ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ"

Transcript

1 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ Ορισμοί α) Έστω f μία συνάρτηση με πεδίο ορισμού το Α Αν η f είναι παραγωγίσιμη σε κάθε Β, όπου Β ένα υποσύνολο του Α, θα λέμε ότι η f είναι παραγωγίσιμη στο Β Αν η f είναι παραγωγίσιμη σε κάθε Α, θα λέμε ότι η f είναι παραγωγίσιμη β) Έστω Γ το υποσύνολο του πεδίου ορισμού Α, στο οποίο η f είναι παραγωγίσιμη Τότε, σε κάθε Γ μπορούμε να αντιστοιχίσουμε το f () Έτσι ορίζεται μία νέα συνάρτηση που συμβολίζεται με f ή με συνάρτηση της f ή παράγωγος της f df και ονομάζεται πρώτη παράγωγος d γ) Έστω Γ το υποσύνολο του πεδίου ορισμού Α, στο οποίο η f παραγωγίζεται, και έστω ότι η f παραγωγίζεται σ ένα υποσύνολο του Γ Τότε ορίζεται η παράγωγος της f που λέγεται δεύτερη παράγωγος της f και συμβολίζεται με f Επαγωγικά ορίζεται η νιοστή παράγωγος της f και συμβολίζεται με f (ν) Δηλαδή, f (ν) [f (ν-) ], ν > Κανόνες Παραγώγισης α) παράγωγος αθροίσματος Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο o, τότε η συνάρτηση f + g είναι παραγωγίσιμη στο o και ισχύει ότι: (f + g) ( o ) f ( o ) + g ( o ) β) παράγωγος γινομένου Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο o, τότε και η συνάρτηση fg είναι παραγωγίσιμη στο o και ισχύει: (fg) ( o ) f ( o )g( o ) + f( o )g ( o ) Αν c είναι ένας σταθερός πραγματικός αριθμός, σύμφωνα με το προηγούμενο θεώρημα έχουμε ότι (c f) () c f (), αφού (c) 0 γ) παράγωγος πηλίκου Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο o και g( ο ) 0, τότε και η --

2 συνάρτηση f g είναι παραγωγίσιμη στο f ο και ισχύει: (o ) g f( ) g( ) f( ) g ( ) o o g( ) o o o Θεώρημα (παράγωγος σύνθετης συνάρτησης) Αν η συνάρτηση f είναι παραγωγίσιμη στο και η συνάρτηση g είναι παραγωγίσιμη στο u f(), τότε η συνάρτηση gof είναι παραγωγίσιμη στο και ισχύει ότι: [g(f())] g (f())f () Αν u f() και y g(u), ισχύει ο παρακάτω κανόνας που είναι γνωστός ως dy dy du κανόνας της αλυσίδας: d du d Πίνακας παράγωγων βασικών συναρτήσεων (c) 0 () ( α ) α α-, > 0 (ημ) συν (συν) -ημ (εφ) συν (σφ) ημ (e ) e (α ) α lnα, α > 0 (ln ) --

3 Πίνακας παράγωγων σύνθετων συναρτήσεων [(f()) α ] α(f()) α- f () f () f (), f() > 0 f() f() [f()] f () [ημf()] συν(f())f () [συν(f()] -ημ(f())f () [εφf()] f () συν (f()) [σφ(f())] f () (e f() ) e f() f () ημ (f()) (α f() ) α f() lnα f (), α > 0 (ln f() ) f() f () ΠΑΡΑΤΗΡΗΣΕΙΣ Η συνάρτηση f(), ενώ έχει πεδίο ορισμού το [0, + ), είναι παραγωγίσιμη μόνο στο (0, + ) Στο σημείο o 0 αποδεικνύεται με τον ορισμό ότι η f δεν είναι παραγωγίσιμη Για την εύρεση της παραγώγου συνάρτησης της μορφής f() ν g() εργαζόμαστε ως εξής: για κάθε με g() > 0 η f γράφεται f() g () ν και βρίσκουμε την παράγωγό της με τους κανόνες παραγώγισης Για κάθε με g() 0 βρίσκουμε την παράγωγο (αν αυτή υπάρχει) με τον ορισμό Δηλαδή, μία ρίζα είναι πιθανό να μην είναι παραγωγίσιμη στα σημεία που το υπόρριζο μηδενίζεται Το θεώρημα παραγώγου γινομένου επεκτείνεται και για περισσότερες από δύο συναρτήσεις Έτσι έχουμε: [f()g()h()] f ()g()h() + f()g ()h() + f()g()h () --

4 4 Για να βρούμε την παράγωγο της συνάρτησης f() log α, μετατρέπουμε ln πρώτα το λογάριθμο σε φυσικό λογάριθμο Δηλαδή: f () (log α ) ln α ln α ΜΕΘΟΔΟΛΟΓΙΑ ΜΕΘΟΔΟΣ η μ Χρειάζεται προσοχή στον υπολογισμό της παραγώγου της συνάρτησης f() ν, όπου μ άρτιος ακέραιος Για παράδειγμα, είναι λάθος να γράψουμε: , 0, γιατί η συνάρτηση 4 έχει πεδίο ορισμού το και είναι παραγωγίσιμη στο (αποδεικνύεται με τον ορισμό ότι δεν είναι παραγωγίσιμη 4 στο 0), ενώ η συνάρτηση έχει πεδίο ορισμού το [0, + ) και είναι παραγωγίσιμη στο (0, + ) Το σωστό είναι: f () , 0 6 Στη συνέχεια υπενθυμίζουμε το πεδίο ορισμού συνάρτησης της μορφής f() α : Αν α θετικός ακέραιος, τότε το πεδίο ορισμού της f είναι Α Αν α αρνητικός ακέραιος, τότε Α Αν α δεν είναι ακέραιος με α > 0, τότε Α [0, + ) Αν α δεν είναι ακέραιος με α < 0, τότε Α (0, + ) Σημείωση: Η συνάρτηση f() α δεν είναι παραγωγίσιμη στο o 0 όταν 0 < α < ΠΑΡΑΔΕΙΓΜΑ Να βρεθεί όπου ορίζεται η παράγωγος των συναρτήσεων: α) f() 6-4-

5 β) f() Λύση α) Η συνάρτηση f() 6 έχει πεδίο ορισμού το Α Για κάθε έχουμε: f () ( 6 6 ) Θα βρούμε τώρα, αν ορίζεται, την παράγωγο της f στο σημείο o 0 f() f(0) Για < 0: 0 f() f(0) Άρα, lim lim (- 0 ( ) 6 ) 0 ( ) 6 f() f(0) Για > 0: 0 f() f(0) Άρα, lim lim ( ) f() f(0) f() f(0) Αφού lim lim 0, είναι και f (0) , 0 Άρα, f () 4 0, 0 β) Η συνάρτηση f() έχει πεδίο ορισμού το Α [0, + ) Για κάθε (0, + ) έχουμε: f () ( ) Θα βρούμε τώρα, αν ορίζεται, την παράγωγο της f στο σημείο o 0 Για > 0: Άρα, lim 0 σημείο o 0 f() f(0) 0 f() f(0) 0 lim Δηλαδή, η f δεν είναι παραγωγίσιμη στο --

6 ΜΕΘΟΔΟΣ η Για να υπολογίσουμε την παράγωγο μιας δίκλαδης συνάρτησης, εργαζόμαστε ως εξής: Στα ανοιχτά διαστήματα στα οποία χωρίζεται το πεδίο ορισμού της συνάρτησης απ' τα σημεία αλλαγής, εφαρμόζουμε τους κανόνες παραγώγισης Στα σημεία αλλαγής του τύπου εφαρμόζουμε τον ορισμό ΠΑΡΑΔΕΙΓΜΑ Να υπολογιστεί όπου ορίζεται η παράγωγος της συνάρτησης ημ, 0 f(), 0 Λύση Η f είναι παραγωγίσιμη στο διάστημα (-, 0) με f () ( ημ+) ημ + συν + και παραγωγίσιμη στο (0, + ) με f () Στο o 0 εξετάζουμε αν η f είναι παραγωγίσιμη με τον ορισμό: f() f(0) ημ 0 Για < 0: ημ f() f(0) Άρα, lim 0 lim (ημ + ) f() f(0) Για > 0: 0 f() f(0) Άρα, lim 0 lim 0 0 f() f(0) f() f(0) Αφού lim lim, είναι και f (0) ημ συν, 0 Άρα, f (), 0 Σημείωση: Το 0 μπορεί να γραφτεί σε οποιονδήποτε από τους δύο κλάδους -6-

