Αδιάσπαστοι, p-κυκλικοί, συνεπώς διατεταγµένοι πίνακες και γραφήµατα

Σχετικά έγγραφα
Τµήµα Πληροφορικής και Τηλεπικοινωνιών

ΣΗΜΕΙΩΣΕΙΣ ΑΡΙΘΜΗΤΙΚΗ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΚΑΘΗΓΗΤΗΣ: ΝΙΚΟΛΑΟΣ ΜΙΣΥΡΛΗΣ

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 3

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 6

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί)

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Η ΚΑΝΟΝΙΚΗ ΜΟΡΦΗ JORDAN

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 6

Σχέσεις, Ιδιότητες, Κλειστότητες

Γραµµικη Αλγεβρα Ι. Ακαδηµαϊκο Ετος Βοηθος Ασκησεων: Χ. Ψαρουδάκης

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012

ΠΛΗ20 ΕΝΟΤΗΤΑ 5: ΘΕΩΡΙΑ ΓΡΑΦΗΜΑΤΩΝ/2. Μάθηµα 5.1: Παραστάσεις Γραφηµάτων. ηµήτρης Ψούνης

Επίλυση ενός τριδιαγώνιου γραµµικού συστήµατος Ax = d µε τη µέθοδο απαλοιφής του Gauss (µέθοδος του Thomas)

2 3x 5x x

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Αλγόριθµοι και Πολυπλοκότητα

q={(1+2)/2}=1 A(1,2)= MERGE( 4, 6 ) = 4 6 q=[(3+4)/2]=3 A(1,4)= MERGE( 4 6, 5 8 ) = q=[(5+6)/2]=5 A(5,6)= MERGE( 2, 9 ) = 2 9

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 1

Λύσεις και Υποδείξεις Επιλεγµένων Ασκήσεων

Αριθµητική Γραµµική Αλγεβρα

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 1

ΜΕΜ251 Αριθμητική Ανάλυση

Ευκλείδειοι Χώροι. Ορίζουµε ως R n, όπου n N, το σύνολο όλων διατεταµένων n -άδων πραγµατικών αριθµών ( x

x 2 = b 1 2x 1 + 4x 2 + x 3 = b 2. x 1 + 2x 2 + x 3 = b 3

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n

Κεφάλαιο 3β. Ελεύθερα Πρότυπα (µέρος β)

3. Γραμμικά Συστήματα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 3

Διανύσµατα στο επίπεδο

Επίλυση Γραµµικών Συστηµάτων

Αριθµητική Ανάλυση. 27 Οκτωβρίου Αριθµητική Ανάλυση 27 Οκτωβρίου / 72

Ιδιάζουσες τιμές πίνακα. y έχουμε αντίστοιχα τις σχέσεις : Αυτές οι παρατηρήσεις συμβάλλουν στην παραγοντοποίηση ενός πίνακα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2

Μη κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Υπογραφήµατα.

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 7

w S n lim (n 1)! = x(x + q)(x + q + q 2 ) (x + q + q q n 1 ),

Θεωρητικά Θέµατα. Ι. Θεωρία Οµάδων. x R y ή x R y ή x y(r) [x] R = { y X y R x } X. Μέρος Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις

ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ.

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 10

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Παράδειγµα (4) Στοιχεία Θεωρίας Γραφηµάτων (2) Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς. v 2. u 3.

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 3

ΜΕΜ251 Αριθμητική Ανάλυση

Γραµµική Αλγεβρα. Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ. Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες,

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5

ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ.

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 4

Αριθµητική Ανάλυση 1 εκεµβρίου / 43

Στοιχεία Θεωρίας Γραφηµάτων (2)

f(t) = (1 t)a + tb. f(n) =

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4

Σημειώσεις για το μάθημα: «Βασικές Αρχές Θεωρίας Συστημάτων» (Μέρος Α )

Περιεχόμενα. Πρόλογος 3

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Πινάκες και Γραµµικές Απεικονίσεις. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Στοχαστικά Σήµατα και Εφαρµογές

Στοιχεία Θεωρίας Γραφηµάτων (1)

21 a 22 a 2n. a m1 a m2 a mn

Αλγόριθµοι και Πολυπλοκότητα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1

