEDER, SUBOTIĆ IZBORNA NASTAVA VJERONAUK/ETIKA LEDER, SUBOTIĆ RAZREDNIK GRČIĆ RAZREDNIK KIRIN RAZREDNIK GOLUBIĆ 8
9 3.A 3.B 3.C 3.D PREDMET NASTAVNIK PREDMET NASTAVNIK PREDMET NASTAVNIK PREDMET NASTAVNIK HRVATSKI HRVATSKI JEZIK SUBOTIĆ HRVATSKI JEZIK JAKOPOVIĆ JAKOPOVIĆ HRVATSKI JEZIK SUBOTIĆ JEZIK ENGLESKI ENGLESKI JEZIK ROŽIĆ BAČURIN ENGLESKI JEZIK ROŽIĆ ENGLESKI JEZIK BAČURIN JEZIK NJEMAČKI JEZIK (P) DŽINIĆ TALIJANSKI JEZIK DUBRAVICA NJEMAČKI JEZIK (P) DŽINIĆ NJEMAČKI JEZIK (P/N) DŽINIĆ, LACKOVIĆ LOGIKA CEROVSKI LOGIKA CEROVSKI LOGIKA CEROVSKI LOGIKA CEROVSKI LIKOVNA LIKOVNA LIKOVNA LIKOVNA ZUBEK ZUBEK ZUBEK UMJETNOST UMJETNOST UMJETNOST UMJETNOST ZUBEK GLAZBENA GLAZBENA GLAZBENA GLAZBENA PETRAVIĆ PETRAVIĆ PETRAVIĆ UMJETNOST UMJETNOST UMJETNOST UMJETNOST PETRAVIĆ POVIJEST GRČIĆ POVIJEST GRČIĆ POVIJEST GRČIĆ POVIJEST GRČIĆ GEOGRAFIJA LUČIĆ, A. GEOGRAFIJA LUČIĆ, A. GEOGRAFIJA LUČIĆ, A. GEOGRAFIJA LUČIĆ, A. MATEMATIKA DIJANEŽEVIĆ MATEMATIKA POSTIĆ MATEMATIKA DIJANEŽEVIĆ MATEMATIKA POSTIĆ FIZIKA DORA FIZIKA DORA FIZIKA DORA FIZIKA DORA KEMIJA LASTRIĆ KEMIJA LASTRIĆ KEMIJA LASTRIĆ KEMIJA LASTRIĆ BIOLOGIJA MASKALAN BIOLOGIJA MASKALAN BIOLOGIJA MASKALAN BIOLOGIJA MASKALAN PSIHOLOGIJA JUTRIŠA PSIHOLOGIJA JUTRIŠA PSIHOLOGIJA JUTRIŠA PSIHOLOGIJA JUTRIŠA TIZK KIRIN TIZK KIRIN TIZK KIRIN TIZK KIRIN SOCIOLOGIJA BURIĆ SOCIOLOGIJA BURIĆ SOCIOLOGIJA BURIĆ SOCIOLOGIJA BURIĆ IZBORNA IZBORNA IZBORNA IZBORNA NASTAVA NASTAVA LEDER ČURIĆ, NASTAVA LEDER NASTAVA ČURIĆ, VJERONAUK/ETIKA VJERONAUK SUBOTIĆ VJERONAUK VJERONAUK/ SUBOTIĆ ETIKA RAZREDNIK BAČURIN RAZREDNIK PETRAVIĆ RAZREDNIK LEDER RAZREDNIK LASTRIĆ 9
10 4.A 4.B 4.C 4.D PREDMET NASTAVNIK PREDMET NASTAVNIK PREDMET NASTAVNIK PREDMET NASTAVNIK HRVATSKI JEZIK SUBOTIĆ HRVATSKI JEZIK CUNDEKOVIĆ HRVATSKI JEZIK JAKOPOVIĆ HRVATSKI JEZIK JAKOPOVIĆ ENGLESKI JEZIK LACKOVIĆ ENGLESKI JEZIK LACKOVIĆ ENGLESKI JEZIK ROŽIĆ ENGLESKI JEZIK LACKOVIĆ TALIJANSKI JEZIK DUBRAVICA NJEMAČKI JEZIK (P) STOJANOVIĆ NJEMAČKI JEZIK (P)/TALIJANSKI JEZIK STOJANOVIĆ DUBRAVICA NJEMAČKI JEZIK (P)/TALIJANSKI JEZIK STOJANOVIĆ DUBRAVICA LIKOVNA LIKOVNA LIKOVNA LIKOVNA ZUBEK ZUBEK ZUBEK UMJETNOST UMJETNOST UMJETNOST UMJETNOST ZUBEK GLAZBENA GLAZBENA GLAZBENA GLAZBENA PETRAVIĆ PETRAVIĆ PETRAVIĆ UMJETNOST UMJETNOST UMJETNOST UMJETNOST PETRAVIĆ POVIJEST PAVLINIĆ POVIJEST PAVLINIĆ POVIJEST PAVLINIĆ POVIJEST PAVLINIĆ GEOGRAFIJA IDŽAKOVIĆ IDŽAKOVIĆ IDŽAKOVIĆ IDŽAKOVIĆ GEOGRAFIJA GEOGRAFIJA GEOGRAFIJA ROŽANKOVIĆ ROŽANKOVIĆ ROŽANKOVIĆ ROŽANKOVIĆ MATEMATIKA ŠTAJDOHAR MATEMATIKA GOLUBIĆ MATEMATIKA GOLUBIĆ MATEMATIKA ŠTAJDOHAR FIZIKA MATOKOVIĆ FIZIKA MATOKOVIĆ FIZIKA MATOKOVIĆ FIZIKA MATOKOVIĆ KEMIJA HABČIĆ KEMIJA HABČIĆ KEMIJA HABČIĆ KEMIJA HABČIĆ BIOLOGIJA MATKOVIĆ BIOLOGIJA MATKOVIĆ BIOLOGIJA MATKOVIĆ BIOLOGIJA MATKOVIĆ POLITIKA I POLITIKA I POLITIKA I POLITIKA I BURIĆ BURIĆ BURIĆ GOSPODARSTVO GOSPODARSTVO GOSPODARSTVO GOSPODARSTVO BURIĆ FILOZOFIJA CEROVSKI FILOZOFIJA CEROVSKI FILOZOFIJA CEROVSKI FILOZOFIJA CEROVSKI TIZK POLAN TIZK POLAN TIZK POLAN TIZK POLAN IZBORNA IZBORNA IZBORNA NASTAVA LEDER, IZBORNA LEDER, NASTAVA NASTAVA LEDER VJERONAUK/ SUBOTIĆ NASTAVA/ETIKA CEROVSKI VJERONAUK/ VJERONAUK ETIKA ETIKA LEDER, CEROVSKI RAZREDNIK ŠTAJDOHAR RAZREDNIK STOJANOVIĆ RAZREDNIK ROŽIĆ RAZREDNIK CEROVSKI 10
11 4.2. Prirodoslovno-matematička gimnazija 1.D 2.D 3.E 4.E PREDMET NASTAVNIK PREDMET NASTAVNIK PREDMET NASTAVNIK PREDMET NASTAVNIK HRVATSKI JEZIK CUNDEKOVIĆ HRVATSKI JEZIK VLAŠIĆ HRVATSKI JEZIK SUBOTIĆ HRVATSKI JEZIK JAKOPOVIĆ ENGLESKI JEZIK ROŽIĆ ENGLESKI JEZIK BAČURIN ENGLESKI JEZIK ROŽIĆ ENGLESKI JEZIK LACKOVIĆ NJEMAČKI JEZIK (P) DŽINIĆ NJEMAČKI JEZIK (P)/TALIJANSKI JEZIK DŽINIĆ DUBRAVICA NJEMAČKI JEZIK (P/N) DŽINIĆ LACKOVIĆ - - LATINSKI JEZIK ŠAFRANIĆ LATINSKI JEZIK ŠAFRANIĆ PSIHOLOGIJA JUTRIŠA FILOZOFIJA CEROVSKI GLAZBENA GLAZBENA PETRAVIĆ UMJETNOST UMJETNOST PETRAVIĆ LOGIKA CEROVSKI POVIJEST PAVLINIĆ LIKOVNA UMJETNOST ZUBEK LIKOVNA IDŽAKOVIĆ ZUBEK SOCIOLOGIJA BURIĆ GEOGRAFIJA UMJETNOST ROŽANKOVIĆ POVIJEST PAVLINIĆ POVIJEST GRČIĆ POVIJEST GRČIĆ MATEMATIKA ŠTAJDOHAR GEOGRAFIJA IDŽAKOVIĆ ROŽANKOVIĆ GEOGRAFIJA LUČIĆ A. GEOGRAFIJA LUČIĆ A. FIZIKA MATOKOVIĆ MATEMATIKA DIJANEŽEVIĆ MATEMATIKA POSTIĆ MATEMATIKA GOLUBIĆ KEMIJA HABČIĆ FIZIKA MATOKOVIĆ FIZIKA DORA FIZIKA DORA BIOLOGIJA MATKOVIĆ KEMIJA HABČIĆ KEMIJA LASTRIĆ KEMIJA LASTRIĆ INFORMATIKA GOLUBIĆ BIOLOGIJA MATKOVIĆ BIOLOGIJA MASKALAN BIOLOGIJA MASKALAN POLITIKA I GOSPODARSTVO BURIĆ INFORMATIKA LUČIĆ K. INFORMATIKA LUČIĆ K. INFORMATIKA LUČIĆ K. TIZK POLAN TIZK POLAN TIZK KIRIN TIZK KIRIN - - IZBORNA NASTAVA VJERONAUK/ ETIKA LEDER, SUBOTIĆ IZBORNA NASTAVA VJERONAUK/ ETIKA LEDER, SUBOTIĆ IZBORNA NASTAVA VJERONAUK/ ETIKA LEDER, SUBOTIĆ IZBORNA NASTAVA VJERONAUK/ ETIKA LEDER, CEROVSKI RAZREDNIK LUČIĆ K. RAZREDNIK LUČIĆ A. RAZREDNIK MASKALAN RAZREDNIK HABČIĆ 11
12 4. NASTAVNI PLAN 4.1. Opća gimnazija GODINA OBRAZOVANJA: BROJ RAZREDA:
13 4.2. Prirodoslovno-matematička gimnazija školske godine 2016./2017. GODINA OBRAZOVANJA: BROJ RAZREDA:
14 4.3. Prirodoslovno-matematička gimnazija školske godine 2013./2014. GODINA OBRAZOVANJA: 4. BROJ RAZREDA: 1 14
15 5. KALENDAR RADA ZA ŠKOLSKU GODINU 2016./ rujna prvi nastavni dan I. polugodište 5. rujna do 23. prosinca nastavnih dana 12. siječnja svibnja II. polugodište 84 nastavnih dana za maturante 12. siječnja lipnja nastavna dana za učenike 1., 2. i 3. razreda UKUPNO 163 nastavna dana za maturante 181 nastavni dan za učenike 1., 2. i 3. razreda ZIMSKI PRAZNICI 27. prosinca siječnja PROLJETNI PRAZNICI 13. travnja travnja Blagdani i neradni dani u šk. godini 2016./ listopada 2016., subota Dan neovisnosti 01. studenoga 2016., utorak Svi sveti 25. prosinca 2016., nedjelja Božić 26. prosinca 2015., ponedjeljak Sveti Stjepan 01. siječnja 2017., nedjelja Nova Godina 06. siječnja 2017., petak Sveta tri kralja 16. travnja 2017., nedjelja Uskrs 17. travnja 2017., ponedjeljak Uskrsni ponedjeljak 01. svibnja 2017., ponedjeljak Međunarodni praznik rada 15. lipnja 2017., četvrtak Tijelovo 22. lipnja 2017., četvrtak Dan antifašističke borbe u RH 25. lipnja 2017., nedjelja Dan državnosti 05. kolovoza 2017., subota Dan pobjede i domovinske zahvalnosti 15. kolovoza 2017., utorak Velika Gospa 15