7 της f αφού: 0 ημ0 0 συν0 0, 0 ΜΕΘΟΔΟΣ η Για να υπολογίσουμε την παράγωγο μας συνάρτησης με τύπο f() [g()] h() (υπάρχει μεταβλητή στη βάση και στον εκθέτη), εργαζόμαστε με τον παρακάτω τρόπο: h( ) ln[g()] Είναι f() [g()] h() e e h() ln[g()] h() Άρα: f () [ e ] e ln[g()] [g()] h() g () h () ln(g()) h() g() [ h() ln(g())] h() ln[g()] ΠΑΡΑΔΕΙΓΜΑ Αν f() (ln) συν, να βρεθεί αν ορίζεται η f (e) Λύση 0 0 Για να ορίζεται η f θα πρέπει να ισχύουν: ή ή > ln 0 Δηλαδή, το πεδίο ορισμού της f είναι το Α (, + ) συν ln(ln ) συνln(ln ) Για κάθε > η f γράφεται: f() e e συνln(ln ) συνln(ln ) Άρα για > : f () [ e ] e [συν ln(ln)] (ln) συν [-ημ ln(ln) + συν (ln) ] (ln) συν [-ημ ln(ln) + συν ln ln ] Επομένως, f (e) (lne) συνe [-ημe ln(lne) + συνe eln e ] συνe συν e συν e [-ημe ln + ] e e -7-

8 ΜΕΘΟΔΟΣ 4 η Όταν ζητάμε την παράγωγο της συνάρτησης f και αυτή βρίσκεται σε κάποια περίπλοκη ισότητα απ' την οποία είναι δύσκολο να βρούμε τον τύπο της f, παραγωγίζουμε και τα δύο μέλη της ισότητας, εφόσον αυτή αποτελείται από παραγωγίσιμες συναρτήσεις ΠΑΡΑΔΕΙΓΜΑ 4 Η συνάρτηση f είναι παραγωγίσιμη στο και για κάθε ισχύει f( + ) ημπ Να βρείτε τον αριθμό f () Λύση f( + ) ημ(π) ή [f( + )] [ημ(π)] ή f ( + )( + ) πσυν(π) σνν(π)(π) ή f ( + ) πσνν(π) ή f ( + ) π συνπ π Για είναι f () Άλλα παραδείγματα Β ομάδας ΠΑΡΑΔΕΙΓΜΑ Αν η συνάρτηση f είναι άρτια και παραγωγίσιμη στο, να δείξετε ότι η συνάρτηση f είναι περιττή Λύση Επειδή η f είναι άρτια, ισχύει f(-) f() για κάθε Τότε, f(-) f() ή [f(-)] f () ή f (-)(-) f () ή -f (-) f () ή f (-) -f () Άρα, η συνάρτηση f είναι περιττή -8-

9 ΠΑΡΑΔΕΙΓΜΑ 6 Να βρείτε όλα τα πολυώνυμα Ρ() με πραγματικούς συντελεστές για τα οποία είναι [Ρ ()] Ρ() για κάθε Λύση Αρχικά, βρίσκουμε το βαθμό του πολυωνύμου Ρ() (αν ορίζεται) Αν ν είναι ο βαθμός του, τότε το Ρ () έχει βαθμό ν - και το [Ρ ()] έχει βαθμό (ν - ) Έτσι λοιπόν θα έχουμε: (ν - ) ν ή ν - ν ή ν Έστω Ρ() α + β + γ, α 0 και έχουμε: [Ρ ()] Ρ() ή (α + β) α + β + γ ή 4α + 4αβ + β α + β + γ ή 4α α 4α α 4 4αβ β ή β β ή β Άρα Ρ() + β + β με β β γ γ β 4 γ β Άλλη μια λύση του προβλήματος είναι το μηδενικό πολυώνυμο ΠΑΡΑΔΕΙΓΜΑ 7 α) Αν ο πραγματικός αριθμός ρ είναι ρίζα ενός πολυωνύμου Ρ() και της παραγώγου του Ρ (), να δείξετε ότι ο ρ είναι διπλή ρίζα του Ρ() και αντιστρόφως β) Να βρείτε τα α, β ώστε το πολυώνυμο Ρ() + α + (α - β) - να διαιρείται με το ( - ) Λύση α) Αν ο ρ είναι μία ρίζα του Ρ() και του Ρ (), υπάρχουν πολυώνυμα f() και g() τέτοια ώστε να είναι: Ρ() ( - ρ)f() () και Ρ () ( - ρ)g() () Από την () έχουμε Ρ () ( - ρ) f() + ( - ρ)f () f() + ( - ρ)f () και λόγω της () προκύπτει ότι: ( - ρ)g() f() + ( - ρ) f () ή f() ( - ρ)[g() - f ()] Έτσι, η () γράφεται Ρ() ( - ρ) [g() - f ()] και επομένως ο ρ είναι διπλή ρίζα του Ρ() Αντιστρόφως, αν ο ρ είναι διπλή ρίζα του Ρ(), τότε υπάρχει πολυώνυμο φ() με Ρ() ( - ρ) φ() Είναι Ρ () ( - ρ)φ() + ( - ρ) φ () ( - ρ)[φ() + ( - ρ)φ ()] και επομένως ο ρ είναι ρίζα του Ρ () -9-

10 β) Το Ρ() διαιρείται με το ( - ) όταν έχει διπλή ρίζα τον ρ Αυτό συμβαίνει όταν ο ρ είναι ρίζα και του Ρ () 6 + α + α - β Έτσι έχουμε: P() 0 α α β 0 β 4α α 6 ή ή ή P () 0 6 α α β 0 α β 6 β 4 ΑΣΚΗΣΕΙΣ Α ομάδα Να βρεθεί η παράγωγος των παρακάτω συναρτήσεων: α) f() β) f() ln, > 0 γ) f() ln + ημ - ln e δ) f() + 4, > 0 ε) f() + 4, > 0 στ) f() ημ + συν - ln + 8e ζ) f() - ln + log - e Να βρεθεί η παράγωγος των παρακάτω συναρτήσεων: α) f() συν β) f() ημ γ) f() 4 ln δ) f() ημ e ε) f() συν ln στ) f() ln - e ζ) f() - e ln η) f() e ημ - συν θ) f() ( - ) ln συν ι) f() 4 (e + ln) ια) f() ln Να βρεθεί η παράγωγος των παρακάτω συναρτήσεων: α) f() β) f() εφ+ e γ) f() συν δ) f() ημ ε) f() ln ζ) f() + - θ) f() ln στ) f() ln e η) f() e ι) f() ημ ln e -0-

11 4 Να βρεθεί η παράγωγος των παρακάτω συναρτήσεων: α) f() ( + ) β) f() συν γ) f() ln( e + 4) δ) f() - 4 ln ε) f() e - ln( - ) στ) f() e ζ) f() ln - e η) f() ln( + ) θ) f() ημ + εφ4 ι) f() ln( + 4) ια) f() συν(ημ + ) Να βρεθεί η παράγωγος των παρακάτω συναρτήσεων: α) f() β) f() γ) f() + ( + ) 4 δ) f() ε) f() 8 στ) f() 6 Να βρεθεί η παράγωγος των παρακάτω συναρτήσεων: α) f() (ln) ημ β) f() (ημ) γ) f() ( + ) ln δ) f() e ε) f() ζ) f() ημ στ) f() συν η) f() συν θ) f() ι) f() 7 Να βρεθεί (όπου ορίζεται) η η παράγωγος των παρακάτω συναρτήσεων: α) f(), β) f() ln,, e, 0, γ) f() δ) f(), 0, ε) f() -4 στ) f() Να βρεθεί (όπου ορίζεται) η η παράγωγος των συναρτήσεων της άσκησης Αν f(), g() f, g Ισχύει ότι f g ; -, να βρεθούν οι συναρτήσεις --

