4 ΟΛΟΚΛΗΡΩΜΑΤΑ 4.2 ΒΑΣΙΚΕΣ ΙΔΙΟΤΗΤΕΣ



Σχετικά έγγραφα
4 ΟΛΟΚΛΗΡΩΜΑΤΑ 4.2 ΒΑΣΙΚΕΣ ΙΔΙΟΤΗΤΕΣ

Τύποι Παραγώγισης *** Ολοκλήρωσης

3 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Μαθηματική Ανάλυση Ι

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Αόριστο ολοκλήρωμα. επαληθεύει την παραπάνω ισότητα.

Βιομαθηματικά BIO-156. Ολοκλήρωση. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2017

ΚΕΦΑΛΑΙΟ 4 Ο ΣΤΟΙΧΕΙΑ ΟΛΟΚΛΗΡΩΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. ΦΥΕ 10-3 η. Όριο - Συνέχεια - Παράγωγος - Ακρότατα. Βασικά θεωρήματα Διαφορικού Λογισμού.

ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ. α) Το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [a, b] είναι όριο?

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

Ολοκλήρωμα συνάρτησης

Βιομαθηματικά BIO-156

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ

ΑΡΧΙΚΗ ΣΥΝΑΡΤΗΣΗ ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗΣ

5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΜΑΘΗΜΑΤΙΚΑ Ι Β ΜΕΡΟΣ

6. Ορισμένο Ολοκλήρωμα

ΠΕΡΙΕΧΟΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΟΡΘΟΓΩΝΙΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ...23 ΑΠΟΛΥΤΗ ΤΙΜΗ. ΑΝΙΣΟΤΗΤΕΣ...15 ΚΕΦΑΛΑΙΟ 3 ΕΥΘΕΙΕΣ...32 ΚΕΦΑΛΑΙΟ 4 ΚΥΚΛΟΙ...43

Μαθηματικά ΜΕΡΟΣ 8 ΟΛΟΚΛΗΡΩΜΑΤΑ α

ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ

ΣΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΗΜΩΝ ΠΑΝΕΠΙΣΗΜΙΟ ΠΑΣΡΩΝ ΑΚ. ΕΣΟ

5o Επαναληπτικό Διαγώνισμα 2016

ΜΕΘΟΔΟΙ ΟΛΟΚΛΗΡΩΣΗΣ. Παρατήρηση: Για να εφαρμόσουμε τον τύπο πρέπει μία από τις δύο συναρτήσεις να είναι ή να την γράψουμε υπό μορφή παραγώγου

(α) Από τους κανόνες σύνθετης παραγώγισης δύναμης συναρτήσεως και λογαρίθμου συναρτήσεως:

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

Ευχαριστίες Δύο λόγια από την συγγραφέα... 17

Επιχειρησιακά Μαθηματικά (1)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΣΕΙΡΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ. v. Σε αυτή την περίπτωση το lim v

Ολοκληρωτικός Λογισμός

ΣΗΜΕΙΩΣΕΙΣ. x β. τo σύνολο των σημείων του Α στα οποία αυτή είναι παραγωγίσιμη. Αντιστοιχίζοντας κάθε x Α. = f (x)

Γενικά Μαθηματικά (Φυλλάδιο 1 ο )

Μεθοδική Επανα λήψή. Επιμέλεια Κων/νος Παπασταματίου. Θεωρία - Λεξιλόγιο Βασικές Μεθοδολογίες. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ-

ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ 1. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ

Βιοµαθηµατικά BIO-156

Παράγωγος συνάρτησης. Έννοια παραγώγου Υπολογισμός Χρήση παραγώγου. ελαστικότητα Οριακές συναρτήσεις

Όταν η s n δεν συγκλίνει λέμε ότι η σειρά αποκλίνει.

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Σήματα και Συστήματα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ Οι συντεταγμένες ενός σημείου Απόλυτη τιμή...14

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

 = 1 A A = A A. A A + A2 y. A = (A x, A y ) = A x î + A y ĵ. z A. 2 A + A2 z

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ

Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις ενδέκατου φυλλαδίου ασκήσεων.