16 VREMENIK SJEDNICA NASTAVNIČKIH I RAZREDNIH VIJEĆA S VREMENIKOM PROVEDBE POPRAVNIH ISPITA I ISPITA DRŽAVNE MATURE MJESEC kolovoz rujan listopad studeni prosinac siječanj ožujak travanj svibanj lipanj srpanj kolovoz SJEDNICE VIJEĆA I/ILI DOPUNSKA NASTAVA I ISPITI DRŽAVNE MATURE Sjednica Nastavničkoga vijeća Sjednica Nastavničkoga vijeća Sjednica Nastavničkoga vijeća Sjednice Razrednih vijeća (I. kvartal) Sjednica Nastavničkoga vijeća Sjednice Razrednih vijeća (I. polugodište) Sjednica Nastavničkoga vijeća Sjednice Razrednih vijeća 4. razreda (III. kvartal) Sjednice Razrednih vijeća 1., 2. i 3. razreda (III. kvartal) Sjednica Nastavničkoga vijeća Sjednice Razrednih vijeća 4. razreda Sjednica Nastavničkoga vijeća (pohvale, nagrade) Dopunska nastava za maturante Sjednice Razrednih vijeća 4. razreda Državna matura (izborni predmeti) Sjednice Razrednih vijeća za 1., 2. i 3. razrede Državna matura (Engleski jezik) Državna matura (Hrvatski jezik-esej) Državna matura (Hrvatski jezik-test) Sjednica Nastavničkoga vijeća Državna matura (Matematika) Sjednica Nastavničkoga vijeća Dopunska nastava za 1., 2. i 3. razrede Sjednica Nastavničkoga vijeća Sjednice Razrednih vijeća za 1., 2. i 3. razrede Dostava svjedodžbi Popravni ispit Državna matura (jesenski ispitni rok) Sjednice Razrednih vijeća za 1., 2. i 3. razrede Sjednica Nastavničkoga vijeća Sjednica Nastavničkoga vijeća 31. listopada PROJEKTNI DAN Provedba međupredmetnog kurikuluma i novi pedagoški procesi u školi Nositelj: razrednici Sudionici: nastavnici, učenici, stručni suradnici i ravnateljica Cilj: - razvijanje zajedništva - snalaženje u novim situacijama - afirmacija odgovornosti - primjena stečenih znanja u istraživačkom radu. Planirani broj sati: 7 sati Sadržaj: Upoznati kulturnu baštinu izabranih destinacija i relevantne osobe za razvoj kulture, povijesti i prirodoznanstvenoga područja. Ishodi: Učenici će upoznati kulturnu baštinu izabrane destinacije i 16
17 povezati stečena znanja u realnim situacijama. Aktivnosti: Dogovor o izboru destinacija, mjestima i znamenitostima koje će se istražiti, prikupljanje materijala, istraživački posjet dogovorenim destinacijama i vrednovanje realiziranh aktivnosti. Oblici i metode rada: timski rad i suradničko učenje Vrijeme realizacije: listopad Troškovnik: cca 150 Izmjene kalendara moguće su uslijed nepredvidljivih okolnosti, kao i zbog uputa Ministarstva znanosti, obrazovanja i sporta. Sjednice stručnih i upravnih tijela Škole održavat će se i izvan planiranih termina, kada se za to ukaže potreba. Kalendar rada škole određuje se sukladno Pravilniku o početku i završetku nastavne godine, broju radnih dana i trajanju odmora učenika osnovnih i srednjih škola za tekuću godinu, odnosno za školsku godinu 2016./17. 17
18 6. PRIJEDLOG RADA ŠKOLSKOG ISPITNOG POVJERENSTVA I DEŽURNIH NASTAVNIKA TIJEKOM ŠKOLSKE GODINE 2016./2017. Sukladno pravilniku o polaganju državne mature temeljenom na članku 82. stavka 7. Zakona o odgoju i obrazovanju u osnovnoj i srednjoj školi, ove školske godine 2016./2017. u Školsko ispitno povjerenstvo imenuju se: 1. dr. sc. Brankica Žugaj, prof. - predsjednik 2. Iva Dubravica, prof. ispitni koordinator 3. Melita Jakopović, prof. član 4. Martina Lacković, prof. član 5. Kristian Golubić, prof. član 6. Gordan Polan, prof. član 7. Olieta Horvat Kardoš, prof. član. Navedeni članovi Školskog ispitnog povjerenstva provodit će sljedeće poslove: utvrđivati preliminarni popis učenika za polaganje ispita, na temelju zaprimljenih pretprijava, i dostavljati ga Centru utvrđivati konačan popis učenika koji su ispunili uvjete za polaganje ispita i dostavljati ga Centru odlučivati o opravdanosti nepristupanja učenika polaganju ispita zaprimati prigovore učenika u svezi s nepravilnostima provedbe ispita, i prigovore učenika na ocjene, te dostavljati Centru pismeno mišljenje utvrđivati i ostale poslove nastavnika u provedbi ispita obavljati i druge poslove koji proizlaze iz naravi provedbe ispita. Ispitni koordinator će: osiguravati i provjeravati popis i prijave učenika za ispite zaprimati, zaštititi i pohranjivati ispitne materijale osiguravati prostorije za provođenje ispita nadzirati provođenje ispita i osiguravati pravilnosti postupka provedbe ispita vratiti ispitne materijale Centru informirati sve učenike o sustavu vanjskog vrednovanja i zadacima i ciljevima vrednovanja savjetovati učenike o odabiru izbornih predmeta državne mature informirati učenike o postupku provođenja ispita i koordinirati prijavljivanje za ispite na razini škole pravovremeno dostaviti rezultate ispita učenicima voditi brigu u školi o provedbi prilagodbe ispita za učenike s teškoćama informirati nastavnike o sustavu, zadacima i ciljevima vanjskog vrednovanja, te savjetovati i pružati podršku sudjelovati na stručnim sastancima koje organizira Centar organizirati tematske sastanke na kojima će se raspravljati i informirati o svim pitanjima i novostima u svezi s vanjskim vrednovanjem osiguravati pravovremene dostupnosti informacija i publikacija za nastavnike surađivati s roditeljima u savjetovanju učenika glede odabira izbornih predmeta državne mature unositi i upotpunjavati prvobitne podatke o školi i nastavnim predmetima u bazu podataka unositi prijave za ispite u suradnji s učenicima. U slučaju promjene, ispitni koordinator će u roku od 5 dana dostaviti Centru prijavnicu kojom učenik prijavljuje promjenu prijavljenog ispita. 18
19 Školsko ispitno povjerenstvo će, u slučaju naadne prijave učenika za polaganje ispita, odlučiti o opravdanostima razloga za naadnu prijavu, propisanih člankom 17. Pravilnika o polaganju državne mature, te o odluci obavijestiti učenika i Centar. Školsko ispitno povjerenstvo će rasporediti učenike u skupine po ispitnim prostorijama i imenovati dežurne nastavnike, najkasnije tri dana prije početka ispita. Raspored učenika i dežurnih nastavnika po skupinama i po prostorijama, školsko ispitno povjerenstvo objavit će na dan ispita 60 minuta prije početka ispita na mjestu dostupnom učenicima. Predsjednik školskog ispitnog povjerenstva osigurat će provjeru prostora u kojima učenici polažu ispite prije svakog ispita i odrediti osobe koje će nadzirati hodnike i druge dostupne prostorije u kojima se mogu zadržavati učenici koji polažu ispit. Dežurni će nastavnik, ukoliko učenik kod osobne identifikacije pri pristupanju ispitu nema osobni dokument, zapisati to u zapisnik, a identifikacija učenika obavit će se u školi prepoznavanjem najkasnije u roku 24 sata nakon početka ispita. Za vrijeme pisanja ispita dežurat će dva nastavnika, koji ne smiju biti nastavnici iz predmeta iz kojega se polaže ispit, a od kojih će jedan biti voditelj ispitne prostorije. Voditelj ispitne prostorije dobit će opće upute za ispit i pravila ponašanja na ispitu, najkasnije pet dana prije ispita od ispitnog koordinatora, a upute za rješavanje ispita, na sam dan polaganja. Dežurni nastavnik će tijekom ispita osiguravati poštivanje propisanih pravila i uputa i upisati u zapisnik sve posebnosti koje su se dogodile tijekom provedbe ispita. Dežurni nastavnik će dopustiti privremenu odsutnost učenika iz opravdanih razloga iz ispitne prostorije do 5 minuta. Dulja odsutnost opravdat će se samo u iznimnim slučajevima. Dežurni nastavnik će upisivati vrijeme predaje ispitnog materijala učenika, i izvijestiti