12 0 α) Αν η συνάρτηση f είναι παραγωγίσιμη στο και για κάθε ισχύει f() > 0, να βρεθεί η παράγωγος της συνάρτησης g() [f()], β) Αν α > 0, να βρεθεί η παράγωγος της συνάρτησης h() a, Έστω f() e - + e - Να αποδειχθεί ότι f () + f () + f() 0 για κάθε Αν f() e + e - + 4ημ + συν, να αποδειχθεί ότι f (4) () f() Αν f() ημ( + κ), να αποδειχθεί ότι f () + 4f() 0 Β ομάδα Av f() ( + ), να αποδειχθεί ότι ( - )f () + f () - 9f() 0 Έστω μια συνάρτηση f ορισμένη και παραγωγίσιμη στο Αν η f είναι περιττή, να αποδειχθεί ότι η f είναι άρτια Έστω μια άρτια συνάρτηση f ορισμένη και παραγωγίσιμη στο Αν g() ( - συν)f() , να αποδειχθεί ότι g (0) Έστω μια συνάρτηση f παραγωγίσιμη στο, για την οποία ισχύει f(e + ) ημ(πσυν + ) για κάθε Να αποδειχθεί ότι f () Δίνεται η συνάρτηση g ορισμένη και δύο φορές παραγωγίσιμη στο με g(-) 0 Να αποδειχθεί ότι η συνάρτηση f() 4( - ) g( - 4) είναι δύο φορές παραγωγίσιμη στο και να βρεθεί η f () 6 Έστω μια συνάρτηση f παραγωγίσιμη στο, για την οποία ισχύουν f() 4 και f () - f() α) Να βρεθεί το όριο lim 9 f () 9 β) Αν lim, να αποδειχθεί ότι η f είναι δύο φορές παραγωγίσιμη στο 6 o --

13 7 Έστω μια συνάρτηση f τρεις φορές παραγωγίσιμη στο με f() 0, για την οποία ισχύει ότι f () 00 + f () για κάθε Να αποδειχθεί ότι: α) f () 0 β) f () () 0 γ) f (4) () 6 00 f() δ) lim 00 8 Να βρεθεί πολυώνυμο f δευτέρου βαθμού για το οποίο ισχύουν: f() -, f () 7, f (004) 6 9 Να βρεθεί πολυώνυμο f τρίτου βαθμού για το οποίο ισχύουν: f(), f (), f (), f () () 6 0 Να βρεθεί η παράγωγος των παρακάτω συναρτήσεων: ημ, 0 συν, 0 α) f() β) f() 0, 0 0, 0 Αν F() f()g() και f ()g () α, όπου α σταθερός αριθμός, να () () () F () f () g () αποδείξετε ότι, όπου F(), f(), g() 0 F() f() g() Δίνεται η συνάρτηση g παραγωγίσιμη στο για την οποία ισχύουν: g() > 0 για κάθε και g(0) 00 Έστω μια άλλη συνάρτηση f() α[ + g()], α Αν f (0) ln00, να υπολογιστεί το α Έστω f μια πολυωνυμική συνάρτηση τρίτου βαθμού με ρίζες ρ, ρ, ρ ρ ρ ρ διαφορετικές ανά δύο Να αποδειχθεί ότι f (ρ ) f (ρ ) f (ρ ) 4 Να υπολογιστούν τα παρακάτω αθροίσματα: α) S v v- β) S e + e + e + + ve v Να βρεθεί η παράγωγος της συνάρτησης f() v- + v v 6 Αν η συνάρτηση g είναι παραγωγίσιμη στο o και η συνάρτηση f έχει τύπο f() ( - o ) g(), να δειχθεί ότι: f ( o ) 0 g( o ) 0 --

14 7 Αν οι συναρτήσεις f και g είναι παραγωγίσιμες στο και για κάθε ισχύει f() g(), να αποδειχθεί ότι οι f και g δεν έχουν κοινή ρίζα -4-

ΣΗΜΕΙΩΣΕΙΣ. x β. τo σύνολο των σημείων του Α στα οποία αυτή είναι παραγωγίσιμη. Αντιστοιχίζοντας κάθε x Α. = f (x)

ΣΗΜΕΙΩΣΕΙΣ. x β. τo σύνολο των σημείων του Α στα οποία αυτή είναι παραγωγίσιμη. Αντιστοιχίζοντας κάθε x Α. = f (x) ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ - ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ - ΠΑΡΑΓΩΓΟΣ ΣΥΝΘΕΤΗΣ ΣΥΝΑΡΤΗΣΗΣ [Κεφ..: Παραγωγίσιμες Συναρτήσεις Παράγωγος Συνάρτηση - Κεφ..3: Κανόνες Παραγώγισης

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ - ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ - ΠΑΡΑΓΩΓΟΣ ΣΥΝΘΕΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ - ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ - ΠΑΡΑΓΩΓΟΣ ΣΥΝΘΕΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ - ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ - ΠΑΡΑΓΩΓΟΣ ΣΥΝΘΕΤΗΣ ΣΥΝΑΡΤΗΣΗΣ [Κεφ..: Παραγωγίσιμες Συναρτήσεις Παράγωγος Συνάρτηση - Κεφ..: Κανόνες Παραγώγισης του

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...

Διαβάστε περισσότερα

Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΕΦΑΠΤΟΜΕΝΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΠΑΡΑΓΩΓΟΣ ΚΑΙ ΣΥΝΕΧΕΙΑ

Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΕΦΑΠΤΟΜΕΝΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΠΑΡΑΓΩΓΟΣ ΚΑΙ ΣΥΝΕΧΕΙΑ Ενότητα 4 Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΕΦΑΠΤΟΜΕΝΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΠΑΡΑΓΩΓΟΣ ΚΑΙ ΣΥΝΕΧΕΙΑ Ασκήσεις για λύση ). Να βρείτε την παράγωγο της συνάρτησης f στο 0, όταν: i) f ( ), 0 ii) f()=, 0 iii f ). Να βρεθεί

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ - ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ - ΠΑΡΑΓΩΓΟΣ ΣΥΝΘΕΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ - ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ - ΠΑΡΑΓΩΓΟΣ ΣΥΝΘΕΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ - ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ - ΠΑΡΑΓΩΓΟΣ ΣΥΝΘΕΤΗΣ ΣΥΝΑΡΤΗΣΗΣ [Κεφ..: Παραγωγίσιμες Συναρτήσεις Παράγωγος Συνάρτηση - Κεφ..: Κανόνες Παραγώγισης του

Διαβάστε περισσότερα

Βασικές ασκήσεις Βασική θεωρία. του πεδίου ορισμού της; β) Έστω η συνάρτηση: ένα σημείο του πεδίου ορισμού της. Θα λέμε ότι η f είναι συνεχής στο x

Βασικές ασκήσεις Βασική θεωρία. του πεδίου ορισμού της; β) Έστω η συνάρτηση: ένα σημείο του πεδίου ορισμού της. Θα λέμε ότι η f είναι συνεχής στο x 8 Συνέχεια συνάρτησης Ορισμός της συνέχειας 8. α) Πότε μια συνάρτηση f :A λέγεται συνεχής σε ένα σημείο του πεδίου ορισμού της; β) Έστω η συνάρτηση:, αν < f() =, αν i) Να αποδείξετε ότι f() = 7 και να

Διαβάστε περισσότερα

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ Ορισμός Θεωρούμε μια συνάρτηση f συνεχή σ' ένα διάστημα Δ και παραγωγίσιμη στο εσωτερικό του Δ. α) Θα λέμε ότι η f είναι κυρτή ή στρέφει τα κοίλα άνω στο Δ, αν η f

Διαβάστε περισσότερα

2.2 ΠΑΡΑΓΩΓΙΣΙΜΕΣ ΣΥΝΑΡΤΗΣΕΙΣ-ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ

2.2 ΠΑΡΑΓΩΓΙΣΙΜΕΣ ΣΥΝΑΡΤΗΣΕΙΣ-ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΠΑΡΑΓΩΓΙΣΙΜΕΣ ΣΥΝΑΡΤΗΣΕΙΣ-ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΟΡΙΣΜΟΙ Πότε μια συνάρτηση λέγεται : α Παραγωγίσιμη στο σύνολο Α β Παραγωγίσιμη στο ανοικτό διάστημα αβ γ Παραγωγίσιμη στο κλειστό διάστημα [ αβ ] Β δ Τι ονομάζουμε