Μοντέρνα Θεωρία Ελέγχου

ΜΕΜ251 Αριθμητική Ανάλυση

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3

Επιστηµονικοί Υπολογισµοί(Αριθµητική Γραµµική Αλγεβρα)

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί)

Όνοµα: Λιβαθινός Νικόλαος 2291

Μοντέρνα Θεωρία Ελέγχου

Ενότητα 4: Εισαγωγή στο Λογισμό Μεταβολών. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις

Μηχανική ΙI. Μετασχηµατισµοί Legendre. της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα). Εάν

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΙΙ ΜΑΘΗΜΑ 1-2-ΠΙΝΑΚΕΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ ΠΑΝΗΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

Κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Πολυγραφήµατα (Multigraphs)

Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και2015 Ιδιοδιανυσµάτων 1 / 50

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 4

Εισαγωγή. Οπως είδαµε για την εκκίνηση της Simplex χρειαζόµαστε µια Αρχική Βασική Εφικτή Λύση. υϊσµός

Αριθµητική Ανάλυση. Ενότητα 3 Αριθµητικές Μέθοδοι για την επίλυση Γραµµικών Συστηµάτων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,

Επίλυση Συστήματος Γραμμικών Διαφορικών Εξισώσεων

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 8

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 3

Άσκηση 1. i) ============================================================== Α n ( 3 n 1 ) A ) 5 4. Α n 1 2 ( n n 2.

Χαρακτηριστική Εξίσωση Πίνακα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 7

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 4

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Transcript:

Αδιάσπαστοι, p-κυκλικοί, συνεπώς διατεταγµένοι πίνακες και γραφήµατα Νικόλαος Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών 19 εκεµβρίου 2018 Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 1 / 31

Περιεχόµενα 1 Φυσική διάταξη Κόκκινη-Μαύρη διάταξη 2 Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 2 / 31

Φυσική διάταξη Κόκκινη-Μαύρη διάταξη Φυσική διάταξη u f(x, y) u g(x, y) u x y = 0 (1) στο Ω = {(x, y) : 0 x l 1, 0 y l 2 }. 13 14 15 16 9 10 11 12 5 6 7 8 1 2 3 4 Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 3 / 31

l 1 Νικόλαος Μισυρλής l 1 Επιστηµονικοί Υπολογισµοί 4 / 31 Φυσική διάταξη Φυσική διάταξη Κόκκινη-Μαύρη διάταξη u ij = l iju i 1,j + r iju i+1,j + t iju i,j+1 + b iju i,j 1 (2) t i, j + 1 l r i 1, j ij i + 1, j i, j 1 k k 2 l ij = 2(k 2 + h 2 ) k 2 t ij = 2(k 2 + h 2 ) (1+ 12 ) ( hfij, r ij = k2 2(k 2 +h 2 ) 1 1 ) 2 hfij, (1 12 ) ( ) kgij, b ij = k2 2(k 2 +h 2 ) 1+ 1 2 kgij,

Φυσική διάταξη Φυσική διάταξη Κόκκινη-Μαύρη διάταξη Au = b (3) όπου A = M 1 T 1 0 B 2 M 2 T 2 B 3 M 3 T 3......... B N 1 M N 1 T N 1 0 B N M N. (4) Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 5 / 31

Κόκκινη-Μαύρη διάταξη Φυσική διάταξη Κόκκινη-Μαύρη διάταξη Κόκκινη-Μαύρη διάταξη - Παραλληλία. Au = b 15 7 16 8 5 13 6 14 11 3 12 4 όπου A = ( ) D1 F E D 2 (5) 1 9 2 10 D 1, D 2 τετραγωνικοί διαγώνιοι. Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 6 / 31

Αδιάσπαστοι πίνακες Ορισµός Για n 2, ο A C n n λέγεται διασπάσιµος (reducible) αν υπάρχει ένας n n µεταθετικός πίνακας Ρ τέτοιος ώστε [ ] PAP T A11 A = 12 O A 22 (6) όπου A 11 είναι ένας r r υποπίνακας και A 22 είναι ένας(n r) (n r) υποπίνακας, µε 1 r < n. Αν δεν υπάρχει τέτοιος µεταθετικός πίνακας τότε ο Α λέγεται αδιάσπαστος (irreducible). Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 7 / 31