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα

ln 1. ( ) vii. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη C f, τον άξονα η οποία είναι συνεχής στο και για την οποία ισχύει

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO 1o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΙΣ ΟΙΚΟΝΟΜΙΚΕΣ ΚΑΙ ΔΙΟΙΚΗΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ

Πες το με μία γραφική παράσταση

f (x + h) f (x) h f (x) = lim h 0 f (z) f (x) z x df (x) dx, df dy dx,

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής

Διαγώνισμα (Μονάδες 2) β. Μια συνάρτηση f μπορεί να μην είναι συνεχής στα άκρα ακαι β αλλά να είναι συνεχής στο [ α, β ].

Επιχειρησιακά Μαθηματικά

Αριθμητική Ανάλυση και Εφαρμογές

Η θεωρία στα Μαθηματικά Προσανατολισμού: Θετικών Σπουδών και Σπουδών Οικονομίας -Πληροφορικής. Ορισμοί Ιδιότητες - Προτάσεις Θεωρήματα Αποδείξεις

Ολοκληρώματα. Κώστας Γλυκός ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΟΣ. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α

qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj

Ονοματεπώνυμο Τμήμα. 1. Τι ονομάζουμε εμβαδόν ενός επιπέδου σχήματος (χωρίου) και πως υπολογίζεται αυτό; Απάντηση

Ασκήσεις Επανάληψης Γ Λυκείου

ΟΛΟΚΛΗΡΩΣΗ - ΑΣΚΗΣΕΙΣ. ) dx. 1. Να υπολογίσετε τα παρακάτω αόριστα ολοκληρώματα. 2. Να υπολογίσετε τα παρακάτω αόριστα ολοκληρώματα.

ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση)

ΑΥΤΟΜΑΤΙΣΤΕΣ ΦΥΣΙΚΗ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ ΔΕΥΤΕΡΑ ΑΙΘ.ΖΑ

Ολοκλήρωμα πραγματικής συνάρτησης

ΜΑΘΗΜΑΤΙΚΩΝ ΔΑΣΟΛΟΓΙΑΣ

Εφαρμοσμένα Μαθηματικά ΙΙ 4ο Σετ Ασκήσεων (Λύσεις) Διπλά Ολοκληρώματα Επιμέλεια: Ι. Λυχναρόπουλος

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. Β κύκλος

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Β ΜΕΡΟΣ

504. Έτσι προκύπτει. ΠΕΡΙΠΤΩΣΗ 1η. Υπολογισμός Ορισμένου ολοκλήρωματος που βρίσκεται μέσα σε ορισμένο ολοκλήρωμα. Χαρακτηριστική Άσκηση:

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις

12 Το αόριστο ολοκλήρωµα

ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. Α.Προσπαθείστε και απομνημονεύστε τον παρακάτω πίνακα βασικών ολοκληρωμάτων: v x

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Μαθηματικά για Οικονομολόγους 4 ο Μάθημα: Οικονομικές Συναρτήσεις-Κατάσταση Ισορροπίας

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΑΣΚΗΣΗ 1. εξισώσεις x= π 3, x= π 2. ΑΣΚΗΣΗ 2 Δίνονται οι συναρτήσεις : f (x)= 1. 1 u 2 x. du και g(x)= 1 f (t )dt

Σημειώσεις Μαθηματικών 2

2.2 ΠΑΡΑΓΩΓΙΣΙΜΕΣ ΣΥΝΑΡΤΗΣΕΙΣ-ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

f (x) dx = f (x) + c a f (x) f (x) cos 2 (f (x)) f (x) dx = tan(f (x)) + c 1 sin 2 (f (x)) f (x) dx = cot(f (x)) + c e f (x) f (x) dx = e f (x) + c