učenike da, kada istee vrijeme određeno za ispit, odlože pomagala i olovke, odlože ispitne materijale na rub stola i ostanu na svom mjestu. Dežurni nastavnik će pokupiti materijale na završetku pisanja i provjeriti jesu li učenici vratili sve dobivene materijale i je li to izvršeno prema uputama. Ako utvrdi nedostatke, pokušat će ih otkloniti, unijet će ih u zapisnik i tek nakon toga dopustiti učenicima izlazak iz ispitne prostorije. Ispitni koordinator će osobno preuzeti ispitni materijal za svoju školu. U slučaju spriječenosti ispitnog koordinatora, sve njegove obveze preuzet će predsjednik školskog ispitnog povjerenstva ili osoba koju on ovlasti, o čemu će obavijestiti Centar u roku od 24 sata. Pri preuzimanju ispitnog materijala ispitni koordinator će provjeriti broj i ispravnost kutija koje moraju biti zatvorene i neoštećene i odnijeti do mjesta gdje će biti sigurno pohranjene, otvoriti i provjeriti odgovara li broj omotnica s ispitnim materijalima broju prijavljenih učenika. Nakon provjere, popunit će i potpisati obrazac i istog dana dostaviti Centru. Ako broj ne odgovara, ispitni koordinator će odmah kontaktirati Centar. Ispitni koordinator će odrediti točan raspored sjedenja učenika za svaku ispitnu prostoriju, te prirediti natpise s imenima učenika, i postaviti ih na stolove prema rasporedu sjedenja. Nakon ispita, voditelj prostorije predat će sav ispitni materijal ispitnom koordinatoru, koji će pregledati vraćeni materijal, zapakirati ga s Obrascem 6 i pozvati djelatnike Hrvatske pošte radi preuzimanja kutija i slanja u NCVVO. Ispitni koordinator će pregledati popunjene obrasce s ispita i istog dana popuniti Obrazac Povrat ispitnog materijala u aplikaciji baze NCVVO-a. U slučaju otkrivanja ili otuđenja ispitnog materijala, koordinator će popuniti Obrazac 11 i izvijestiti NCVVO. Ispitni koordinator, ravnatelj i NCVVO moraju ispitati okolnosti pod kojima se to zbilo. Ispitni koordinator će voditi evidenciju o dolasku učenika na ispite te sedam dana nakon provedenih ispita popuniti Obrazac 6 i dostaviti ga u Centar ili e-poštom. 19
20 6.1. Ljetni rok državne mature u školskoj godini 2016./2017. DATUM ISPIT VRIJEME POČETKA ISPITA 6. lipnja PSIHOLOGIJA 9.00 INFORMATIKA lipnja KEMIJA 9.00 SOCIOLOGIJA lipnja POLITIKA I GOSPODARSTVO 9.00 LOGIKA lipnja BIOLOGIJA 9.00 FRANCUSKI JEZIK A I B lipnja LIKOVNA UMJETNOST 9.00 ŠPANJOLSKI JEZIK A I B lipnja FIZIKA 9.00 POVIJEST lipnja NJEMAČKI JEZIK A I B 9.00 FILOZOFIJA lipnja ENGLESKI JEZIK A I B lipnja HRVATSKI JEZIK A I B (esej) lipnja HRVATSKI JEZIK A I B (test) 9.00 ETIKA lipnja GEOGRAFIJA 9.00 TALIJANSKI JEZIK A I B lipnja GLAZBENA UMJETNOST 9.00 VJERONAUK lipnja MATEMATIKA A I B 9.00 Materinski jezici nacionalnih manjina (esej) ČEŠKI JEZIK lipnja MAĐARSKI JEZIK 9.00 SRPSKI JEZIK 9.00 TALIJANSKI JEZIK A I B lipnja GRČKI JEZIK Materinski jezici nacionalnih manjina (test) ČEŠKI JEZIK lipnja MAĐARSKI JEZIK 9.00 SRPSKI JEZIK 9.00 TALIJANSKI JEZIK A I B lipnja LATINSKI JEZIK A I B OBJAVA REZULTATA: 12. srpnja ROK ZA PRIGOVORE: 14. srpnja KONAČNA OBJAVA REZULTATA: 17. srpnja PODJELA SVJEDODŽBI: 20. srpnja
21 6.2. Jesenski rok državne mature u školskoj godini 2016./2017. DATUM ISPIT VRIJEME POČETKA ISPITA 23. kolovoza LOGIKA 9.00 GLAZBENA UMJETNOST kolovoza ETIKA 9.00 GEOGRAFIJA kolovoza SOCIOLOGIJA 9.00 FILOZOFIJA Materinski jezici nacionalnih manjina (esej) ČEŠKI JEZIK kolovoza MAĐARSKI JEZIK 9.00 SRPSKI JEZIK 9.00 TALIJANSKI JEZIK A I B kolovoza GRČKI JEZIK kolovoza LATINSKI JEZIK A I B Materinski jezici nacionalnih manjina (esej) ČEŠKI JEZIK kolovoza MAĐARSKI JEZIK 9.00 SRPSKI JEZIK 9.00 TALIJANSKI JEZIK A I B kolovoza FRANCUSKI JEZIK A I B kolovoza HRVATSKI JEZIK A I B(ESEJ) 9.00 LIKOVNA UMJETNOST kolovoza HRVATSKI JEZIK A I B(TEST) 9.00 TALIJANSKI JEZIK A I B rujna ENGLESKI JEZIK A I B 9.00 POVIJEST rujna MATEMATIKA A I B 9.00 ŠPANJOLSKI JEZIK A I B rujna NJEMAČKI JEZIK A I B 9.00 KEMIJA rujna BIOLOGIJA 9.00 PSIHOLOGIJA rujna FIZIKA 9.00 POLITIKA I GOSPODARSTVO rujna INFORMATIKA 9.00 VJERONAUK OBJAVA REZULTATA: 13. rujna ROK ZA PRIGOVORE: 15. rujna KONAČNA OBJAVA REZULTATA: 19. rujna PODJELA SVJEDODŽBI: 21. rujna
22 7. Broj razrednih odjela i učenika školske godine 2015./2016. i 2016./2017. U ovoj nastavnoj godini tri su učenika gosti iz SAD-a (Rotary International). ŠKOLSKA GODINA 2015./2016. RAZRED BROJ RAZR. ODJELA BROJ UČENIKA na kraju šk.god. Opća gimnazija Opća gimnazija M Ž U UKUPNO Prirodoslovno- -matematička gimnazija Prirodoslovno- -matematička gimnazija M Ž U UKUPNO Opća gimnazija, Prirodoslovno- -matematička gimnazija M Ž U UKUPNO
23 U ovoj nastavnoj godini jedan je učenik gost iz Taiwana (Rotary International) RAZRED ŠKOLSKA GODINA 2016./2017. BROJ RAZR. ODJELA BROJ UČENIKA na početku šk.god. Opća gimnazija Opća gimnazija M Ž U UKUPNO Prirodoslovno- -matematička gimnazija Prirodoslovno- -matematička gimnazija M Ž U UKUPNO Opća gimnazija, Prirodoslovno- -matematička gimnazija M Ž U UKUPNO
24 8. DODATNA NASTAVA Svrha dodatne nastave je omogućiti učeniku upoznavanje dodatnih sadržaja izvan redovne nastave; priprema za natjecanja, za Državnu maturu i upis na fakultet. Upotrebom interaktivnih metoda učenja, učenici će biti usmjereni na iskustveno, suradničko, radioničko učenje. Istraživački analiza i sinteza, rješavanje problema i problemska nastava pomoći će im da se prilagode svijetu u kojem živimo. Učenici će se pripremati za razvoj individualnih kompetencija. Dodatnu nastavu vodi devet nastavnika. PREDMET VODITELJ BROJ SATI BROJ UČENIKA GEOGRAFIJA ANITA LUĆIĆ, prof ZBOR IVANA PETRAVIĆ, prof MATEMATIKA VIŠNJA ŠTAJDOHAR, prof HRVATSKI JEZIK DUBRAVKA CUNDEKOVIĆ, prof BIOLOGIJA ĐURĐICA MASKALAN, prof LATINSKI JEZIK TATJANA ŠAFRANIĆ, prof POVIJEST NINA GRČIĆ, prof LIKOVNA UMJETNOST ELEN ZUBEK, prof ŠŠD GORDAN POLAN, prof
25 PLAN I PROGRAM RADA DODATNE NASTAVE GEOGRAFIJE U ŠKOLSKOJ GODINI 2016./2017. Voditelj dodatne nastave: Broj učenika: Broj sati tjedno: Broj sati godišnje: Anita Lučić Cilj dodatne nastave: Razvijati vještine geografskog mišljenja i primjene geografskih znanja u prostoru. Poticati učenike na sudjelovanje na natjecanjima iz geografije te priprema za ista. 25
26 PLAN I PROGRAM RADA DODATNE NASTAVE ZBOR U ŠKOLSKOJ GODINI 2016./2017. Voditelj izvannastavne aktivnosti: Broj učenika: Broj sati tjedno: Broj sati godišnje: Ivana Petravić Cilj izvannastavne aktivnosti: Senzibilizirati učenike za aktivno bavljenje glazbom, razvijati njihove pjevačke sposobnosti i poticati ih na javne nastupe. 26
27 PLAN I PROGRAM RADA DODATNE NASTAVE MATEMATIKA U ŠKOLSKOJ GODINI 2016./2017. Voditelj dodatne nastave: Broj učenika: Broj sati tjedno: Broj sati godišnje: Višnja Štajdohar, prof Cilj dodatne nastave: Ponavljanje i utvrđivanje gradiva stjecanog tijekom cijelog dosadašnjeg školovanja, stjecanje dodatnog znanja, modeliranje- rješavanje problemskih zadataka te priprema za državnu maturu. 27