Αδιάσπαστοι πίνακες Η έννοια της διάσπασης είναι ιδιαίτερα σηµαντική καθώς το αρχικό σύστηµα µπορεί να µετασχηµατιστεί στο Au = k, όπου A = PAP T είναι της µορφής (6). Στην περίπτωση αυτή έχουµε A 11 u 1 + A 12 u 2 = k 1 A 22 u 2 = k 2 (7) οπότε το αρχικό σύστηµα υποβιβάζεται σε δύο µικρότερης τάξης συστήµατα, τα οποία διατηρούν µεταξύ τους τη σχέση των εξισώσεων µε τους αγνώστους και µπορούν να επιλυθούν ανεξάρτητα από το αρχικό σύστηµα. Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 8 / 31

Αδιάσπαστοι πίνακες και Γραφήµατα Ορισµός Ενα κατευθυνόµενο γράφηµα είναι ισχυρά συνεκτικό αν για κάθε Ϲεύγος κόµβων (P i, P j ), υπάρχει ένα µονοπάτι από τον P i στον P j και από τον P j στον P i. ηλαδή, οι κόµβοι P i και P j ϐρίσκονται πάνω σε ένα κύκλο. Παράδειγµα B = 1 4 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 P 1 P 3 G(B) P4 P 2 Το παραπάνω κατευθυνόµενο γράφηµα είναι ισχυρά συνεκτικό, γιατί για κάθε Ϲεύγος κόµβων υπάρχει ένα µονοπάτι. Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 9 / 31

Αδιάσπαστοι πίνακες και Γραφήµατα Παράδειγµα A = ( 1 1 0 3 ) G(A) P 1 P2 Το παραπάνω κατευθυνόµενο γράφηµα δεν είναι ισχυρά συνεκτικό διότι δεν υπάρχει µονοπάτι από τον κόµβο P 2 προς τον κόµβο P 1. Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 10 / 31

Αδιάσπαστοι πίνακες και Γραφήµατα Θεώρηµα Ενας πίνακας Α τάξης n είναι αδιάσπαστος αν και µόνο αν το κατευθυνόµενο γράφηµα του G(A) είναι ισχυρά συνεκτικό. Σηµείωση Οταν ένας πίνακας είναι αδιάσπαστος, όλα τα εκτός της διαγωνίου του στοιχεία σε κάθε γραµµή ή στήλη του πίνακα δεν είναι µηδενικά. Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 11 / 31

p-κυκλικοί πίνακες Ορισµός Εστω A 0 ένας αδιάσπαστος n nπίνακας και k το πλήθος των ιδιοτιµών του Α µε µέτρο ρ(a). Αν k = 1, τότε ο Α λέγεται πρωτεύων. Αν k > 1, τότε ο Α λέγεται κυκλικός µε δείκτη k. Ορισµός Ενας πίνακας A C n n είναι ασθενώς κυκλικός µε δείκτη k (> 1) αν υπάρχει ένας µεταθετικός n nπίνακας Ρ τέτοιος ώστε ο PAP T να είναι της µορφής 0 0... 0 A 1,k A 2,1 0... 0 0 PAP T 0 A = 3,2... 0 0 (8)....... 0 0... A k,k 1 0 όπου οι µηδενικοί διαγώνιοι υποπίνακες είναι τετραγωνικοί. Η (8) είναι η κανονική µορφή ενός αδιάσπαστου n nπίνακα A 0, ο οποίος είναι κυκλικός µε δείκτη k(> 1). Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 12 / 31

p-κυκλικοί πίνακες-γραφήµατα Θεώρηµα Εστω A = (a ij ) 0 ένας αδιάσπαστος n n πίνακας και G(A) το κατευθυνόµενο γράφηµά του. Για κάθε κόµβο P i του G(A), ϑεωρούµε όλα τα κλειστά µονοπάτια (κύκλους) που συνδέουν το P i µε τον εαυτό του. Αν S i είναι το σύνολο όλων των µηκών m i αυτών των κλειστών µονοπατιών και k i είναι ο Μέγιστος Κοινός ιαιρέτης (ΜΚ ) των µηκών, δηλαδή k i = ΜΚ mi S i {m i }, 1 i n. Τότε, k 1 = k 2 = = k n = k, όπου k = 1 όταν ο Α είναι πρωτεύων, και k > 1 όταν ο Α είναι κυκλικός µε δείκτη k. Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 13 / 31

