ΤΑΞΗ: ΜΑΘΗΜΑ: 3 η ΤΑΞΗ ΕΠΑ.Λ. (Β ΟΜΑ Α) ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: Κυριακή 1 Απριλίου 01 ΘΕΜΑ Α Α1. Σχολικό βιβλίο σελ. 151. Α. Σχολικό βιβλίο σελ. 14. ΑΠΑΝΤΗΣΕΙΣ Α3. Σχολικό βιβλίο σελ. 84 (Tα µέτρα θέσης µας δίνουν τη θέση του «κέντρου» των παρατηρήσεων στον οριζόντιο άξονα και τα µέτρα διασποράς την διασπορά των παρατηρήσεων, δηλαδή πόσο αυτές εκτείνονται γύρω από το «κέντρο» τους. Α4. α Λ, β Σ, γ Σ, δ Λ, ε Λ. ΘΕΜΑ Β B1. Αφού το εµβαδόν του πολυγώνου συχνοτήτων είναι 50 θα είναι ν=50 όπου ν το πλήθος των συνταξιούχων του δείγµατος. Το πλάτος c κάθε µιας από τις 5 κλάσεις θα είναι R = 0 = 4. 5 5 Αφού το µέσο της δεύτερης κλάσης έχει τετµηµένη 10 θα είναι x =10 και αν η πρώτη κλάση είναι [κ,κ+c) η δεύτερη θα είναι [κ+c, κ+c) και θα είναι: x Αφού f% κ + c + κ + c κ + 4 + κ + 8 = 10 = κ + 1 = 0 κ = 4. = a θα είναι σύµφωνα µε τα δεδοµένα a 3a a f1 % = 3 a, f3% =, f4 % =, f5% =. 10 5 a 3a a f % + f % + f % + f % + f % = 100 3a + a + + + = 100 a = 0. 10 5 Όµως 1 3 4 5 Άρα ο πίνακας συχνοτήτων γράφεται: ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: 1 ΑΠΟ 6
Κλάσεις x i f i % f i ν i N i F i % F i x i ν i [4-8) 6 60 0,60 150 150 60 0,60 900 [8-1) 10 0 0,0 50 00 80 0,80 500 [1-16) 14 10 0,10 5 5 90 0,90 350 [16-0) 18 6 0,06 15 40 96 0,96 70 [0-4) 4 0,04 10 50 100 1 0 ΣΥΝΟΛΑ 100 1 50 40 Για τις συχνότητες ν i χρησιµοποιήσαµε τον τύπο νi = fi ν. xi νi i= 1 40 Β. Για τη µέση τιµή των συντάξεων έχουµε x = = = 8,96 ν 50 εκατοντάδες ευρώ, δηλαδή 896 ευρώ. Για την εύρεση της διαµέσου των συντάξεων σχηµατίζουµε το πολύγωνο αθροιστικών σχετικών συχνοτήτων F i %. 5 Fi% 100-96 - 90-80 - 70-60 - 50-40 - 30-0 - 10-4 δ 8 1 16 0 4 x σε εκατ. ευρώ i δ 4 50 0 4 5 Από αυτό έχουµε = δ 4 = δ 4 + 3,33 7,33. 8 4 60 0 6 Αφού x> δ η κατανοµή παρουσιάζει θετική ασυµµετρία. ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: ΑΠΟ 6
16 13 Β3. Πάνω από 1300 ευρώ δηλαδή από 13 εκατοντάδες είναι τα 16 1 κλάσης και όλοι που είναι στην 4 η και στην 5 η κλάση, δηλαδή ποσοστό 3 10 + 6 + 4 % = 17,5% δηλαδή 17,5 850000 498750 4 100 = συνταξιούχοι. της 3 ης Β4. Μέγιστο ετήσιο εισόδηµα 8640 ευρώ σηµαίνει ότι το µέγιστο µηνιαίο εισόδηµα είναι 8640 = 70 ευρώ, δηλαδή 7, εκατοντάδες ευρώ. 1 i. Από 4-7, εκατοντάδες ευρώ ανήκουν 7, 4 3, = = 0,80 =80% των 8 4 4 συνταξιούχων της πρώτης κλάσης, δηλαδή ποσοστό 0,80 60 = 48% του