Διαβάστε περισσότερα

ΑΣΥΜΠΤΩΤΕΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΑΣΥΜΠΤΩΤΕΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ ΑΣΥΜΠΤΩΤΕΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ Ορισμοί α) (Κατακόρυφη ασύμπτωτη) Αν ένα τουλάχιστον απ' τα όρια f(), o o λέγεται κατακόρυφη ασύμπτωτη της C f. f() είναι +, ή -, τότε η ευθεία o β) (Οριζόντια

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ

ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμών αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται

Διαβάστε περισσότερα

Σημαντικές παρατηρήσεις

Σημαντικές παρατηρήσεις ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Διαφορικός Λογισμός Σημαντικές παρατηρήσεις Φυλλάδιο Φυλλάδι555 5 ο ο Η έννοια της παραγώγου Να υπάρχει διάστημα της μορφής ή ή α,,β

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ι. Δημόπουλος Τμήμα Διοίκησης Μονάδων Υγείας και Πρόνοιας -ΤΕΙ Καλαμάτας ΚΑΠΟΙΟΙ ΒΑΣΙΚΟΙ ΣΥΜΒΟΛΙΣΜΟΙ ΚΑΙ ΕΝΝΟΙΕΣ Ν = {1,2,3,...} το σύνολο των φυσικών αριθμών Ζ = {0, ±1, ±2, ±3,..

Διαβάστε περισσότερα

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 28 (με Δημητριάδος) Βόλος τηλ.

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 28 (με Δημητριάδος) Βόλος τηλ. ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με Δημητριάδος) Βόλος τηλ. 4598 Κεφάλαιο ο Ολοκληρωτικός Λογισμός Ολοκληρωτικός Λογισμός Μεθοδολογία Λυμένα

Διαβάστε περισσότερα

47 Να προσδιορίσετε τη συνάρτηση gof, αν α) f και g, β) f ηµ και π γ) f ( ) και g εφ 4 g 48 ίνονται οι συναρτήσεις f + και g Να προσδιορίσετε τις συνα

47 Να προσδιορίσετε τη συνάρτηση gof, αν α) f και g, β) f ηµ και π γ) f ( ) και g εφ 4 g 48 ίνονται οι συναρτήσεις f + και g Να προσδιορίσετε τις συνα ΒΑΣΙΚΕΣ ΑΣΚΗΣΕΙΣ 43 Να εξετάσετε σε ποιες από τις παρακάτω περιπτώσεις είναι f g Στις περιπτώσεις που είναι f g να προσδιορίσετε το ευρύτερο δυνατό υποσύνολο του στο οποίο ισχύει f g α) β) γ) f και f +

Διαβάστε περισσότερα

ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Λ Υ Κ Ε Ι Ο Α Ν Α Λ Υ Σ Η 1Ο Κ Ε Φ Α Λ Α Ι Ο ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Θετική Τεχνολογική Κατεύθυνση ασκήσεις (ΝΑ ΛΥΘΟΥΝ ΜΕΤΑ ΑΠΟ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΤΟΥ ΒΙΒΛΙΟΥ) 5Νο ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ 1. Να

Διαβάστε περισσότερα

Αόριστο Ολοκλήρωμα Μέθοδοι Ολοκλήρωσης

Αόριστο Ολοκλήρωμα Μέθοδοι Ολοκλήρωσης 8 Αόριστο Ολοκλήρωμα Μέθοδοι Ολοκλήρωσης Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορισμός Έστω μια συνάρτηση f ορισμένη σε διάστημα Δ. Ονομάζουμε αρχική συνάρτηση ή παράγουσα της f στο Δ, μια συνάρτηση F παραγωγίσιμη

Διαβάστε περισσότερα

αβ (, ) τέτοιος ώστε f(x

αβ (, ) τέτοιος ώστε f(x ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΜΑ Α Άσκηση α) Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα [ αβ., ] Αν η f είναι συνεχής στο [ αβ, ]

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ Γενικές έννοιες

ΣΥΝΑΡΤΗΣΕΙΣ Γενικές έννοιες ΣΥΝΑΡΤΗΣΕΙΣ Γενικές έννοιες Συνάρτηση Συνάρτηση ονομάζουμε μια διαδικασία (κανόνα) f, με την οποία κάθε στοιχείο ενός συνόλου Α (πεδίο ορισμού) αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου

Διαβάστε περισσότερα

ΣΤΑΘΕΡΗ ΣΥΝΑΡΤΗΣΗ. Το Θεώρημα και το Πόρισμα ισχύουν σε διαστήματα και όχι σε ένωση διαστημάτων.

ΣΤΑΘΕΡΗ ΣΥΝΑΡΤΗΣΗ. Το Θεώρημα και το Πόρισμα ισχύουν σε διαστήματα και όχι σε ένωση διαστημάτων. ΣΤΑΘΕΡΗ ΣΥΝΑΡΤΗΣΗ Θεώρημα Αν μια συνάρτηση f είναι συνεχής σε ένα διάστημα Δ και ισχύει f () = 0 για κάθε εσωτερικό σημείο του Δ, τότε η f είναι σταθερή σ' όλο το διάστημα Δ. Πόρισμα Αν δύο συναρτήσεις

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 8: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ [Ενότητα Μονοτονία Συνάρτησης του κεφ.2.6 Μέρος Β του σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 8: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ [Ενότητα Μονοτονία Συνάρτησης του κεφ.2.6 Μέρος Β του σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 8: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ [Ενότητα Μονοτονία Συνάρτησης του κεφ..6 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα 1. ΘΕΜΑ Β Να μελετηθούν ως προς την μονοτονία

Διαβάστε περισσότερα

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ Ορισμοί. Μια συνάρτηση f θα λέμε ότι παρουσιάζει στο o Α τοπικό μέγιστο, όταν υπάρχει δ > 0, τέτοιο ώστε f () f( o ) για κάθε A ( o δ, o δ ), όπου Α το πεδίο ορισμού της f. Το o λέγεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Παύλος Βασιλείου

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Παύλος Βασιλείου ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Παύλος Βασιλείου Σε όλους αυτούς που παλεύουν για έναν καλύτερο κόσμο ΣΥΝΑΡΤΗΣΕΙΣ-ΟΡΙΟ-ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΥΝΑΡΤΗΣΕΙΣ -ΟΡΙΟ

Διαβάστε περισσότερα

Η θεωρία στα Μαθηματικά Προσανατολισμού: Θετικών Σπουδών και Σπουδών Οικονομίας -Πληροφορικής. Ορισμοί Ιδιότητες - Προτάσεις Θεωρήματα Αποδείξεις

Η θεωρία στα Μαθηματικά Προσανατολισμού: Θετικών Σπουδών και Σπουδών Οικονομίας -Πληροφορικής. Ορισμοί Ιδιότητες - Προτάσεις Θεωρήματα Αποδείξεις Η θεωρία στα Μαθηματικά Προσανατολισμού: Θετικών Σπουδών Σπουδών Οικονομίας -Πληροφορικής Ορισμοί Ιδιότητες - Προτάσεις Θεωρήματα Αποδείξεις Επιμέλεια: Μπάμπης Στεργίου / Παπαμικρούλης Δημήτρης (αποκλειστικά

Διαβάστε περισσότερα

V. Διαφορικός Λογισμός. math-gr

V. Διαφορικός Λογισμός. math-gr V Διαφορικός Λογισμός Παντελής Μπουμπούλης, MSc, PhD σελ blospotcom, bouboulismyschr ΜΕΡΟΣ Η έννοια της Παραγώγου Α Ορισμός Εφαπτομένη καμπύλης συνάρτησης: Έστω μια συνάρτηση και A, ένα σημείο της C Αν

Διαβάστε περισσότερα

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 73 8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ρισμός της συνέχειας Έστω οι συναρτήσεις g h παρακάτω σχήματα των οποίων οι γραφικές παραστάσεις δίνονται στα C h 6 l ( C l g( C g l l (a Παρατηρούμε ότι:

Διαβάστε περισσότερα

ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ Ορισμοί Μία συνάρτηση f λέγεται: 1 γνησίως αύξουσα σ' ένα υποσύνολο Β του πεδίου ορισμού της όταν για κάθε 1, Β με 1 < ισχύει ότι f( 1 ) < f( ) γνησίως φθίνουσα σ' ένα υποσύνολο Β

Διαβάστε περισσότερα

( ) x 3 + ( λ 3 1) x 2 + λ 1

( ) x 3 + ( λ 3 1) x 2 + λ 1 Επαναληπτικό Διαγώνισµα Άλγεβρα Β Λυκείου Θέµα Α Α1. Έστω η πολυωνυµική εξίσωσης α ν χ ν + α ν 1 χ ν 1 +... + α 1 χ + α 0 = 0, µε ακέραιους συντελεστές. Να αποδείξετε ότι αν ο ακέραιος ρ 0 είναι ρίζα της

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ [Κεφ..6: Συνέπειες του Θεωρήματος της Μέσης Τιμής πλην της Ενότητας Μονοτονία Συνάρτησης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ B ΛΥΚΕΙΟΥ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ B ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ B ΛΥΚΕΙΟΥ 1 ln 4 i Να βρείτε το πεδίο ορισμού της ii Να δείξετε ότι η παραπάνω συνάρτηση γράφεται: ln iii Να λύσετε την εξίσωση ln 5 ln 3 4 a a1 4,, a i Να βρείτε τον αριθμό

Διαβάστε περισσότερα

Συνέχεια συνάρτησης σε διάστημα. Η θεωρία και τι προσέχουμε. x, ισχύει: lim f (x) f ( ).