28 PLAN I PROGRAM RADA DODATNE NASTAVE IZ HRVATSKOGA JEZIKA U ŠKOLSKOJ GODINI 2016./2017. Voditelj dodatne nastave: Broj učenika: Broj sati tjedno: Broj sati godišnje: Cilj dodatne nastave: Dubravka Cundeković, prof priprema učenika za natjecanje iz HJ -posjet kazališnim predstavama, usporedba jiževnog predloška s kazališnom izvedbom te razvijanje navike posjeta kazalištu i njegovanje pravila ponašanja u takvim sredinama - surađivati s Gradskom jižnicom Velika Gorica te Maticom hrvatskom birajući odgovarajuće i aktualne sadržaje -uključivanje u projekt AZZO-a Pisci na mreži -priprema učenika za DM koja će obuhvaćati sadržaje propisane Ispitnim katalogom (poznavanje ispitnih cjelina i tipova zadataka, rješavanje oglednih primjera ispita, pisanje sva tri tipa eseja interpretativni, raspravljački, usporedni). 28
29 PLAN I PROGRAM RADA DODATNE NASTAVE _BIOLOGIJE U ŠKOLSKOJ GODINI 2016./2017. Voditelj dodatne nastave: Broj učenika: Broj sati tjedno: Broj sati godišnje: Cilj dodatne nastave: Đurđica Maskalan Cilj programa dodatne nastave iz biologije: upoznati značenje biologije za život čovjeka i znanstvene metode istraživanja; usvajanje znanja i vještina potrebnih za učinkovito sudjelovanje na natjecanju u znanju; na konkretnom primjeru biološkog istraživanja prepoznati osnovne metode, tehnike i etape istraživanja u znanosti; uočiti vezu primjera iz svakodnevnog života i područja proučavanja biologije. 29
30 PLAN I PROGRAM RADA DODATNE NASTAVE IZ LATINSKOGA JEZIKA U ŠKOLSKOJ GODINI 2016./2017. Voditelj dodatne nastave: Broj učenika: Broj sati tjedno: Broj sati godišnje: Cilj dodatne nastave: TATJANA ŠAFRANIĆ Priprema učenika drugih razreda za natjecanje iz latinskog jezika samostalan prevodilački rad uz primjenu znanja iz gramatike i vokabulara, razumijevanje teksta, širenje znanja iz civilizacije i kulture i rimske jiževnosti, terenska nastava. 30
31 PLAN I PROGRAM RADA DODATNE NASTAVE IZ POVIJESTI U ŠKOLSKOJ GODINI 2016./2017. Voditelj dodatne nastave: Nina Grčić, prof. Broj učenika: 15 Broj sati tjedno: 2 Broj sati godišnje: 70 Poticati učenike na kontekstualizaciju nastavnih sadržaja. Razvijanje vještine terenskog istaraživačkog rada i rada na izvorima. Utvrđivanje i dodatno upoznavanje s Cilj dodatne nastave: pojedinim temama iz nastavnog plana i programa. Poticanje učenika na sudjelovanje na natjecanjima iz povijesti i pripreme za natjecanja. 31
32 PLAN I PROGRAM RADA DODATNE NASTAVE LIKOVNA UMJETNOST U ŠKOLSKOJ GODINI 2016./2017. Voditelj dodatne nastave: Broj učenika: Broj sati tjedno: Broj sati godišnje: Cilj dodatne nastave: Elen Zubek Razvijati kritičko mišljenje o vizualnoj okolini s naglaskom na perivojnu arhitekturu. Razvijanje vještinu istraživačkog rada i analitičkog mišljenja. Poticati učenike na pronalaženje problema u vizualnoj okolini i predlaganje vlastitih rješenja. Razviti svijest o mogućnosti pojedinca da utječe na stvari koje se odnose na vlastitu okolinu. 32
33 PLAN I PROGRAM RADA DODATNE NASTAVE ŠKOLSKO SPORTSKO DRUŠTVO GVG U ŠKOLSKOJ GODINI 2016./2017. Voditelj dodatne nastave: Gordan Polan, prof. Broj učenika: 80 Broj sati tjedno: 2 Broj sati godišnje: 70 Cilj školskog sportskog društva je okupiti što više učenika da bi se organizirano bavili sportom, te putem treninga, utakmica i natjecanja stekli znanja i vještine iz sporta kojim se bave. Sudjelovanje u školskom sportu važno je za razvoj bazičnih motoričkih sposobnosti, ali isto tako za razvoj i usavršavanje specifičnih motoričkih sposobnosti i vještina vezanih za pojedini sport, a ovisno o interesu učenika. Također uključivanje u Cilj dodatne nastave: rad školskog sportskog društva pruža učenicima mogućnost lakšeg oslobađanja stresa koji se nakuplja sa sve većim školskim obvezama. Posebni je zadatak školskog sportskog društva odgojno utjecati na mladež, ne samo u smislu stjecanja dobrih navika, nego i u smislu ispunjenja slobodnog vremena te odvraćanja od poroka modernog doba. 33
34 9. IZVANNASTAVNE AKTIVNOSTI Svrha izvannastavnih aktivnosti je oslobađanje stvaralačkih potencijala, poticanje kreativnosti, jačanje pozitivne slike o sebi, razvijanje tolerancije, upoznavanje samoga sebe i međusobno druženje. Izvannastavne aktivnosti u Gimnaziji Velika Gorica omogućit će svakom pojedincu da upozna sebe i svoje mogućnosti te aktivno sudjeluje u životu i radu škole. Ponudili smo sljedeće izvannastavne aktivnosti: AKTIVNOST VODITELJ BROJ SATI BROJ UČENIKA RECITATORSKA GRUPA DUBRAVKA CUNDEKOVIĆ, prof NOVINARSKA GRUPA JEZIČNA KULTURA IGOR SUBOTIĆ, prof. MELITA JAKOPOVIĆ, prof FILMSKA GRUPA IVA ROŽIĆ, prof INFORMATIČKA GRUPA KRISTINA LUČIĆ, dipl. ing ESTETSKO UREĐENJE ŠKOLE SNJEŽANA IDŽAKOVIĆ ROŽANKOVIĆ, prof VJERONAUČNA GRUPA NATAŠA ČURIĆ, prof VOLONTERSKI KLUB ANA LEDER, prof DRAMSKA GRUPA GORDANA VLAŠIĆ, prof
35 PLAN I PROGRAM RADA IZVANNASTAVNIH AKTIVNOSTI RECITATORSKA GRUPA U ŠKOLSKOJ GODINI 2016./2017. Voditelj izvannastavne aktivnosti: Broj učenika: Broj sati tjedno: Broj sati godišnje: Cilj izvannastavne aktivnosti: Dubravka Cundeković, prof razviti kreativnost u interpretaciji pjesama i proznih tekstova - razviti učenikovu maštu ali i kritičko mišljenje - ovladati postupcima recitatorskog umijeća - usvojiti vrednote govornog izražavanja dikcije, intonacije, tempa, ritma, mimike, geste - razviti sigurnost i samopouzdanje u nastupu - razviti osjećaj iskrenosti, prirodnosti u svim vidovima rada - senzibilizirati učenika za aktivan odnos prema umjetničkim tekstovima. 35
36 PLAN I PROGRAM RADA IZVANNASTAVNE AKTIVNOSTI - NOVINARSKE GRUPE U ŠKOLSKOJ GODINI 2016./2017. Voditelj izvannastavne aktivnosti: Broj učenika: Broj sati tjedno: Broj sati godišnje: Cilj izvannastavne aktivnosti: Igor Subotić njegovanje i kultiviranje jezičnog izražavanja - učenje novinarskih vrsta i primjena znanja - praćenje školskih i izvanškolskih aktivnosti te života grada Velike Gorice (zanimljivosti i aktualnost o školi i Gradu) - promocija Škole i učeničkih ostvarenja - stjecanje kompetencija u pisanju novinarskih uradaka - razvijanje istraživačkoga duha. 36
37 PLAN I PROGRAM RADA IZVANNASTAVNE AKTIVNOSTI JEZIČNE KULTURE U ŠKOLSKOJ GODINI 2016./2017. Naziv izvannastavnih aktivnosti: Voditelj izvannastavnih aktivnosti: Jezična kultura Melita Jakopović Broj učenika: 15 Broj sati tjedno: Broj sati godišnje: 2 70 Cilj izvannastavnih aktivnosti: Otkrivati, pratiti i poticati učenike na kreativno pisanje; istraživati aktualnu jezičnu problematiku; poticati suradničko pisanje, razvijati kritičke stavove, istraživački duh, jezičnu kulturu i komunikaciju te osobni stil pisanja; poticati cjeloživotno učenje jezika u školi i izvan nje; promicati bogatu jezičnu i kulturnu raznolikost Europe; proučavati i razvijati medijsku pismenost. 37