Η f(x) y είναι συνεχής στο [0, 2α], σαν διαφορά των συνεχών f(x) και y = 8αx 8α 2

40 Ασκήσεις στον ΟΛΟΚΛΗΡΩΤΙΚΟ ΛΟΓΙΣΜΟ ( Επεξεργασία του ΜΑΝΩΛΗ ΨΑΡΡΑ)

Έντυπο Yποβολής Αξιολόγησης ΓΕ

ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση)

Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Α ΜΕΡΟΣ

ΜΑΘΗΜΑ ΤEΤΑΡΤΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ ( ΙΑΦΟΡΙΚΟ-ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΕΩΣ- ΕΦΑΡΜΟΓΕΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ)

1. Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο ενός άλλου συνόλου Β είναι συνάρτηση.

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 28 (με Δημητριάδος) Βόλος τηλ.

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΕΠΑ.Λ. Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ

Τεστ Θεωρίας Στα Μαθηματικά Προσανατολισμού Γ Λυκείου

Transcript:

4 ΟΛΟΚΛΗΡΩΜΑΤΑ 4. ΠΑΡΑΓΟΥΣΑ Ή ΑΝΤΙΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ: Παράγουσα ή αντιπαράγωγος μιας συνάρτησης f( ορισμένη στο D(f) λέγεται η συνάρτηση F( για την οποία ισχύει F (=f(. ΣΥΜΒΟΛΙΣΜΟΣ: F(= = df ( ΠΡΟΤΑΣΗ: Αν η f είναι συνεχής στο πεδίο ορισμού τότε υπάρχει η παράγουσα. ΠΡΟΤΑΣΗ: Αν F( και G( είναι διαφορετικές παράγουσες μιας συνάρτησης f( τότε διαφέρουν κατά μια σταθερά c δηλαδή: F(-G(=c. ΠΑΡΑΤΗΡΗΣΗ: Η ολοκλήρωση είναι η αντίθετη διαδικασία της παραγώγισης. 33 4.2 ΒΑΣΙΚΕΣ ΙΔΙΟΤΗΤΕΣ λ i fi = λ i 34 fi, λ i σταθερές ποσότητες. 2 [ ] = f( 3 f '( = f(+c, c σταθερή ποσότητα. 4.3 ΒΑΣΙΚΑ ΟΛΟΚΛΗΡΩΜΑΤΑ f(= F(=c 2 f(= F(=+c 3 f(= F(= + /(+)+c, - 4 f(= e F(= e +c 5 f(= / F(=ln +c 6 f(= cos( F(=sin(+c 7 f(= sin( F(=-cos( +c 8 f(= /cos 2 ( F(=tn(+c 9 f(= /sin 2 ( F(=-ctn(+c f(= /(+ 2 ) F(=rctn(+c f(= / 2 F(=rcsin(+c 2 f(= F(= /ln()+c