Συνέχεια συνάρτησης σε διάστημα. Η θεωρία και τι προσέχουμε. x, ισχύει: lim f (x) f ( ). Κεφάλαιο 4 Συνέχεια συνάρτησης σε διάστημα 411 Ερώτηση θεωρίας 1 Η θεωρία και τι προσέχουμε Πότε μια συνάρτηση f θα λέμε ότι είναι συνεχής σε ένα ανοικτό διάστημα (, ) αβ; Απάντηση Μια συνάρτηση f θα λέμε

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ-ΟΡΙΟ-ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΣΥΝΑΡΤΗΣΕΙΣ-ΟΡΙΟ-ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΥΝΑΡΤΗΣΕΙΣ-ΟΡΙΟ-ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΥΝΑΡΤΗΣΕΙΣ -ΟΡΙΟ ΣΥΝΕΧΕΙΑ Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο τουr Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία (κανόνα)

Διαβάστε περισσότερα

Mαθηματικά Θετικής - Τεχνολογικής Κατεύθυνσης Γ. Λυκείου Ανάλυση Κεφ. 1 ο ΣΥΝΑΡΤΗΣΕΙΣ

Mαθηματικά Θετικής - Τεχνολογικής Κατεύθυνσης Γ. Λυκείου Ανάλυση Κεφ. 1 ο ΣΥΝΑΡΤΗΣΕΙΣ Γ. Λυκείου Ανάλυση Κεφ. ο Γ / ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΝΑΛΥΣΗ ΚΕΦΑΛΑΙΟ Ο ΣΥΝΑΡΤΗΣΕΙΣ ΙΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ. Mια συνάρτηση λέμε ότι είναι παραγωγίσιμη σε ένα σημείο του πεδίου ορισμού ( της, αν υπάρει το lim και είναι πραγματικός αριθμός. Το όριο αυτό λέγεται παράγωγος της στο και συμβολίζεται

Διαβάστε περισσότερα

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

Το βιβλίο αυτό αποτελεί τον πρώτο τόμο των Μαθηματικών Γʹ Λυκείου για τις

Το βιβλίο αυτό αποτελεί τον πρώτο τόμο των Μαθηματικών Γʹ Λυκείου για τις wwwzitigr Πρόλογος Το βιβλίο αυτό αποτελεί τον πρώτο τόμο των Μαθηματικών Γʹ Λυκείου για τις ομάδες προσανατολισμού: ç Θετικών σπουδών ç Οικονομίας και Πληροφορικής Αναπτύσσονται διεξοδικά τα κεφάλαια:

Διαβάστε περισσότερα

Περιεχόμενα μεθόδευση του μαθήματος

Περιεχόμενα μεθόδευση του μαθήματος Περιεχόμενα μεθόδευση του μαθήματος. Πως ορίζεται η έννοια. Το όριο. To f() f() ; f() εφόσον υπάρχει είναι μονοσήμαντα ορισμένο; εξαρτιέται από τα άκρα α, β των ( α, ) και (, β ) ;. Πως ορίζονται τα πλευρικά

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ Κεφάλαιο 5 Καταρχήν, όταν ορίζουμε την παράγωγο μιας συνάρτησης δεν την ορίζουμε έτσι γενικά, αλλά σε κάποιο συγκεκριμένο

Διαβάστε περισσότερα

1.1 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1.2 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

1.1 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1.2 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Να γίνουν οι γραφικές παραστάσεις των συναρτήσεων : π α) f() = + ηµ β) g() = + συν( ) 6 π π γ) f() = ηµ( ) δ) g() = συν( ) Να γίνει η µελέτη και η γραφική παράσταση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ ΑΝΑΛΥΣΗ ΟΛΟΚΛΗΡΩΜΑΤΑ ΜΙΧΑΛΗΣ ΜΑΓΚΟΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ ΑΝΑΛΥΣΗ ΟΛΟΚΛΗΡΩΜΑΤΑ ΜΙΧΑΛΗΣ ΜΑΓΚΟΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ ΑΝΑΛΥΣΗ ΟΛΟΚΛΗΡΩΜΑΤΑ ΜΙΧΑΛΗΣ ΜΑΓΚΟΣ . ΔΙΑΒΑΖΩ ΤΗ ΘΕΩΡΙΑ ΑΠΟ ΤΟ ΣΧΟΛΙΚΟ ΒΙΒΛΙΟ Σελ.303: Ορισμός (Αρχική συνάρτηση ή παράγουσα) Σελ.304: Απόδειξη του

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΚΕΦΑΛΑΙΟ 1 ο : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΚΕΦΑΛΑΙΟ ο : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΥΝΑΡΤΗΣΕΙΣ Έστω Α ένα υποσύνολο του Τι ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α ; (5 ΕΣΠ Β ) Έστω Α ένα υποσύνολο του Ονομάζουμε

Διαβάστε περισσότερα

Κατηγορία 1 η. Σταθερή συνάρτηση Δίνεται παραγωγίσιμη συνάρτηση f : 0, f '( x) 0 για κάθε εσωτερικό σημείο x του Δ

Κατηγορία 1 η. Σταθερή συνάρτηση Δίνεται παραγωγίσιμη συνάρτηση f : 0, f '( x) 0 για κάθε εσωτερικό σημείο x του Δ Κατηγορία η Σταθερή συνάρτηση Τρόπος αντιμετώπισης: Για να αποδείξουμε ότι μια συνάρτηση είναι σταθερή σε ένα διάστημα Δ πρέπει: η συνάρτηση να είναι συνεχής στο Δ '( ) 0 για κάθε εσωτερικό σημείο του

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Επαναληπτικές Ασκήσεις Έστω ότι το υπόλοιπο της διαίρεσης ενός πολυωνύμου ( x ) α Να γράψετε την ταυτότητα της διαίρεσης β Να βρείτε τα 0 και Ρ γ Αν το πολυώνυμο ( x) είναι x να βρείτε: x + x είναι 3x

Διαβάστε περισσότερα

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ < Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [008-009 < Mathematica.gr], τον οποίο κι ευχαριστώ ιδιαίτερα για

Διαβάστε περισσότερα

ΑΡΧΙΚΗ ΣΥΝΑΡΤΗΣΗ ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗΣ

ΑΡΧΙΚΗ ΣΥΝΑΡΤΗΣΗ ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗΣ ΑΡΧΙΚΗ ΣΥΝΑΡΤΗΣΗ ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της f στο Δ ονομάζεται κάθε συνάρτηση F που είναι παραγωγίσιμη στο Δ και ισχύει

Διαβάστε περισσότερα

ΔΑΜΙΑΝΟΣ ΓΙΑΝΝΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΛΛΟ ΕΠΑΝΑΛΗΨΗΣ 1

ΔΑΜΙΑΝΟΣ ΓΙΑΝΝΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΛΛΟ ΕΠΑΝΑΛΗΨΗΣ 1 ΘΕΜΑ Α ΦΥΛΛΟ 1 Α1. Να αποδείξετε ότι το υπόλοιπο υ της διαίρεσης ενός πολυωνύμου P(x) με το x - ρ είναι ίσο με την τιμή του πολυωνύμου για x = ρ. Είναι δηλαδή υ = P(ρ). Α. Να χαρακτηρίσετε τις προτάσεις