38 PLAN I PROGRAM RADA IZVANNASTAVNIH AKTIVNOSTI FILMSKOG KLUBA U ŠKOLSKOJ GODINI 2016./2017. Voditelj izvannastavne aktivnosti: Broj učenika: Broj sati tjedno: Broj sati godišnje: Cilj izvannastavne aktivnosti: Iva Rožić, prof Upoznati učenike s razvojem filmske umjetnosti, s posebnim naglaskom na kinematografiju SAD-a; otkriti glavne osobine pojedinih žanrova uz vizualne primjere, analiza i osvrt na film, odrediti faze procesa nastajanja filma, upoznati svjetske kinematografije i njihove predstavnike, izraditi kratke filmske uratke na zadanu temu, upoznati alate potrebne za izradu filma (programi, aplikacije). 38
39 PLAN I PROGRAM RADA IZVANNASTAVNIH AKTIVNOSTI INFORMATIČKA GRUPA U ŠKOLSKOJ GODINI 2016./2017. Voditelj izvannastavne aktivnosti: Broj učenika: Broj sati tjedno: Broj sati godišnje: Cilj izvannastavne aktivnosti: KRISTINA LUČIĆ Organizirati radionice za Europski tjedan programiranja. Pripremiti se za državnu maturu iz informatike. Pripremiti se i sudjelovati na natjecanjima HONI u organizaciji Hrvatskog saveza informatičara, te INFOKUP Osnove informatike, Algoritmi i Razvoj softvera. Obilježiti Dan sigurnijeg Interneta. Pripremiti digitalne materijale za Dan otvorenih vrata. Održavati i uređivati školsku web stranicu, te održavati i popravljati školska računala. 39
40 PLAN I PROGRAM RADA IZVANNASTAVNIH AKTIVNOSTI ESTETSKO UREĐENJE ŠKOLE U ŠKOLSKOJ GODINI 2016./2017. Voditelj izvannastavne aktivnosti: Broj učenika: Broj sati tjedno: Broj sati godišnje: Snježana Idžaković Rožanković Cilj izvannastavne aktivnosti: Razviti interes za estetsko uređenje prostora, poticati kreativno izražavanje učenika. 40
41 PLAN I PROGRAM RADA IZVANNASTAVNIH AKTIVNOSTI VJERONAUČNA SKUPINA U ŠKOLSKOJ GODINI 2016./2017. Voditelj izvannastavne aktivnosti: Broj učenika: Broj sati tjedno: Broj sati godišnje: Nataša Čurić Cilj izvannastavne aktivnosti: Povezivanje vjeronaučnog sadržaja sa svakodnevnim životom; prirema za vjeronaučnu olimpijadu,; njegovanje duhovnih vrijednosti. 41
42 PLAN I PROGRAM RADA IZVANNASTAVNIH AKTIVNOSTI VOLONTERSKI KLUB U ŠKOLSKOJ GODINI 2016./2017. Voditelj izvannastavne aktivnosti: Broj učenika: Broj sati tjedno: Broj sati godišnje: Cilj izvannastavne aktivnosti: ANA LEDER Promicanje pozitivne prakse volontiranja i primjene načela i standarda volonterstva među organizatorima volontiranja, volonterima i korisnicima njihovih usluga. Poticanje humanitarnog rada; njegovanje moralnih i duhovnih vrijednosti. 42
43 PLAN I PROGRAM RADA IZVANNASTAVNIH AKTIVNOSTI DRAMSKA GRUPA GVG U ŠKOLSKOJ GODINI 2016./2017. Voditelj izvannastavne aktivnosti: Broj učenika: Broj sati tjedno: Broj sati godišnje: Cilj izvannastavne aktivnosti: Gordana, Vlašić, prof Osposobljavanje za glumu i scenski nastup, razvijanje sposobnosti javnoga nastupa i komunikacije, razvijanje dramskoga stvaralaštva, ovladavanje postupcima dramskoga stvaralaštva, razvijanje suradnje, odgovornosti, stjecanje kritičnosti i discipline u radu, razvijanje samopouzdanja, vrijednog u privatnom životu i mnogim profesijama. 43
44 10. ORGANIZACIJA ODGOJNO-OBRAZOVNOG RADA Redovna nastava organizirana je u dvije smjene. Prvu smjenu čini pet trećih i četiri četvrta razreda, a drugu smjenu četiri prva i pet drugih razreda. Prijepodnevna nastava počinje u 7 30 sati, a poslijepodnevna u sati. Tijekom cijele nastavne godine predviđena su dnevna dežurstva učenika i profesora. Radi se u petodnevnom radnom tjednu prema stalnom rasporedu, a ostale dane realizirat će se samo one aktivnosti koje je propisalo Ministarstvo znanosti, obrazovanja i športa (natjecanja i sl.). Raspored sati mijenjat će se zadnjih mjesec dana kako bi se realizirao plan i program rada. Ako ne realiziramo nastavni plan i program, nastava će se produljiti uz suglasnost Županije. Nastava će se realizirati u 8 učionica, kabinetu za informatiku, kabinetu za fiziku, kemiju, kabinete za likovnu i glazbenu umjetnost i u maloj zbornici za izvedbu nastave stranih jezika s manjim brojem učenika. Nastava će biti kabinetska. Rad slobodnih aktivnosti i dodatne nastave realizirat će se u prostoriji do zbornice, a ujedno, ta će učionica služiti kao multimedijalna učionica. Sati razrednika realizirat će se, dijelom satima u razredu, a dijelom posjetima muzejima, izložbama i sl. (zbog opterećenosti rasporeda). Dodatni oblici rada s učenicima realizirat će se u međusmjeni ili nakon nastave. Rad školskog športskog društva odvijat će se u večernjim satima od do u zajedničkoj dvorani koju koriste četiri škole. Tijekom nastavne godine, a najkasnije do 8. lipnja, razrednici će realizirati minimalno tri roditeljska sastanka. Sjednice Stručnih tijela održavat će se u nenastavno vrijeme, uz poziv koji će biti objavljen na oglasnoj ploči škole, najmanje tri dana ranije. Prema potrebi, realizirat će se stručne zamjene, a za dulje zamjene uručivat će se rješenja o zamjeni. Nestručne zamjene, koje su solidarne zamjene, realizirat će svi profesori prema potrebi. Broj solidarnih zamjena iznosit će do 3 sata u jednom tjednu. Svaki profesor dužan je pripremiti se za nastavu kako bi mogao realizirati sate zamjena i treba biti pripremljen za sate u vrijeme pauze. Profesori će koristiti kompjutore i projektor po potrebi i zajedničkom dogovoru.vježbe iz informatike realizirat će se u kabinetu informatike i u malom kabinetu učionica broj 9. 44
45 11. ŠKOLSKI PREVENTIVNI PROGRAM Cilj školskog preventivnog programa je unaprjeđenje zdravlja učenika i smanjenje broja mladih koji će doživjeti početno rizično ponašanje. Školski preventivni program je implementiran u sadržaje sata razrednog odjela, izvannastavne aktivnosti, izvanškolsko provođenje slobodnog vremena mladih, roditeljske sastanke, sastanke Nastavničkoga vijeća i redovnu nastavu. Na satima razrednog odjela učenici će zdravstvenim prosvjećivanjem dobiti relevantne informacije o uzrocima, posljedicama uzimanja ovisničkih sredstava. Pedagoške radionice i interaktivna predavanja na satima razrednog odjela osnažit će samopoštovanje naših učenika, poboljšat će njihove mogućnosti donošenja zdravih odluka i naučit će vještine nenasilnog rješavanja sukoba. Učenici će ovladati socijalnim vještinama koje su neophodne za zdrav rast i razvoj svakog čovjeka. Izvannastavne aktivnosti nude različite sadržaje, a učenici će dobiti priliku, mogućnost kreativnog stvaralačkog rada u skladu sa svojim potrebama i mogućnostima. Kroz projekt Putovati znači živjeti razvijat ćemo kulturu putovanja, poticati međusobno druženje i suradničko, iskustveno učenje. Na roditeljskim sastancima prvih razreda, upoznat ćemo roditelje s osnovnim informacijama o uzrocima, posljedicama i rizicima uzimanja ovisničkih sredstava. Ukazat ćemo im na važnost ovladavanja komunikacijskih vještina, diskutirat ćemo o odgojnim stilovima i upoznat ćemo roditelje s različitim odgojnim postupcima i metodama te strategijama nenasilnog rješavanja sukoba. Svi nastavnici će i ove školske godine sudjelovati na stručnom usavršavanju na temu Slobodno vrijeme i ovisnosti o internetu, u organizaciji Gimnazije Velika Gorica. U sklopu redovne nastave nastojat ćemo osigurati pozitivno ozračje, suvremenim metodama rada pridonijet ćemo razvoju kvalitete i omogućiti svakom učeniku da aktivno sudjeluje u nastavnom procesu u skladu sa svojim mogućnostima. ŠPPO će se provoditi u dva stupnja: 1. PRIMARNA PREVENCIJA - Obuhvaća aktivnosti koje su usmjerene na sve učenike škole, kroz rad u nastavnom procesu, na satima razrednog odjela, kroz rad izvannastavnih aktivnosti, dodatne nastave i izvanškolskih aktivnosti. 