p-κυκλικοί πίνακες-γραφήµατα Παράδειγµα 0 0 1 0 B 1 = 0 0 0 1 0 1 0 0 1 0 0 0 G(B 1 ) : P 1 P 2 έχει το κατευθυνόµενο γράφηµα Παρατηρούµε ότι για το γράφηµα G(B 1 ) ισχύει ότι P 4 P 3 k 1 = ΜΚ {4, 8, 12,...} = 4, οπότε ο πίνακας B 1 είναι κυκλικός µε δείκτη 4. Παρατηρήστε ότι και k 2 = k 3 = k 4 = 4 Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 14 / 31

p-κυκλικοί πίνακες-γραφήµατα Παράδειγµα 0 0 1 0 B 2 = 0 0 0 1 1 0 0 0 0 1 0 0 G(B 2 ) : P 1 P 2 έχει το κατευθυνόµενο γράφηµα P 4 P 3 Παρατηρούµε ότι το γράφηµα G(B 2 ) είναι µη συνεκτικό διότι δεν υπάρχει µονοπάτι που να συνδέει τους κόµβους P 1, P 3 µε τους κόµβους P 2, P 4 και αντίστροφα, µε αποτέλεσµα ο πίνακας B 2 να είναι µη κυκλικός. Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 15 / 31

p-κυκλικοί πίνακες Ορισµός Αν G είναι ένα ισχυρά συνεκτικό κατευθυνόµενο γράφηµα, τότε το G είναι ένα κυκλικό γράφηµα µε δείκτη k > 1, ή ένα πρωτεύων γράφηµα αν ο Μέγιστος Κοινός ιαιρέτης όλων των µηκών των κύκλων του είναι, αντίστοιχα, k > 1 ή k = 1. Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 16 / 31

p-κυκλικοί πίνακες Εστω το γραµµικό σύστηµα (3), όπου ο A C n n, n 2, ο οποίος έχει διαµερισθεί στην ακόλουθη µορφή A 1,1 A 1,2... A 1,N A 2,1 A 2,2... A 2,N A =..., (9) A N,1 A N,2... A N,N όπου κάθε διαγώνιος υποπίνακας A i,i (1 i N) είναι τετραγωνικός. Υποθέτουµε ότι οι διαγώνιοι υποπίνακες A i,i (1 i N) είναι µη ιδιάζοντες. Θεωρούµε ότι ο πίνακας των συντελεστών Α αναλύεται ως ακολούθως A = D C L C U, (10) και ο κατά οµάδες Jacobi πίνακας του Α που αντιστοιχεί στη διαµέριση (9) είναι ο B = I D 1 A = L+U (11) όπου L = D 1 C L και U = D 1 C U. Ο D είναι µη ιδιάζων αφού οι A i,i (1 i N) είναι µη ιδιάζοντες. Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 17 / 31

p-κυκλικοί πίνακες Ιδιαίτερο ενδιαφέρον παρουσιάζουν οι ακόλουθοι πίνακες A 1 = A 1,1 0... 0 A 1,p A 2,1 A 2,2... 0 0 0...... 0 0..... 0 0. 0 0 0... A p,p 1 A p,p A 1,1 A 1,2 0 A 2,1 A 2,2 A 2.3......... A 2 =...... AN 1,N 0 A N,N 1 A N,N 0 0... 0 B 1,p B 2,1 0... 0 0... B 1 = 0 B 3,2 0 0..... 0 0. 0 0 0... B p,p 1 0 όπου p 2. Ο πίνακας B 1 είναι ασθενώς κυκλικός µε δείκτη p. 0 B 1,2 0 B 2,1 0 B 2,3......... B 2 =...... BN 1,N 0 B N,N 1 0 Ο πίνακας B 2 µε κατάλληλη µετάθεση των οµάδων του είναι ασθενώς κυκλικός µε δείκτη p = 2. Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 18 / 31

p-κυκλικοί πίνακες Ορισµός Αν ο κατά οµάδες πίνακας Jacobi Β της (11) του πίνακα Α της (9) είναι ασθενώς κυκλικός µε δείκτη p ( 2), τότε ο Α είναι p κυκλικός, σε σχέση µε τη διαµέριση (9). Σηµείωση Αν οι διαγώνιοι υποπίνακες A i,i της (9) είναι 1 1 πίνακες, τότε ο πίνακας Jacobi είναι ασθενώς δικυκλικός και κατά συνέπεια προκύπτει ότι ο πίνακας Α είναι δικυκλικός. Ισοδύναµα, ϑα λέµε ότι ο πίνακας Α έχει την ιδιότητα A. [Young] Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 19 / 31

p-κυκλικοί πίνακες - Ιδιότητα A Το γράφηµα ενός δικυκλικού πίνακα είναι διµερές (bipartite). S1 S2 Ο έλεγχος αν ένα γράφηµα είναι διµερές χρησιµοποιεί την Οριζόντια διερεύνηση και ϐασίζεται στο γεγονός ότι δεν µπορεί να περιέχει κύκλο περιττού µήκους. Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 20 / 31

p-κυκλικοί πίνακες - Ιδιότητα A Αξίζει να σηµειωθεί ότι επιλέγοντας το Ν=2 στην (9), ο πίνακας Β της (11) είναι της µορφής [ ] 0 B1,2 B =, (12) B 2,1 0 δηλαδή είναι ένας ασθενώς κυκλικός πίνακας µε δείκτη 2. Με άλλα λόγια, οποιαδήποτε διαµέριση του πίνακα Α της (9) µε Ν=2, για την οποία οι διαγώνιοι υποπίνακες είναι µη ιδιάζοντες, είναι τέτοια ώστε ο πίνακας Α να είναι δικυκλικός. Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 21 / 31

p-κυκλικοί πίνακες - Γραφήµατα Παράδειγµα 1 Κυκλικό κατευθυνόµενο γράφηµα µε δείκτη p = 5 του πίνακα B 1. P π(1) P π(5) G π (B 1 ) : P π(2) P π(4) P π(3) Εχει ΜΚ =5, οπότε είναι ένα κατά οµάδες κατευθυνόµενο γράφηµα το οποίο είναι κυκλικό µε δείκτη 5. Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 22 / 31

p-κυκλικοί πίνακες - Γραφήµατα Παράδειγµα 2 Το κατά οµάδες κατευθυνόµενο γράφηµα του πίνακα B 2 για p = 2 G π (B 2 ) : P π(1) P π(2) P π(3) P π(4) P π(5) Εχει ΜΚ =2, οπότε είναι ένα κυκλικό γράφηµα µε δείκτη 2. Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 23 / 31

Συνεπώς διατεταγµένοι πίνακες Θεώρηµα Εστω ότι το κατά οµάδες (block) κατευθυνόµενο γράφηµα του διαµερισµένου πίνακα Jacobi Β της (11) είναι ισχυρά συνεκτικό. Τότε ο πίνακας Α της (9) είναι p-κυκλικός αν το κατά οµάδες (block) κατευθυνόµενο γράφηµα του πίνακα Β είναι ένα κυκλικό γράφηµα µε δείκτη p. Ορισµός Αν ο πίνακας Α της (9) είναι p κυκλικός, τότε ο Α είναι συνεπώς διατεταγµένος (consistently ordered) αν όλες οι ιδιοτιµές του πίνακα B(a) = al+a (p 1) U (13) που προκύπτει από τον κατά οµάδες πίνακα Jacobi Β της (11), είναι ανεξάρτητες του α, για a 0. Ο πίνακας Β ϑα λέγεται επίσης συνεπώς διατεταγµένος. Σε οποιαδήποτε άλλη περίπτωση οι πίνακες Α και Β είναι µη συνεπώς διατεταγµένοι. Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 24 / 31