4.4 ΚΑΝΟΝΕΣ ΟΛΟΚΛΗΡΩΣΗΣ 4.4. ΜΕΘΟΔΟΣ ΑΝΤΙΚΑΤΑΣΤΑΣΗΣ ΘΕΩΡΗΜΑ:Έστω f συνεχής στο D(f) και u=g( με πεδίο τιμών R(g)=D(f) τότε f ( g( ) g' = f ( u) du =F(u)+c. ΠΑΡΑΤΗΡΗΣΗ: Το παραπάνω θεώρημα μας βοηθάει να απλοποιήσουμε τα ολοκληρώματα χρησιμοποιώντας τις παραγώγους των σύνθετων συναρτήσεων. ΜΕΘΟΔΟΣ ΥΠΟΛΟΓΙΣΜΟΥ G : ΒΗΜΑ : Γράφουμε την G( = f( g( )g (. ΒΗΜΑ 2: Θέτουμε u=g(. ΒΗΜΑ 3: Υπολογίζουμε G = f ( u) du. ΠΑΡΑΤΗΡΗΣΗ: f(u) πρέπει να είναι εύκολα ολοκληρώσιμη. 35 4.4.2 ΠΑΡΑΓΟΝΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ ΚΑΝΟΝΑΣ ΠΑΡΑΓΟΝΤΙΚΗΣ ΟΛΟΚΛΗΡΩΣΗΣ: Έστω ότι θέλουμε να υπολογίσουμε ένα ολοκλήρωμα όπου η f μπορεί να γραφτεί ως γινόμενο δύο συναρτήσεων h και h 2 (δηλαδή f(=h (h 2 ( ) και η παραγουσα Η της συνάρτησης h είναι εύκολα παραγωγίσιμη τότε = Η ( h 2 ( - H h '( ( 2. ΠΑΡΑΤΗΡΗΣΗ (Ι): Αν h h2 ' είναι εύκολα υπολογίσιμη τότε έχουμε υπολογίσει και το. ΠΑΡΑΤΗΡΗΣΗ (ΙΙ): Ο κανόνας παραγοντικής ολοκλήρωσης συνεπάγεται από την ιδιότητα [f(g(] =f (g(+ f (g ( θέτοντας Η =f και h 2 =g. ΠΑΡΑΤΗΡΗΣΗ (IIΙ): H h 2 ( πρέπει να είναι πιο απλή συνάρτηση από την h 2 (. H h ( επιλέγεται ώστε να έχει εύκολα υπολογίσιμες παράγουσες. 36

4.4.3 ΕΙΔΙΚΕΣ ΜΟΡΦΕΣ e + p = α - e α+ p(-α - e + p' όπου p( είναι πολυωνυμική συνάρτηση 2 sin( + ) p( = =-α - cos(α+)p(+α - cos( + ) p' 3 cos( + ) p( = =α - sin(α+)p(-α - sin( + ) p' 4 ln( g( ) = = F(ln( - g' g( όπου f,g είναι ρητές συναρτήσεις. α + 5 e β α + sin( γ + δ, e β cos( γ + δ θεωρούμε σαν h (=e α+β και εφαρμόζουμε δύο φορές τον κανόνα παραγοντικής ολοκλήρωσης. 37 4.4.4 ΟΛΟΚΛΗΡΩΣΗ ΡΗΤΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Οι ρητές συναρτήσεις αναφέρονται σε συναρτήσεις που γράφονται σαν λόγος δύο πολυωνύμων δηλαδή f(=p(/q(. ΜΕΡΙΚΑ ΒΑΣΙΚΑ ΟΛΟΚΛΗΡΩΜΑΤΑ ΡΗΤΩΝ ΣΥΝΑΡΤΗΣΕΩΝ α + β = α - ln(α+β) + c 2 ( α + β ) = α - (α+β) -+ /(-+) + c 2 + ( + ) 3 2 ( + ) = 2 + 4 + 2 = ln(+ 2 )/2 + c 5 + 2 = rctn( + c + c, - 38