2. SEKUNDARNA PREVENCIJA - Obuhvaća aktivnosti usmjerene na učenike koji pripadaju u skupinu djece rizičnog ponašanja, a provode ih razrednici, stručni suradnici u školi, zdravstveni radnici, radnici Centra za socijalnu skrb i MUP-a, te drugi stručnjaci po potrebi. 4. NOSITELJI ŠPPO-a - svi nastavnici, stručna suradnica i ravnateljica - koordinatorica - stručna suradnica pedagoginja Olieta Horvat Kardoš, prof. AKTIVNOSTI ŠPPO-a Aktivnosti ŠPPO-a usmjerene su na tri razine: - aktivnosti usmjerene na učenike - aktivnosti usmjerene na roditelje - aktivnosti usmjerene na učitelje i druge stručne djelatnike škola. 45
46 12. PROGRAM EKSKURZIJA I STRUČNIH POSJETA Ove školske godine, na prijedlog stručnih vijeća, planirane su stručne ekskurzije za prve i druge razrede kroz projekte. Razrednici će zajedno s učenicima izabrati destinacije za izvanučioničnu nastavu te pripremiti i dogovoriti s predmetnim nastavnicima svrhu, sadržaj i ishode izvanučionične nastave prema Pravilniku o izvođenju izleta, ekskurzija i drugih odgojno-obrazovnih aktivnosti izvan škole. Vrijeme realizacije izvanučionične nastave je mjesec travanj Najmanje tri mjeseca prije realizacije projekata potrebno je ravnateljici dostaviti projektnu dokumentaciju. Izvanučioničnu nastavu dogovorit će razrednik s dva predmetna nastavnika, koji će zajedno s učenicima pripremiti izvanučioničnu nastavu i informirati roditelje na roditeljskom sastanku. Voditelji slobodnih aktivnosti i dodatne nastave u skladu s planom i programom, interesima učenika i mogućnostima roditelja, organizirat će izvanučioničnu nastavu. Višednevnu izvanučioničnu nastavu organizirat ćemo s dva programa za učenike trećih razreda prema Pravilniku o izvođenju izleta, ekskurzija i drugih odgojno-obrazovnih aktivnosti izvan škole, a učenicima s izrečenom pedagoškom mjerom sprječavanja, opomenom pred isključenje, neće biti dopušten odlazak na višednevnu izvanučioničnu nastavu. Plan i program višednevne izvanučionične nastave donosi Nastavničko vijeće, najkasnije do kraja prvog polugodišta. Učenici i roditelji, u suradnji s razrednicima, predlažu Program putovanja najkasnije u mjesecu studenom. Nakon usvajanja Programa Škola raspisuje pozivni natječaj. Izabrano Povjerenstvo izabire najbolju agenciju. Konačnu odluku o realizaciji višednevne izvanučionične nastave donosi ravnatelj Škole, najkasnije mjesec dana prije putovanja. 13. PROGRAM ODGOJNIH AKTIVNOSTI ŠKOLE Učenik u našoj školi temeljni je čimbenik određivanja odgojno-obrazovnih procesa koji imaju cilj osposobljavanje učenika za daljnje napredovanje u životu. Prateći promjene u globalnom svijetu i rezultate tih promjena, svi zajedno kreiramo školu kao zajednicu koja uči. Kreativno ozračje je nužnost suvremene škole, a učenik je aktivan, kreativan, inovativan nositelj odgojno-obrazovnog procesa zajedno s nastavnikom. Motiviramo učenike za odgovorno uključivanje u nove pedagoške procese, uspostavljamo suradničke odnose, kvalitetnu komunikaciju i skladne međuljudske odnose. Na satima razrednog odjela afirmirat ćemo svakog pojedinca, jačati osobnost, čime ćemo pridonijeti stvaranju kreativne klime za samorazvoj, razvoj komunikacijskih i socijalnih kompetencija. Razgovarat ćemo o aktualnim događanjima, naglašavat ćemo važnost humanosti i humanog ponašanja. U radu izvannastavnih aktivnosti i dodatnoj nastavi upoznat ćemo potrebe, interese naših učenika kako bismo ih mogli kvalitetno usmjeravati u njihovom razvoju i napredovanju. U suradnji sa školskom liječnicom, nastavnicima i roditeljima radit ćemo na prevenciji rizičnih ponašanja, upoznat ćemo ih sa zdravim načinom života i kvalitetnom provođenju slobodnog vremena. 46
47 14. PLAN I PROGRAM RADA RAZREDNIH ODJELA PRVIH RAZREDA Odgojni rad najizravnije u nastavnom radu možemo odjelotvoriti u realizaciji programa rada razrednika. Programiranje rada razrednika nužno uključuje zajedničko djelovanje učenika, nastavnika, roditelja, stručnih suradnika i ravnatelja. Suradničko učenje, rad na zajedničkim Projektima nužna je pretpostavka kvalitetnog planiranja i programiranja sata razrednika. Predložene sadržaje, koji obuhvaćaju Građanski odgoj i Zdravstveni odgoj, realizirat će učenici, nastavnici, stručni suradnici i po potrebi gosti, zajedničkim radom; metodom razgovora, raspravom, debatom, iznošenjem različitih argumenata o zadanom problemu. Pratit će se aktualna događanja. Na kraju svakog sata učenici i razrednik procijenit će razinu postignuća. Izabrani sadržaji pomoći će svakom učeniku rasti i razvijati se u zdravoj socijalnoj zajednici, koja prihvaća različitosti, i zajedničkim snagama stvara pozitivno okruženje u kojem svatko može iskazati sebe i svoje pozitivne vrijednosti. RAZREDNICI PRVIH RAZREDA 1. a: Višnja Štajdohar, prof. 1. b: Martina Lacković, prof. 1. c: Tatjana Šafranić, prof. 1. d: Kristina Lučić, prof. MJE- SEC rujan SADRŽAJ 1. Uvodni sat Moja očekivanja; međusobno upoznavanje 2. Upoznavanje pravilnika Škole 3. Izbor razrednoga (GOO) rukovodstva 4. Nova škola - izazovi i odluke koje donosimo zdravstveni odgoj 5. Prehrambeni stilovi - zdravstveni odgoj 6. Vrijednosti izbora životnog stila zdravstveni odgoj METODE I OBLICI RADA - oblici: frontalni, individualni, rad u paru, grupni pedagoška radionica - metode: razgovora, rada na tekstu, pisanja, diskusije, prezentacija. REALIZA TORI učenici, razrednica, gosti predavači ISHODI/OČEKIVAN A POSTIGNUĆA -Sastaviti pravila za dobre odnose u razredu -upoznati učenike sa sadržajima školskih pravilnika -priprema učenika za kandidaturu i sudjelovanje u Vijeću učenika -uočiti važnost preuzimanja odgovornosti za vlastito zdravlje -prepoznati posljedice po zdravlje nepravilnih prehrambenih navika -razlikovati zdrave životne stilove. RAZI- NA POSTI GNUĆ A I - Izvrsno VU - Vrlo uspješno U Uspješno NZ Ne zadovoljava 47
GODIŠNJI PLAN I PROGRAM Školske godine / 2017.