συνόλου των συνταξιούχων. Άρα η ζητούµενη πιθανότητα είναι 48%. ii. Το ποσό που θα αφαιρεθεί από τις ανώτερες κλάσεις του δείγµατος ανά µήνα είναι 100 5 + 00 15 + 400 10 = 500 + 3000 + 4000 = 9500 ευρώ και θα διανεµηθεί σε 80 150 10 100 = της 1ης κλάσης. Άρα καθένας από τους δικαιούχους θα πάρει 9500 = 79,16 ευρώ ανά µήνα. 10 ΘΕΜΑ Γ Γ1. Για την f(x) πρέπει να ισχύουν: ( x 0 και x - 4 0). Άρα Α f =[0,4) (4,+ ). Για την g(x) πρέπει να ισχύουν: ( x > 0 και x 0) δηλαδή x>0. Άρα Α g =(0, + ). Γ. 3( x ) ( x )( x+ ) 3 x 6 3 3 lim f ( x) = lim = lim = lim = = P(A). x 4 x 4 x 4 x 4 x 4 x+ 4 P(B) 1 1 P(B) 1 x Είναι: g ( x) = + + x = + + x x 16 x x 8 P(B) 1 4 οπότε g (4) = + +. 4 4 8 π Αν ω= τότε 4 π P( B) 1 1 P( B) 1 1 εφω=εφ = 1 = g (4) + + = 1 = P( B) =. 4 4 4 4 4 ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: 3 ΑΠΟ 6
Γ3. α 1 Αν P( A B) = > = P( B) άτοπο γιατί (Α Β) Β. 3 1 Αν P( A B) = τότε P( A B) = Ρ( Α ) + Ρ( Β) Ρ( Α Β ) = 6 3 1 1 9 6 13 = + = + = > 1 άτοπο. 4 6 1 1 1 1 Άρα P( A B) =. 5 β P( A B ) = P( Α ) + P( B ) P( A B ) = P( A) + 1 P( B) P( A B) = 1 1 9 = P( Α ) + 1 P( B) P( A) + P( A B) = 1 + = + =. 5 5 10 γ. P[ ( A B) ( B A )] = = P( Α B) + P( B A) = P( A) P( A B) + P( B) P( A B ) = 3 1 3 1 4 15 10 16 9 = + = + = + =. 4 5 5 4 5 0 0 0 0 ΘΕΜΑ 1. f x = x + x = x x 3 ( ) 4 4 4 ( 1) x -1 0 1 + -4x + + x -1 + + f (x) + + f(x) ր ց ր ց Άρα η f (, 1], f [ 1,0], f [0,1], f [1, + ). Έχει τοπικό µέγιστο για x 1 =-1 το f ( 1) = και για x 3 =1 το f (1) = και τοπικό ελάχιστο για x =0 το f(0)=1. ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: 4 ΑΠΟ 6
. i) Είναι: 0 Ρ( Β) 1 και f στο [0,1].. ii. α) Συνεπώς: f f( ) f( ) (0) Ρ( Β) 1 1 Ρ(A) και 0 Ρ(A) 1 και αφού ο δειγµατικός χώρος αποτελείται από ισοπίθανα απλά ενδεχόµενα Ρ(Α)=1 και Α=Ω. Ακόµα: 4 f P(B) = P(A) P (B) + P (B) + 1 = 1 P ( B) P ( B) = 0 ( ) ( ) P( B ) = 0 ή P(B)= ± απορ. αφού 0 P( B) 1 Άρα Ρ(Β)=0 και B =. Γ Α = Ω και Γ Β= Άρα: 0 < Ρ( Γ ) < 1 0 < Ρ( Γ ) < 0 < ν < και ν N ν = 1, 1 1 1 οπότε Ρ(Γ)= 1 Ω, και Γ, Γ Άρα: Ρ( Γ ) < Ρ( ) < 1 4 Ρ( Γ ) < 4 Ρ( ) < 4 < ν < 4 και ν N ν = 3, οπότε Ρ( )= 3 4. Συνεπώς: x i ν i 1 1 3 3 5 4 1 ν=10 β) t5+ t6 3+ 3 δ= = = 3. ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: 5 ΑΠΟ 6
γ) Είναι Γ = Γ 1 οπότε Ρ( Γ ) = Ρ( Γ ) = 3 Γ = οπότε Ρ Γ = Ρ( ) = 4 και ( ) ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: 6 ΑΠΟ 6