ΔΙΑΔΙΚΑΣΙΑ ΟΛΟΚΛΗΡΩΣΗΣ ΡΗΤΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΒΗΜΑ : Ελέγχουμε αν ο βαθμός του p( είναι μικρότερου βαθμού από το q(. Αν όχι διαιρούμε και προχωρούμε με το υπόλοιπο r( δηλαδή γράφουμε p(/q( = ( + r(/q(. ΒΗΜΑ 2: Παραγοντοποιούμε την q(. ΒΗΜΑ 3: Για κάθε παράγοντα (-α) γράφουμε Α /(-α) +Α 2 /(-α) 2 + + Α /(-α). Για κάθε παράγοντα ( 2 ++c) m γράφουμε (Β +Γ )/( 2 ++c) + + (Β +Γ )/( 2 ++c) ΒΗΜΑ 4: γράφουμε το p(/q( σαν άθροισμα των παραπάνω συντελεστών και βρίσκουμε τα Α, Β, Γ Α κ, Β κ, Γ κ. ΒΗΜΑ 5: Υπολογίζουμε τα ολοκληρώματα με βάση τα βασικά ολοκληρώματα ρητών συναρτήσεων. 39 4.5 ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΟΡΙΣΜΟΣ (κατά Riemnn): Έστω f( είναι συνεχής στο [,] και για οποιοδήποτε διαμερισμό του [,]= [, ] [, 2 ] [,] με = και + = και για οποιαδήποτε ξ i [ i-, i ] για,, + τότε το όριο lim f ( ξi ) δi, δ i = i - i- n δ i ονομάζεται ολοκλήρωμα κατά Riemnn και είναι ίσο με F()-F(). ΣΥΜΒΟΛΙΣΜΟΣ: ή [, ] ΠΑΡΑΤΗΡΗΣΗ (Ι): Το ολοκλήρωμα από το α έως το β είναι ίσο με το εμβαδόν που περικλείεται ανάμεσα στην f( και στην ευθεία y= (δηλαδή τον άξονα των Χ). ΠΑΡΑΤΗΡΗΣΗ (ΙΙ): Το ολοκλήρωμα είναι στην ουσία επέκταση των αθροισμάτων σε συνεχή διαστήματα. 4

4.5. ΙΔΙΟΤΗΤΕΣ ΟΡΙΣΜΕΝΟΥ ΟΛΟΚΛΗΡΩΜΑΤΟΣ λi fi ποσότητες. β α β α 2 = = λi 3 = 4 Αν < 2 < < τότε i + = i 4 fi, λ i σταθερές 5 Αν α<β<γ και f( για κάθε τότε f γ ( α. 6 Αν f(<g( για κάθε α<<β τότε β α g. 4.6 ΓΕΝΙΚΕΥΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ 4.6. ΠΡΩΤΟΥ ΤΥΠΟΥ ΓΕΝΙΚΕΥΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΟΡΙΣΜΟΣ: Έστω f( είναι συνεχής στο [,] τότε το ολοκλήρωμα lim = lim F( ) -F(). Ανάλογα έχουμε: = lim 42 ορίζεται σαν το όριο = lim lim = lim F( ) - lim F( ) ΠΑΡΑΤΗΡΗΣΗ: Αν τα παραπάνω όρια είναι ίσα με ένα πραγματικό αριθμό τότε το αντίστοιχο ολοκλήρωμα συγκλίνει διαφορετικά αποκλίνει.

4.6.2 ΔΕΥΤΕΡΟΥ ΤΥΠΟΥ ΓΕΝΙΚΕΥΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΟΡΙΣΜΟΣ: Έστω f( είναι συνεχής στο (,) και [] lim = ± + ή/και [2] lim = ± τότε το ολοκλήρωμα ορίζεται σαν το όριο lim + t =F() - lim F( + αν ισχύει η [] lim t t t t lim lim + = lim F( - F(α) αν ισχύει η [2] t 2 t 2 t και η [] και η [2]. 43 = lim F( - lim F( + αν ισχύουν ΠΑΡΑΤΗΡΗΣΗ (Ι): Ανάλογα μπορούμε να ορίσουμε και συνδυασμούς Α και Β τύπου γενικευμένα ολοκληρώματα. ΠΑΡΑΤΗΡΗΣΗ (ΙΙ): Αν η συνάρτηση f είναι ασυνεχής σε ένα σημείο (,) τότε 4.6.3 ΕΛΕΓΧΟΣ ΣΥΓΚΛΙΣΗΣ ΓΕΝΙΚΕΥΜΕΝΩΝ ΟΛΟΚΛΗΡΩΜΑΤΩΝ ΘΕΩΡΗΜΑ: Αν f( και g( είναι συνεχής στο [,) και f( g( για κάθε τότε () αν g συγκλίνει τότε και το (2) αν g συγκλίνει. αποκλίνει. αποκλίνει τότε και το ΠΑΡΑΤΗΡΗΣΗ: Το παραπάνω θεώρημα μπορεί να γενικευτεί για όλα τα γενικευμένα ολοκληρώματα. 44 = +