Διαβάστε περισσότερα

ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ. Εφαπτοµένη ευθεία

ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ. Εφαπτοµένη ευθεία ΜΑΘΗΜΑ 5.. ΠΑΡΑΓΩΓΙΣΙΜΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ Εφαπτοµένη ευθεία Παράγωγος βασικών συναρτήσεων ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ Αθροίσµατος γινοµένου - πηλίκου Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΘΕΩΡΙΑ. Εξίσωση

Διαβάστε περισσότερα

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: : Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να μελετήσετε ως προς τη μονοτονία και τα ακρότατα τις παρακάτω συναρτήσεις: f (x) = 0 x(2ln x + 1) = 0 ln x = x = e x =

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να μελετήσετε ως προς τη μονοτονία και τα ακρότατα τις παρακάτω συναρτήσεις: f (x) = 0 x(2ln x + 1) = 0 ln x = x = e x = ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 0: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ [Ενότητα Προσδιορισμός των Τοπικών Ακροτάτων - Θεώρημα Εύρεση Τοπικών Ακροτάτων του κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

Διαβάστε περισσότερα

Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ. (ii) f (x) = π. f (x)

Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ. (ii) f (x) = π. f (x) I Παράγωγος συνάρτησης σε σηµείο Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ Να βρείτε ( αν υπάρχει ) την παράγωγο της συνάρτησης f στο σηµείο (i) f () = +, = (ii) f () =, = (iii) f () = + 6, = (iv) f () = συν, = Να βρείτε

Διαβάστε περισσότερα

A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 8Α ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ A ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Πότε μια συνάρτηση λέγεται συνεχής σε ένα σημείο του πεδίου ορισμού o της ; Απάντηση : ( ΟΜΟΓ, 6 ΟΜΟΓ, 9 Β, ΟΜΟΓ, 5 Έστω μια συνάρτηση και ένα σημείο του πεδίου

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ-ΠΑΡΑΓΩΓΟΣ. ηµ x συν. f(x) = xe, x < 0 είναι παραγωγίσιµη στο

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ-ΠΑΡΑΓΩΓΟΣ. ηµ x συν. f(x) = xe, x < 0 είναι παραγωγίσιµη στο - 33 - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ-ΠΑΡΑΓΩΓΟΣ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ-ΠΑΡΑΓΩΓΟΣ Να εξετάσετε αν η συνάρτηση στο o = Να εξετάσετε αν η συνάρτηση o = ηµ συν, f() = είναι παραγωγίσιµη, = f() = e, < είναι παραγωγίσιµη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Παράδειγμα. Να εξετάσετε από τις παρακάτω συναρτήσεις ποιές ικανοποιούν

Διαβάστε περισσότερα

Σημειώσεις Μαθηματικών 2

Σημειώσεις Μαθηματικών 2 Σημειώσεις Μαθηματικών 2 Συναρτήσεις - 4 Ραφαήλ Φάνης Μαθηματικός 1 Κεφάλαιο 4 Παράγωγος Συνάρτησης 4.1 Έννοια Παραγώγου Ορισμός f(x) f(x 0 ) Μια συνάρτηση f ονομάζεται παραγωγίσιμη στο x 0 Df αν υπάρχει

Διαβάστε περισσότερα

OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Ο ΚΕΦΑΛΑΙΟ : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΥΝΑΡΤΗΣΕΙΣ Έστω Α ένα υποσύνολο του Τι ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α ; Απάντηση : ΕΣΠ Β Έστω

Διαβάστε περισσότερα

A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 8Α ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ A ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Πότε μια συνάρτηση λέγεται συνεχής σε ένα σημείο του πεδίου ορισμού o της ; Απάντηση : ( ΟΜΟΓ, 6 ΟΜΟΓ, 9 Β, ΟΜΟΓ, 5 Έστω μια συνάρτηση και ένα σημείο του πεδίου

Διαβάστε περισσότερα

5o Επαναληπτικό Διαγώνισμα 2016

5o Επαναληπτικό Διαγώνισμα 2016 5o Επαναληπτικό Διαγώνισμα 6 Διάρκεια: 3 ώρες ΘΕΜΑ A Α Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ Να αποδείξετε ότι αν η f είναι συνεχής στο Δ και f για κάθε εσωτερικό σημείο του Δ, να αποδείξετε

Διαβάστε περισσότερα

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2 ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 8: ΘΕΩΡΗΜΑ BOLZANO - ΠΡΟΣΗΜΟ ΣΥΝΑΡΤΗΣΗΣ - ΘΕΩΡΗΜΑ ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ - ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ - ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΕΧΟΥΣ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΟΜΑΔΕΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ : ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΛΟΓΟΣ Σε κάθε ενότητα αυτού του βιβλίου θα βρείτε : Βασική θεωρία με τη μορφή ερωτήσεων Μεθοδολογίες και σχόλια

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΟΛΟΚΛΗΡΩΣΗΣ. Παρατήρηση: Για να εφαρμόσουμε τον τύπο πρέπει μία από τις δύο συναρτήσεις να είναι ή να την γράψουμε υπό μορφή παραγώγου

ΜΕΘΟΔΟΙ ΟΛΟΚΛΗΡΩΣΗΣ. Παρατήρηση: Για να εφαρμόσουμε τον τύπο πρέπει μία από τις δύο συναρτήσεις να είναι ή να την γράψουμε υπό μορφή παραγώγου ΜΕΘΟΔΟΙ ΟΛΟΚΛΗΡΩΣΗΣ Β. Ολοκλήρωση κατά παράγοντες Γενικά η μέθοδος αυτή εφαρμόζεται όταν έχουμε γινόμενο δύο συναρτήσεων Εκφράζεται με τον τύπο της παραγοντικής ολοκλήρωσης: f()g ()d= f()g() - f ()g()d

Διαβάστε περισσότερα

. Όλες οι συναρτήσεις δεν μπορούν να παρασταθούν στο καρτεσιανό επίπεδο όπως για παράδειγμα η συνάρτηση του Dirichlet:

. Όλες οι συναρτήσεις δεν μπορούν να παρασταθούν στο καρτεσιανό επίπεδο όπως για παράδειγμα η συνάρτηση του Dirichlet: Κεφάλαιο: Συναρτήσεις Γραφική παράσταση συνάρτησης Γράφημα μιας συνάρτησης ( ) ονομάζουμε το σύνολο των σημείων G( ) (, ( ) ) / A που είναι υποσύνολο του. Το γράφημα αυτό { } συνήθως παριστάνεται πάνω

Διαβάστε περισσότερα

ln 1. ( ) vii. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη C f, τον άξονα η οποία είναι συνεχής στο και για την οποία ισχύει

ln 1. ( ) vii. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη C f, τον άξονα η οποία είναι συνεχής στο και για την οποία ισχύει Μαθηματικά Γ Λυκείου Θέμα 4o Α Δίνεται η συνάρτηση h ( ), η οποία είναι συνεχής και γνησίως αύξουσα στο διάστημα [, ] β αβ Να δείξετε ότι h d hαβα Β Δίνεται η συνάρτηση f α ( ) ln i Να βρείτε το πεδίο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Ι Β ΜΕΡΟΣ

ΜΑΘΗΜΑΤΙΚΑ Ι Β ΜΕΡΟΣ ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι Περιληπτικές Σημειώσεις-Ασκήσεις Β ΜΕΡΟΣ ΦΩΤΟΥΛΑ ΑΡΓΥΡΟΠΟΥΛΟΥ KAΘ. ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑΤΟΣ ΔΕΟ Msc. Θεωρητικά Μαθηματικά ΚΑΛΑΜΑΤΑ 2016 0 ΠΕΡΙΕΧΟΜΕΝΑ

Διαβάστε περισσότερα

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ R - ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ - ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΑΚΟΛΟΥΘΙΑΣ [Κεφ..6: Μη Πεπερασμένο Όριο στο R - Κεφ..7: Όρια Συνάρτησης

Διαβάστε περισσότερα

ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΡΙΣΜΟΙ ΑΠΟΔΕΙΞΕΙΣ ΕΡΩΤΗΣΕΙΣ : ΣΩΣΤΟ ΛΑΘΟΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ : ΜΙΓΑΔΙΚΟΙ

Διαβάστε περισσότερα

16 Ασύμπτωτες. όπως φαίνεται στα παρακάτω σχήματα. 1. Κατακόρυφη ασύμπτωτη. Η ευθεία x = x0

16 Ασύμπτωτες. όπως φαίνεται στα παρακάτω σχήματα. 1. Κατακόρυφη ασύμπτωτη. Η ευθεία x = x0 6 Ασύμπτωτες Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορίζουμε μια ευθεία ( ε ) ως ασύμπτωτη της γραφικής παράστασης της αν η απόσταση ενός μεταβλητού σημείου Ρ της γραφικής παράστασης από την ευθεία ( ε ) γίνεται

Διαβάστε περισσότερα

1ο Κεφάλαιο: Συστήματα

1ο Κεφάλαιο: Συστήματα ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.