1 KLASIČNA GIMNAZIJA IVANA PAVLA II s pravom javnosti Z A D A R GODIŠNJI PLAN I PROGRAM Školske godine 2016. / 2017. Zadar, rujan 2016. . 2 UVOD Škola provodi plan i program kako ga propisuje Ministarstvo
GIMNAZIJA VELIKA GORICA Ulica kralja Stjepana Tomaševića VELIKA GORICA ŠKOLSKI KURIKUL(UM) Velika Gorica, rujan 2016.
GIMNAZIJA VELIKA GORICA Ulica kralja Stjepana Tomaševića 21 10410 VELIKA GORICA ŠKOLSKI KURIKUL(UM) Velika Gorica, rujan 2016. S A D R Ž A J UVOD... 2 PROJEKTI... 7 IZVANNASTAVNE AKTIVNOSTI... 15 DODATNA
ZBIRKA POTPUNO RIJEŠENIH ZADATAKA
**** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.
ŠKOLSKI KURIKULUM SŠ «Vladimir Nazor»Čabar za školsku godinu 2015./2016.
1961 2001 ŠKOLSKI KURIKULUM SŠ «Vladimir Nazor»Čabar za školsku godinu 2015./2016. SADRŽAJ: I. KALENDAR RADA II. IZBORNA NASTAVA III. DODATNA NASTAVA IV. DOPUNSKA NASTAVA V. IZVANNASTAVNE AKTIVNOSTI VI.
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
Školski kurikulum za školsku godinu 2017./2018.
Školski kurikulum za školsku godinu 2017./2018. Zagreb, rujan 2017. SADRŽAJ: SADRŽAJ:... 2 I. UVOD... 6 II. OSNOVNI PODACI O USTANOVI... 7 a) općenito o školi... 7 b) adresa škole... 8 c) šifra ustanove...
GODIŠNJI PLAN I PROGRAM RADA ŠKOLE ŠK. GOD /2016.
Strojarska tehnička škola Frana Bošnjakovića GODIŠNJI PLAN I PROGRAM RADA ŠKOLE ŠK. GOD. 2015./2016. Rujan 2015. SADRŽAJ: UVODNE NAPOMENE 3 1. UVJETI RADA 1.1. PROSTORNI I MATERIJALNI UVJETI 4 1.2. LJUDSKI
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka
GODIŠNJI PLAN I PROGRAM RADA ŠKOLE ŠK. GOD /2017.
Strojarska tehnička škola Frana Bošnjakovića GODIŠNJI PLAN I PROGRAM RADA ŠKOLE ŠK. GOD. 216./217. Rujan 216. SADRŽAJ: UVODNE NAPOMENE 3 1. UVJETI RADA 1.1. PROSTORNI I MATERIJALNI UVJETI 4 1.2. LJUDSKI
EKONOMSKA ŠKOLA VELIKA GORICA Velika Gorica, Ul. kralja S. Tomaševića 21
EKONOMSKA ŠKOLA VELIKA GORICA Velika Gorica, Ul. kralja S. Tomaševića 21 Rujan, 2013.g. SADRŽAJ 1. UVOD 2 2. OSNOVNI PODACI O ŠKOLI 3 3. CILJEVI, VIZIJA I MISIJA ŠKOLE 4 4. NASTAVNI PLANOVI 5 5. VREMENIK
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
GODIŠNJI PLAN I PROGRAM RADA ŠKOLE ŠK. GOD /2018.
Strojarska tehnička škola Frana Bošnjakovića GODIŠNJI PLAN I PROGRAM RADA ŠKOLE ŠK. GOD. 217./218. Rujan 217. SADRŽAJ: UVODNE NAPOMENE 3 1. UVJETI RADA 1.1. PROSTORNI I MATERIJALNI UVJETI 4 1.2. LJUDSKI
Prekrasna stvar vezana uz znanje je činjenica da ti ga nitko ne može oduzeti. (B. B. King) ŠKOLSKI KURIKULUM. OŠ Ivan Goran Kovačić ZDENCI 2017./2018.
ŠKOLSKI Prekrasna stvar vezana uz znanje je činjenica da ti ga nitko ne može oduzeti. (B. B. King) KURIKULUM OŠ Ivan Goran Kovačić ZDENCI 2017./2018. ŠKOLSKI KURIKULUM U Zdencima, 26.09.2017. KLASA: 602-02-01/17-279
ŠKOLSKI KURIKUL. OŠ don Mihovila Pavlinovića, Podgora 2016./2017.
ŠKOLSKI KURIKUL OŠ don Mihovila Pavlinovića, Podgora 2016./2017. OŠ don Mihovila Pavlinovića, Podgora Prilaz Vida Mihotića 1 21327 Podgora E-mail: os-podgora@os-mpavlinovica-podgora.skole.hr URL: www.os-mpavlinovica-podgora.skole.hr
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
TABLICE AKTUARSKE MATEMATIKE
Na temelju članka 160. stavka 4. Zakona o mirovinskom osiguranju («Narodne novine», br. 102/98., 127/00., 59/01., 109/01., 147/02., 117/03., 30/04., 177/04., 92/05., 43/07., 79/07., 35/08., 40/10., 121/10.,
GODIŠNJI PLAN I PROGRAM RADA ŠKOLE ZA ŠKOLSKU 2016./2017. GODINU
REPUBLIKA HRVATSKA Međimurska županija OSNOVNA ŠKOLADONJA DUBRAVA Donja Dubrava, Krbulja 21 KLASA: 602-02/16-01/14 URBROJ: 2109-26-16-01-1 GODIŠNJI PLAN I PROGRAM RADA ŠKOLE ZA ŠKOLSKU 2016./2017. GODINU
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Elektrostrojarska obrtnička škola Zagreb, Selska cesta 83 ŠKOLSKI KURIKULUM. Zagreb, rujan 2015.
Zagreb, Selska cesta 83 ŠKOLSKI KURIKULUM Zagreb, rujan 2015. Sadržaj 1. UVODNI DIO...5 2. PODACI O ŠKOLI...6 3. SADRŽAJ RADA ŠKOLE...7 4. POPIS RAZREDNIH ODJELJENJA...8 5. BROJČANI PRIKAZ RAZREDNIH ODJELA
GODIŠNJI PLAN I PROGRAM ZA ŠKOLSKU GODINU 2018./2019.
MEDICINSKA ŠKOLA U RIJECI GODIŠNJI PLAN I PROGRAM ZA ŠKOLSKU GODINU 2018./2019. Rijeka, rujan 2018. S A D R Ž A J 1. OSNOVNI PODACI... 7 1.1. Područje rada: zdravstvo... 7 1.2. Područje rada: veterina...
ŠKOLSKI KURIKULUM školska godina 2016./2017.
REPUBLIKA HRVATSKA ELEKTROSTROJARSKA ŠKOLA KLASA: 602-03/16-02/6 URBROJ: 2186-146-01-16-1 Varaždin, 30. 09. 2016. ŠKOLSKI KURIKULUM školska godina 2016./2017. Na temelju članka 28. 2. Zakona o odgoju i
OSNOVNA ŠKOLA VELIKA PISANICA IZVJEŠĆE GODIŠNJEG PLANA I PROGRAMA ZA ŠK.G.2015./16.