4.7 ΕΦΑΡΜΟΓΕΣ ΤΩΝ ΟΛΟΚΛΗΡΩΜΑΤΩΝ ΣΤΙΣ ΟΙΚΟΝΟΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 4.7. ΣΥΝΑΡΤΗΣΕΙΣ ΕΣΟΔΩΝ ΚΑΙ ΚΟΣΤΟΥΣ Συνήθως δίδεται η συνάρτηση οριακών εσόδων (ή οριακού κόστους) και ζητούνται οι συναρτήσεις ολικών ή μέσων εσόδων (ή κόστους) δηλαδή: R(q) = MR ( q) dq και C(q) = MC ( q) dq. 4.7.2 ΣΥΝΑΡΤΗΣΕΙΣ ΚΑΤΑΝΑΛΩΣΗΣ, ΑΠΟΤΑΜΙΕΥΣΗΣ ΚΑΙ ΕΘΝΙΚΟΥ ΕΙΣΟΔΗΜΑΤΟΣ ΟΡΙΣΜΟΣ: Το εθνικό εισόδημα δίδεται σαν άθροισμα του ποσού που καταναλώνουμε και του ποσού που αποταμιεύουμε δηλαδή: ΕΙΣΟΔΗΜΑ = ΚΑΤΑΝΑΛΩΣΗ + ΑΠΟΤΑΜΙΕΥΣΗ [Ε = Κ + Α]. ΠΑΡΑΤΗΡΗΣΗ: Αν παραγωγίσουμε την παραπάνω dk da έκφραση προς το εισόδημα έχουμε: + = de de. 45 ΟΡΙΣΜΟΣ: Η παράγωγος της κατανάλωσης ως dk προς το εισόδημα, de, ονομάζεται οριακή ροπή προς κατανάλωση. ΟΡΙΣΜΟΣ: Η παράγωγος της αποταμίευσης ως da προς το εισόδημα, de, ονομάζεται οριακή ροπή προς αποταμίευση. ΟΡΙΣΜΟΣ: Η παράγωγος του εισοδήματος ως de προς την αποταμίευση, da, ονομάζεται πολλαπλασιαστής εθνικού εισοδήματος και συμβολίζεται με. ΠΑΡΑΤΗΡΗΣΗ: =/(οριακή ροπή προς αποταμίευση) και =/(-οριακη ροπή προς κατανάλωση). ΕΡΜΗΝΕΙΑ: Για κάθε νομισματική μονάδα που αποταμιεύεται το εθνικό εισόδημα αυξάνει κατά μονάδες. 46

47 4.7.3 ΠΛΕΟΝΑΣΜΑ ΚΑΤΑΝΑΛΩΤΗ ΟΡΙΣΜΟΣ: Πλεόνασμα καταναλωτή στο σημείο (q,p ) λέγεται το επιπλέον ποσό που διατίθεται να πληρώσει ο καταναλωτής για προϊόντα που πωλούνται πάνω από την τιμή p και δίδεται ως: q (i) CS= D ( q) dq pq αν η ζήτηση περιγράφεται από τη σχέση p=d - (q) ή (ii) CS= D( p) dp p> p q>, αν η ζήτηση περιγράφεται από τη σχέση q=d(p). 4.7.4 ΠΛΕΟΝΑΣΜΑ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ: Πλεόνασμα παραγωγού στο σημείο (q,p ) λέγεται το επιπλέον ποσό που διατίθεται να χάσει ο παραγωγός προσφέροντας τα αγαθά του σε τιμή μικρότερη από την τιμή p και δίδεται ως: (i) PS= p q q S ( q) dq περιγράφεται από τη σχέση p=s - (q) ή (iii) PS= S( p) dp p< p q>, αν η προσφορά αν η προσφορά περιγράφεται από τη σχέση q=s(p).