Διαβάστε περισσότερα

Κανόνες de L Hospital

Κανόνες de L Hospital 4.6 Κανόνες de L'Hospital 4.6.Α Κανόνες de L Hospital Για τα όρια πηλίκου που οδηγούν σε απροσδιόριστες μορφές, ± ± ισχύουν τα επόμενα θεωρήματα, που είναι γνωστά ως κανόνες de L Hospital Αυτοί οι κανόνες

Διαβάστε περισσότερα

5ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A

5ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A 5ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου 7-8 Θέμα A A Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα στο οποίο όμως η f είναι συνεχής Αν η f διατηρεί πρόσημο στο α,,β ότι το

Διαβάστε περισσότερα

Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com.

Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com. Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com. A. Οι κανόνες De L Hospital και η αρχική συνάρτηση κάνουν πιο εύκολη τη λύση των προβλημάτων με το Θ. Rolle. B. Η αλγεβρική

Διαβάστε περισσότερα

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ

Διαβάστε περισσότερα

1. Θεωρήματα Διαφορικού Λογισμού

1. Θεωρήματα Διαφορικού Λογισμού Θεωρήματα Διαφορικού Λογισμού α Θεώρημα Rolle Αν μία συνάρτηση f είναι: Συνεχής στο κλειστό διάστημα [ αα ] παραγωγίσιμη στο ανοικτό διάστημα ( αα ) και f( α) = f( ) τότε υπάρχει τουλάχιστον ένα ( α )

Διαβάστε περισσότερα

ΘΕΩΡΗΜΑ ROLLE ΘΕΩΡΗΜΑ ROLLE

ΘΕΩΡΗΜΑ ROLLE ΘΕΩΡΗΜΑ ROLLE ΘΕΩΡΗΜΑ ROLLE ΘΕΩΡΗΜΑ ROLLE Αν μια συνάρτηση f είναι : συνεχής στο κλειστό [α,β] παραγωγίσιμη στο ανοιχτό (α,β) f(α)=f(β) f 0 τότε υπάρχει ένα τουλάχιστον, τέτοιο ώστε ΓΕΩΜΕΤΡΙΚΑ : σημαίνει ότι υπάρχει

Διαβάστε περισσότερα

2. Αν έχουμε μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ.

2. Αν έχουμε μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ. Κατηγορία η Εύρεση μονοτονίας Τρόπος αντιμετώπισης:. Αν έχουμε μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f( ) σε κάθε εσωτερικό σημείο του Δ, τότε η f είναι γνησίως αύξουσα σε όλο το

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Θέμα Α) Να δείξετε ότι αν f μια συνάρτηση ορισμένη σε διάστημα Δ και F μια παράγουσα της f στο Δ τότε: α) όλες οι συναρτήσεις της μορφής G(χ) = F ( ) +c, c είναι παράγουσες

Διαβάστε περισσότερα

Άλγεβρα Β Λυκείου Επαναληπτικά θέματα ΟΕΦΕ α φάση

Άλγεβρα Β Λυκείου Επαναληπτικά θέματα ΟΕΦΕ α φάση Άλγεβρα Β Λυκείου Επαναληπτικά θέματα ΟΕΦΕ 00-08 α φάση Συναρτήσεις Θεωρούμε τη συνάρτηση Α, 6 wwwaskisopolisgr f κ, με 4,4 και κ η οποία διέρχεται από το σημείο και τμήμα της γραφικής της παράστασης φαίνεται

Διαβάστε περισσότερα

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΕΧΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΕ ΔΙΑΣΤΗΜΑΤΑ

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΕΧΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΕ ΔΙΑΣΤΗΜΑΤΑ ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΕΧΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΕ ΔΙΑΣΤΗΜΑΤΑ [Ενότητες Ορισμός της Συνέχειας Πράξεις με Συνεχείς

Διαβάστε περισσότερα

( x ), x είναι ίσες. x,x είναι ίσες. x 5, x δεν είναι ίσες

( x ), x είναι ίσες. x,x είναι ίσες. x 5, x δεν είναι ίσες (1). ΣΥΝΑΡΤΗΣΕΙΣ (Απαντήστε με σωστό ή λάθος) Να διευκρινίσουμε το εξής σημείο. Αν η ερώτηση είναι πχ, η συνάρτηση φ ικανοποιεί το τάδε, εννοείται η λέξη ΠΑΝΤΑ, οπότε αν υπάρχει έστω και μία φ που δεν

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (1 η σειρά)

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (1 η σειρά) 9 ΘΕΡΙΝΑ ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ( η σειρά) ΘΕΜΑ ο Α. Έστω η συνάρτηση f με f() ημ. Να αποδείξετε ότι η f είναι παραγωγίσιμη στο και ισχύει f () συν Β. Πότε μια συνάρτηση f λέμε

Διαβάστε περισσότερα

2 ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

2 ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ 8 ΟΡΙΣΜΟΣ, 9 Πότε μια συνάρτηση λέγεται παραγωγίσιμη σε ένα σημείο του πεδίου ορισμού της ; Απάντηση : Μια συνάρτηση λέμε ότι είναι παραγωγίσιμη σ ένα σημείο

Διαβάστε περισσότερα

Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ 1η κατηγορία: ΕΥΡΕΣΗ ΠΕΔΙΟΥ ΟΡΙΣΜΟΥ

Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ 1η κατηγορία: ΕΥΡΕΣΗ ΠΕΔΙΟΥ ΟΡΙΣΜΟΥ Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ η κατηγορία: ΕΥΡΕΣΗ ΠΕΔΙΟΥ ΟΡΙΣΜΟΥ Για να βρούμε το πεδίο ορισμού μιας συνάρτησης, αρκεί να βρούμε τις τιμές του χ για τις οποίες ορίζονται οι πράξεις που αναγράφονται στο τύπο

Διαβάστε περισσότερα

x 1 δίνει υπόλοιπο 24

x 1 δίνει υπόλοιπο 24 ΓΕΝΙΚΕΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ 3. Δίνεται το πολυώνυμο P() 6 α β το οποίο έχει παράγοντα το και όταν διαιρείται με το δίνει υπόλοιπο i. Να δείξετε ότι: α και β 6 ii. Να λύσετε την εξίσωση

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να βρείτε τις ασύμπτωτες της γραφικής παράστασης της συνάρτησης f με τύπο

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να βρείτε τις ασύμπτωτες της γραφικής παράστασης της συνάρτησης f με τύπο ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΑΣΥΜΠΤΩΤΕΣ - ΚΑΝΟΝΕΣ DE L HOSPITAL - ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ [Κεφ..9: Ασύμπτωτες Κανόνες de l Hospital Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α Σ Υ Σ Τ Η Μ Α Τ Α

Α Λ Γ Ε Β Ρ Α Σ Υ Σ Τ Η Μ Α Τ Α Σ Υ Λ Λ Ο Γ Η Α Σ Κ Η Σ Ε Ω Ν Β Λ Υ Κ Ε Ι Ο Υ Α Λ Γ Ε Β Ρ Α Σ Υ Σ Τ Η Μ Α Τ Α α 3y β 5 (1) Αν το (Σ) : 3 αy 5β τους α,β έχει λύση την (, y) = (1, ) να βρείτε () Να λυθούν τα συστήματα : y 4 3 y 5 6 5 6

Διαβάστε περισσότερα

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ [Κεφ. 1.3: Μονότονες Συναρτήσεις - Αντίστροφη Συνάρτηση σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ Μονοτονία

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ; ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά

Διαβάστε περισσότερα

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2013-2014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων

Διαβάστε περισσότερα

ΘΕΩΡΙΑ 1ΟΥ ΚΕΦΑΛΑΙΟΥ (χωρίς αποδείξεις) ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ- ΣΥΝΕΧΕΙΑ 1. Να δώσετε τον ορισμό της συνάρτησης

ΘΕΩΡΙΑ 1ΟΥ ΚΕΦΑΛΑΙΟΥ (χωρίς αποδείξεις) ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ- ΣΥΝΕΧΕΙΑ 1. Να δώσετε τον ορισμό της συνάρτησης ΘΕΩΡΙΑ ΟΥ ΚΕΦΑΛΑΙΟΥ (χωρίς αποδείξεις ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ- ΣΥΝΕΧΕΙΑ. Να δώσετε τον ορισμό της συνάρτησης Συνάρτηση από το σύνολο Α στο Β λέγεται μια διαδικασία με την οποία κάθε στοιχείο x του Α, αντιστοιχίζεται

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 9: ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ FERMAT

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 9: ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ FERMAT ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 9: ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ FERMAT [Ενότητες Η Έννοια του Τοπικού Ακροτάτου Προσδιορισμός των τοπικών Ακροτάτων πλην του Θεωρήματος Εύρεση Τοπικών Ακροτάτων

Διαβάστε περισσότερα

2.3. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. Να βρείτε την παράγωγο των συναρτήσεων

2.3. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. Να βρείτε την παράγωγο των συναρτήσεων . Ασκήσεις σχολικού βιβλίου σελίδας 8 4 A Οµάδας. Να βρείτε την παράγωγο των συναρτήσεων 7 i ( 4 6 ii ( ln 4 iii ( 4 iv ( συν i Για κάθε R είναι ( 7 6 4 6 ii Για κάθε (, είναι ( 6 iii Για κάθε R είναι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο Συναρτήσεις - Όρια - Συνέχεια (Νο 1) ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ. 1. Να υπολογίσετε το πεδίο ορισμού της συνάρτησης : ln

ΚΕΦΑΛΑΙΟ 1ο Συναρτήσεις - Όρια - Συνέχεια (Νο 1) ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ. 1. Να υπολογίσετε το πεδίο ορισμού της συνάρτησης : ln ΚΕΦΑΛΑΙΟ ο Συναρτήσεις - Όρια - Συνέχεια (Νο ) Λ Υ Κ Ε Ι Ο Α Ν Α Λ Υ Σ Η Ο Κ Ε Φ Α Λ Α Ι Ο ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Θετική Τεχνολογική Κατεύθυνση ασκήσεις (ΝΑ ΛΥΘΟΥΝ ΜΕΤΑ ΑΠΟ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ

Διαβάστε περισσότερα

( ) f( x ) ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Επώνυμο: Όνομα: Τμήμα: Ημερομηνία: Α Βαθ. Β Βαθ. Μ.Ο. (ενδεικτικές λύσεις)

( ) f( x ) ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Επώνυμο: Όνομα: Τμήμα: Ημερομηνία: Α Βαθ. Β Βαθ. Μ.Ο. (ενδεικτικές λύσεις) Επώνυμο: Όνομα: Τμήμα: ΤΣΙΜΙΣΚΗ & ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ ΤΗΛ : 777 594 ΑΡΤΑΚΗΣ Κ. ΤΟΥΜΠΑ ΤΗΛ : 99 9494 www.sygrono.gr Ημερομηνία: Α Βαθ. Β Βαθ. Μ.Ο. ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ (ενδεικτικές

Διαβάστε περισσότερα

Πολλά ψέματα λίγες αλήθειες. ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΕΡΟΣ 1 ο

Πολλά ψέματα λίγες αλήθειες. ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΕΡΟΣ 1 ο Πολλά ψέματα λίγες αλήθειες. ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΕΡΟΣ ο ΕΚΦΩΝΗΣΕΙΣ Οι απαντήσεις βρίσκονται μετά τις εκφωνήσεις Εξετάστε αν είναι αληθείς ή ψευδείς οι παρακάτω προτάσεις και αιτιολογήστε.

Διαβάστε περισσότερα

Τύποι Παραγώγισης *** Ολοκλήρωσης

Τύποι Παραγώγισης *** Ολοκλήρωσης Τύποι Παραγώγισης *** Ολοκλήρωσης f( f ( f ( Κανόνες Παραγώγισης και Ολοκλήρωσης 0 0 C (f±g)'=f '±g' 0 X+C (f. g) '=f 'g+fg' 0 KX+C (cf) '=cf ' + X c (f ν )'=νf ν-. f ' + n + c, n - f f g fg g g n n. n-

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΝΑΛΥΣΗΣ ΓΕΝΙΚΕΣ (ημιτελές version )

ΘΕΩΡΙΑ ΑΝΑΛΥΣΗΣ ΓΕΝΙΚΕΣ (ημιτελές version ) ΘΕΩΡΙΑ ΑΝΑΛΥΣΗΣ ΓΕΝΙΚΕΣ (ημιτελές version 9-4-26) ΠΡΟΣΟΧΗ! Επισημαίνω ότι πιθανόν να υπάρχουν ατέλειες, ελλείψεις, επιπλέον περιττά στοιχεία ή και λάθη στις λύσεις.ετσι ο αναγνώστης πρέπει να χρησιμοποιεί

Διαβάστε περισσότερα

1. Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο ενός άλλου συνόλου Β είναι συνάρτηση.

1. Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο ενός άλλου συνόλου Β είναι συνάρτηση. Μαθηματικά Γενικής Παιδείας Ανάλυση o Κεφάλαιο ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο ενός άλλου συνόλου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΑΡΑΓΩΓΟΥ - ΠΑΡΑΓΩΓΟΣ ΚΑΙ ΣΥΝΕΧΕΙΑ [Κεφ. 2.1: Έννοια της Παραγώγου του σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΑΡΑΓΩΓΟΥ - ΠΑΡΑΓΩΓΟΣ ΚΑΙ ΣΥΝΕΧΕΙΑ [Κεφ. 2.1: Έννοια της Παραγώγου του σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΑΡΑΓΩΓΟΥ - ΠΑΡΑΓΩΓΟΣ ΚΑΙ ΣΥΝΕΧΕΙΑ [Κεφ 1: Έννοια της Παραγώγου του σχολικού βιβλίου] ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα 1 ΘΕΜΑ Β Να βρείτε την παράγωγο της συνάρτησης

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ [Ενότητα Προσδιορισμός των Τοπικών Ακροτάτων - Θεώρημα Εύρεση Τοπικών Ακροτάτων του κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ Άσκηση.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ Γιώργος Μιχαηλίδης ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΥ Προσανατολισμός Θετικών Σπουδών και Σπουδών ικονομίας και Πληροφορικής Α ΤΜΣ ΡΙ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΔΙΑΦΡΙΚΣ ΛΓΙΣΜΣ Κάθε γνήσιο αντίτυπο έχει την υπογραφή του συγγραφέα

Διαβάστε περισσότερα

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ο ΚΕΦΑΛΑΙΟ : ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΑΡΧΙΚΗ ΣΥΝΑΡΤΗΣΗ 6 Τι ονομάζουμε αρχική μιας συνάρτησης σε ένα διάστημα Δ ; Απάντηση : Αρχική συνάρτηση ή παράγουσα της στο Δ ονομάζουμε κάθε

Διαβάστε περισσότερα

1. Δύο συναρτήσεις f,g είναι ίσες μόνο όταν έχουν ίδιο πεδίο ορισμού και ίδιο τύπο. Η πρόταση είναι Λάθος. Αντιπαράδειγμα:

1. Δύο συναρτήσεις f,g είναι ίσες μόνο όταν έχουν ίδιο πεδίο ορισμού και ίδιο τύπο. Η πρόταση είναι Λάθος. Αντιπαράδειγμα: 1. Δύο συναρτήσεις f,g είναι ίσες μόνο όταν έχουν ίδιο πεδίο ορισμού και ίδιο τύπο. 3 017 f(), D { 1,0,1} και g() D { 1,0,1} f f έχουμε D D και f( 1) g( 1), f(0) g(0), f(1) g(1) g Άρα f()=g() για Df =Dg

Διαβάστε περισσότερα