Συνεπώς διατεταγµένοι πίνακες Για το παράδειγµα του πίνακα A 1 έχουµε σύµφωνα µε την (13), ότι 0 0... 0 a (p 1) B 1,p ab 2,1 0... 0 0 B 1 (a) = 0 ab 3,2... 0 0....... 0 0... ab p,p 1 0 (14) και µε απλούς πολλαπλασιασµούς πινάκων έχουµε ότι B p 1 (a) = Bp 1 για όλα τα a 0, δηλαδή, οι ιδιοτιµές του B 1 (a) είναι ανεξάρτητες του α. Εποµένως, καταλήγουµε στο συµπέρασµα ότι ο πίνακας A 1 είναι ένας p κυκλικός και συνεπώς διατεταγµένος πίνακας. Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 25 / 31

Συνεπώς διατεταγµένοι πίνακες Για το παράδειγµα του πίνακα A 2 έχουµε ότι B 2 (a)x = λx (15) όπου x 0. Η (15) είναι ισοδύναµη µε το ακόλουθο σύστηµα εξισώσεων ab j,j 1 X j 1 + 1 a B j,j+1x j+1 = λx j, 1 j N (16) όπου B 1,0 και B N,N+1 είναι µηδενικοί πίνακες. Για Z j = 1 a j 1 X j, 1 j N, η (16) λαµβάνει τη µορφή B j,j 1 Z j 1 + B j,j+1 Z j+1 = λz j, 1 j N. (17) Συνεπώς, κάθε ιδιοτιµή λ του B 2 (a) είναι για a 0, ιδιοτιµή και του B 2 αποδεικνύοντας έτσι ότι ο πίνακας A 2 είναι ένας δικυκλικός και συνεπώς διατεταγµένος πίνακας. Συµπέρασµα Κάθε κατά οµάδες τριδιαγώνιος πίνακας της µορφής (18), µε µη ιδιάζοντες διαγώνιους υποπίνακες, είναι ένας δικυκλικός και συνεπώς διατεταγµένος πίνακας. Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 26 / 31

Συνεπώς διατεταγµένοι πίνακες Παράδειγµα B = 1 4 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 Ĝ(B) : P 1 P 3 P 4 P 2 Σχήµα: Γράφηµα δικυκλικού και συνεπώς διατεταγµένου πίνακα Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 27 / 31

Συνεπώς διατεταγµένοι πίνακες Παράδειγµα B φ = 1 4 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 Ĝ(B φ ) : P 1 P 2 P 4 P 3 Σχήµα: Γράφηµα δικυκλικού µη συνεπώς διατεταγµένου πίνακα Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 28 / 31

Συνεπώς διατεταγµένοι πίνακες - Γραφήµατα Παράδειγµα 3 4 1 2 Σχήµα: Πλέγµα τεσσάρων σηµείων Παρατήρηση Ακολουθώντας τη ϕορά 1 3 4 2 1 έχουµε δύο τόξα µε ϕορά ίδια µε αυτή των δεικτών του ϱολογιού και δύο τόξα µε ϕορά αντίθετη µε αυτή των δεικτών του ϱολογιού. Εποµένως ο πίνακας του συστήµατος που προκύπτει από αυτά τα 4 σηµεία του πλέγµατος, είναι συνεπώς διατεταγµένος. Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 29 / 31

Συνεπώς διατεταγµένοι πίνακες - Γραφήµατα Στο ακόλουθο σχήµα παρατηρείται ότι ο πίνακας που προκύπτει από την ϕυσική διάταξη, την κόκκινη µαύρη διάταξη και την κατά διαγωνίους διάταξη των σηµείων του πλέγµατος είναι δικυκλικός συνεπώς διατεταγµένος. 7 8 9 4 9 5 6 8 9 4 5 6 7 3 8 3 5 7 1 2 3 1 6 2 1 2 4 (a) (b) (c) Σχήµα: (a) Φυσική διάταξη (b) Κόκκινη µαύρη διάταξη (c) Κατά διαγωνίους διάταξη Συµπέρασµα Οι διατάξεις εκείνες που παράγουν συνεπώς διατεταγµένους πίνακες είναι οι ϐέλτιστες. Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 30 / 31

Βιβλογραφία R. S. Varga, Matrix Iterative Analysis, Prentice Hall, Englewood Cliffs, NJ, 1962. D. M. Young, Iterative Solution of Large Linear Systems, Academic Press, New York, 1971. Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 31 / 31