VELIKA PISANICA KLASA: 6-/6-/7 URBROJ: 3-44--6- Velika Pisanica, 9.rujna 6. OSNOVNA ŠKOLA VELIKA PISANICA Na osnovi članka 8. Zakona o odgoju i obrazovanju u osnovnoj i srednjoj školi (Narodne novine 87/8.,
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1
Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
OBRTNIČKA ŠKOLA ZA OSOBNE USLUGE - ZAGREB ŠKOLSKI KURIKULUM ZA ŠKOLSKU GODINU 2014./2015. Zagreb, 15. rujna 2014.
OBRTNIČKA ŠKOLA ZA OSOBNE USLUGE - ZAGREB ŠKOLSKI KURIKULUM ZA ŠKOLSKU GODINU 2014./2015. Zagreb, 15. rujna 2014. OBRTNIČKA ŠKOLA ZA OSOBNE USLUGE SAVSKA CESTA 23, ZAGREB Temeljem članka 118. Zakona o
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
1 Promjena baze vektora
Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu
Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
Školski kurikulum za školsku godinu 2017./2018.
OŠ DORE PEJAČEVIĆ NAŠICE NAŠICE Školski kurikulum za školsku godinu 2017./2018. 28. rujna, 2017. godine 1 Sadržaj: 1. Temeljna polazišta izrade školskog kurikulum... 7 2. Razvojni plan škole za 2017./2018.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
GLAZBENA UMJETNOST. Rezultati državne mature 2010.
GLAZBENA UJETNOST Rezultati državne mature 2010. Deskriptivna statistika ukupnog rezultata PARAETAR VRIJEDNOST N 112 k 61 72,5 St. pogreška mjerenja 5,06 edijan 76,0 od 86 St. devijacija 15,99 Raspon 66
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
Grafičko prikazivanje atributivnih i geografskih nizova
Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE
**** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.
JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
GODIŠNJI PLAN I PROGRAM RADA ŠKOLE ŠKOLSKA GODINA 2016./2017.
PRIRODOSLOVNA ŠKOLA VLADIMIRA PRELOGA ZAGREB, Ulica grada Vukovara 269 Tel:6184-772, 6184-764, fax:6184-780 www.psvprelog.hr e-mail: info@psvprelog.hr GODIŠNJI PLAN I PROGRAM RADA ŠKOLE ŠKOLSKA GODINA
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA
ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
IZVJEŠĆE O RADU U ŠKOLSKOJ I NASTAVNOJ 2016./2017. GODINI
IZVJEŠĆE O RADU U ŠKOLSKOJ I NASTAVNOJ 2016./2017. GODINI SADRŽAJ: 1. OSNOVNI PODACI O ŠKOLI... 3 2. ANALIZA PODATAKA U ŠKOLSKOJ I NASTAVNOJ 2016./2017. GODINI... 7 3. ŠKOLSKA NATJECANJA... 10 4. GODIŠNJI
2. KAMATNI RAČUN 2.1. POJAM KAMATE I KAMATNE STOPE
1 2. KAMATNI RAČUN 2.1. POJAM KAMATE I KAMATNE STOPE Pod pojmom kamata podrazumijeva se naknada koju dužnik plaća za posuđenu glavnicu. Pri tom se pod glavnicom najčešće podrazumijeva određena svota novca,
PRIMJER 3. MATLAB filtdemo
PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
4. Trigonometrija pravokutnog trokuta
4. Trigonometrij prvokutnog trokut po školskoj ziri od Dkić-Elezović 4. Trigonometrij prvokutnog trokut Formule koje koristimo u rješvnju zdtk: sin os tg tg ktet nsuprot kut hipotenuz ktet uz kut hipotenuz
Small Basic zadatci - 8. Razred
Small Basic zadatci - 8. Razred 1. Izradi program koji de napisati na ekranu Ovo je prvi program crvenom bojom. TextWindow.ForegroundColor = "red" TextWindow.WriteLine("Ovo je prvi program") 2. Izradi
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
Linearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
Juniorski četverac bez kormilara sezona 2014/2015 sa osvrtom na završne pripreme pred EP i SP. Aleksandar Smiljanić
Juniorski četverac bez kormilara sezona 2014/2015 sa osvrtom na završne pripreme pred EP i SP Aleksandar Smiljanić Generacija 1996 / 1997 8 + SP Hamburg 2014 4 - SP Rio de Janeiro 1. Cvijetić Nikola (1997)
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
PROVEDBI I REZULTATIMA J O RŽAVNE MATURE
DM DRŽAVNE MATURE IZVJEŠTAJ O PROVEDBI I REZULTATIMA 2017. IZVJEŠTAJ O PROVEDBI I REZULTATIMA DRŽAVNE MATURE Školska godina 2016./2017. IZVJEŠTAJ O PROVEDBI I REZULTATIMA DRŽAVNE MATURE Zagreb, 2017.
Linearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
Trigonometrija 1. Trigonometrijska kružnica. Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
Trigonometrija Trigonometrijska kružnica Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije Projektna nastava Osnovne trigonometrijske relacije:. +. tgx. ctgx tgx.
TROŠAK KAPITALA Predmet: Upravljanje finansijskim odlukama i rizicima Profesor: Dr sci Sead Mušinbegovid Fakultet za menadžment i poslovnu ekonomiju
TROŠAK KAPITALA Predmet: Upravljanje finansijskim odlukama i rizicima Profesor: Dr sci Sead Mušinbegovid Fakultet za menadžment i poslovnu ekonomiju Sadržaj predavnaja: Trošak kapitala I. Trošak duga II.
*** **** policije ****
* ** *** **** policije * ** *** **** UVOD na i M. Damaška i S. Zadnik D. Modly ili i ili ili ili ili 2 2 i i. koja se ne se dijeli na. Samo. Prema policija ima i na licije Zakon o kaznenom postupku (ZKP)
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
Sjeverna zgrada FSB-a, prvi kat
Elektrotehnika i električni strojevi Prof. dr. sc. Davor Zorc (nositelj) Prof. dr. sc. Joško Deur (nositelj) Dr. sc. Danijel Pavković Mario Hrgetić, dipl. ing. Katedra za strojarsku automatiku Sjeverna
Vježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom
Kolegij: Obrada industrijskih otpadnih voda Vježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom Zadatak: Ispitati učinkovitost procesa koagulacije/flokulacije na obezbojavanje
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
OSNOVE TEHNOLOGIJE PROMETA
OSNOVE TEHNOLOGIJE PROMETA MODUL: Tehnologija teleomuniacijsog rometa FAKULTET PROMETNIH ZNANOSTI Predavači: Doc.dr.sc. Štefica Mrvelj Maro Matulin, dil.ing. Zagreb, ožuja 2009. Oće informacije Konzultacije:
PROSTORNI STATIČKI ODREĐENI SUSTAVI
PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y
Sortiranje prebrajanjem (Counting sort) i Radix Sort
Sortiranje prebrajanjem (Counting sort) i Radix Sort 15. siječnja 2016. Ante Mijoč Uvod Teorem Ako je f(n) broj usporedbi u algoritmu za sortiranje temeljenom na usporedbama (eng. comparison-based sorting
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA
POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica
Ciljevi i način rada u metodičkoj radionici (I sadržaji iz teorije brojeva i algebre pogodni za rad na dodatnoj nastavi matematike) Ana Jurasić, 2013.
Ciljevi i način rada u metodičkoj radionici (I sadržaji iz teorije brojeva i algebre pogodni za rad na dodatnoj nastavi matematike) Ana Jurasić, 2013. Zašto metodička radionica za nastavnike? Društvo pred
EKSPONENCIJALNE i LOGARITAMSKE FUNKCIJE
**** MLADEN SRAGA **** 0. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE EKSPONENCIJALNE i LOGARITAMSKE FUNKCIJE α LOGARITMI Autor: MLADEN SRAGA Grafički urednik: Mladen Sraga
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
Numerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
Reverzibilni procesi
Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA
Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -
Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
PT ISPITIVANJE PENETRANTIMA
FSB Sveučilišta u Zagrebu Zavod za kvalitetu Katedra za nerazorna ispitivanja PT ISPITIVANJE PENETRANTIMA Josip Stepanić SADRŽAJ kapilarni učinak metoda ispitivanja penetrantima uvjeti promatranja SADRŽAJ
Sistemi veštačke inteligencije primer 1
Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati
NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika
NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
, Zagreb. Prvi kolokvij iz Analognih sklopova i Elektroničkih sklopova
Grupa A 29..206. agreb Prvi kolokvij Analognih sklopova i lektroničkih sklopova Kolokvij se vrednuje s ukupno 42 boda. rijednost pojedinog zadatka navedena je na kraju svakog zadatka.. a pojačalo na slici
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem