ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ



Σχετικά έγγραφα
ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

Π Α Ν Ε Λ Λ Α Δ Ι Κ Ε Σ Ε Ξ Ε Τ Α Σ Ε Ι Σ Κ Ε Ρ Δ Ι Σ Ε Ε Ξ Υ Π Ν Α Μ Ο Ν Α Δ Ε Σ Κ Α Τ Ε Υ Θ Υ Ν Σ Η Σ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 2 ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 2 ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ÖÑÏÍÔÉÓÔÇÑÉÁ ÓÕÍÏËÏ ËÁÌÉÁ. ( i) ( ) ( ) ( ) ΜΑΘΗΜΑΤΙΚΑ ( ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΘΕΜΑ Β ΘΕΜΑ Γ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ.

= R {x συν x = 0} ισχύει: 1 ( εφ x)' = συν

( ) ( ) lim f x lim g x. z-3i 2-18= z-3 2 w-i =Im(w)+1. x x x x

για κάθε x 0. , τότε f x στο Απάντηση είναι εσωτερικό σημείο του Δ και η f παρουσιάζει σ αυτό τοπικό μέγιστο, υπάρχει 0 τέτοιο, ώστε (x , ισχύει

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 20 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

aμαθηματικα ΚΑΤΕΥΘΥΝΣΗΣ 2014

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α. A1. Έστω μια συνάρτηση f παραγωγίσιμη σε ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο x

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017

Α2. Να διατυπώσετε το θεώρημα του Fermat. (Απάντηση : Θεώρημα σελ. 260 σχολικού βιβλίου) Μονάδες 4

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

3o Επαναληπτικό Διαγώνισμα 2016

20 επαναληπτικά θέματα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Α2. Να διατυπώσετε το θεώρημα του Βolzano. Μονάδες 5

Επαναληπτικά Θέματα Μαθηματικών Γ Λυκείου Κατεύθυνσης

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ

Μονάδες 2. ΘΕΜΑ 2 ο ίνεται ο μιγαδικός αριθμός με α IR. α. Να αποδειχθεί ότι η εικόνα του μιγαδικού z ανήκει στον κύκλο με κέντρο Ο(0,0)

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ

20 επαναληπτικά θέματα

Τελευταία Επανάληψη. την ευθεία x=1 και τoν x x. 2 1 x. Λύση. x 2 1 x 0, άρα. x 1 x. x x 1. γ) x 1 e x x 1 x e ln x 1 x f x.

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

Σελίδα 1 από 3. f ( x ) 0. Τι σημαίνει γεωμετρικά το Θεώρημα Μέσης Τιμής του Διαφορικού Λογισμού ( Μονάδες 5 ) (Α3) Πότε η ευθεία y x

, να αποδείξετε ότι και η συνάρτηση f+g είναι παραγωγίσιμη στο x. και ισχύει. Μονάδες 9 Α2. Έστω μια συνάρτηση f με πεδίο ορισμού το Α και [, ]

(, ) ( x0, ), τότε να αποδείξετε ότι το. x, στο οποίο όμως η f είναι συνεχής. Αν f ( x) 0 στο

Π Ρ Ο Τ Ε Ι Ν Ο Μ Ε Ν Α Θ Ε Μ Α Τ Α Σ Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Κ Α Τ Ε Υ Θ Υ Ν Σ Η Σ

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

ΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

ÖÑÏÍÔÉÓÔÇÑÉÏ ÊÏÑÕÖÇ ÓÅÑÑÅÓ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 19 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2011 ΕΚΦΩΝΗΣΕΙΣ

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 4. [ ] z, w. 3 f x, x 1,3 όπου 3 μιγαδικοί των οποίων οι εικόνες

20 επαναληπτικά θέματα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

Ημερομηνία: Πέμπτη 5 Ιανουαρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α

z-4 =2 z-1. 2z1 2z2 β) -4 w 4. ( ) x 1 3 x 2 e t dt, x 0

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2013 ΕΚΦΩΝΗΣΕΙΣ

Για παραγγελίες των βιβλίων

( ) ( ) ΘΕΜΑ Β Β1. Θέτουμε z = x + yi, x, y ΙR Είναι: 2 x + y + 2xi 4 2i = 0 2x + 2y 4 + (2x 2)i = 0. 2y = 2 y = 1 ήy= 1 = = = Άρα = 1+ i, z2. z 1 Β2.

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

) της γραφικής παράστασης της f που άγονται από το Α, τις οποίες και να βρείτε. Μονάδες 8 Γ2. Αν ( 1) : y x, και ( 2

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

A1. Να αποδείξετε ότι η συνάρτηση f(x)=συνx είναι παραγωγίσιμη στο και για κάθε x ισχύει. = ημx Μονάδες 10

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

AΠΑΝΤΗΣΕΙΣ. z z 0 που είναι τριώνυμο με διακρίνουσα. 2 Re z 4Im z R. x 2 y x y 2

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΗΜΕΡΟΜΗΝΙΑ: 05 ΜΑΙΟΥ 2016 ΑΠΑΝΤΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2012 ΕΚΦΩΝΗΣΕΙΣ. β α

ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ. είναι μιγαδικοί αριθμοί, να αποδειχθεί ότι:

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2008 ΕΚΦΩΝΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. σε µια σελίδα Α4 ανά έτος.. προσαρµοσµένα στις επιταγές του ΝΤ MΑΘΗΜΑΤΙΚΑ ΟΜΟΓΕΝΩΝ 05 ΣΕΠΤΕΜΒΡΙΟΥ

x R, να δείξετε ότι: i)

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (1 η σειρά)

5o Επαναληπτικό Διαγώνισμα 2015 Διάρκεια: 3 ώρες

την αρχή των αξόνων και ύστερα να υπολογίσετε το εμβαδόν του

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά Γ λυκείου Θ ε τ ι κ ών και οικονομικών σπουδών

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

ΘΕΜΑ Α Α1. Αν μια συνάρτηση f είναι παραγωγίσιμη σε ένα σημείο x 0, τότε να αποδείξετε ότι είναι και συνεχής στο σημείο αυτό.

Θέματα. Α1. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του x,

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <

( ) ( ) ɶ = = α = + + = = z1 z2 = = Οπότε. Έχουµε. ii) γ) 1ος Τρόπος. Οπότε Ελάχιστη απόσταση είναι:

f ( x) f ( x ) για κάθε x A

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 2007 ΕΚΦΩΝΗΣΕΙΣ. Α.3 Πότε η ευθεία y = l λέγεται οριζόντια ασύµπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3

ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α1. Απόδειξη σχολικού βιβλίου σελίδα 135.

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2018 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΑΠΑΝΤΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ. x x. = 3, x (2,5) 0 είναι η h. Α4. α) Σ β) Σ γ) Σ δ) Λ

β) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

Ασκήσεις Επανάληψης Γ Λυκείου

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Γ. Το µέτρο της διαφοράς δύο µιγαδικών αριθµών είναι ίσο µε την απόσταση των εικόνων τους στο µιγαδικό επίπεδο.

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

5o Επαναληπτικό Διαγώνισμα 2016

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 11 Ιουνίου 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

Transcript:

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 4 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν η f είναι συνεχής στο Δ και f ()= για κάθε εσωτερικό σημείο του Δ, τότε να αποδείξετε ότι η f είναι σταθερή σε όλο το διάστημα Δ. Μονάδες 8 Α. Έστω μια συνάρτηση f συνεχής σε ένα διάστημα Δ και παραγωγίσιμη στο εσωτερικό του Δ. Πότε λέμε ότι η συνάρτηση f στρέφει τα κοίλα προς τα κάτω ή είναι κοίλη στο Δ; Μονάδες 4 Α3. Έστω μια συνάρτηση f με πεδίο ορισμού Α. Πότε λέμε ότι η f παρουσιάζει στο A(ολικό) μέγιστο, το f( ); Μονάδες 3 Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστη, ή Λάθος, αν η πρόταση είναι λανθασμένη. α) Για κάθε z C ισχύει z z= Im( z) (μονάδες ) β) Αν lim f ( ) =+ ή, τότε lim = f( ) (μονάδες ) γ) Αν μια συνάρτηση f παρουσιάζει (ολικό) μέγιστο, τότε αυτό θα είναι το μεγαλύτερο από τα τοπικά της μέγιστα. (μονάδες ) δ) Αν η συνάρτηση f είναι συνεχής σε ένα διάστημα Δ και α, β, γ Δ, τότε ισχύει β γ β f d= f d+ f d ( ) ( ) ( ) α α γ (μονάδες ) ε) Έστω συνάρτηση f συνεχής σε ένα διάστημα Δ και παραγωγίσιμη σε κάθε εσωτερικό σημείο του Δ. Αν η συνάρτηση f είναι γνησίως φθίνουσα στο Δ, τότε η παράγωγός της είναι υποχρεωτικά αρνητική στο εσωτερικό του Δ. (μονάδες ) Μονάδες

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 4 ΘΕΜΑ Β Δίνεται η εξίσωση ( ) z + z+ z i 4 i=, z C Β. Να λύσετε την παραπάνω εξίσωση. Μονάδες 9 Β. Αν z =+i και z =-i είναι οι ρίζες της παραπάνω εξίσωσης, τότε να αποδείξετε ότι ο αριθμός 39 z w= 3 z είναι ίσος με -3i Μονάδες 8 Β3. Να βρείτε το γεωμετρικό τόπο των εικόνων των μιγαδικών αριθμών u για τους οποίους ισχύει u+ w = 4z z i όπου w, z, z οι μιγαδικοί αριθμοί του ερωτήματος Β. Μονάδες 8 ΘΕΜΑ Γ Δίνεται η συνάρτηση h()=-ln( +), R Γ. Να μελετήσετε την h ως προς την κυρτότητα. Γ. Να λύσετε την ανίσωση ( ( )) hh' <, R + Μονάδες 5 Γ3. Να βρείτε την οριζόντια ασύμπτωτη της γραφικής παράστασης της h στο +, καθώς και την πλάγια ασύμπτωτής της στο. Μονάδες 6 Γ4. Δίνεται η συνάρτηση φ()= (h()+ln), R Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση της φ(), στον άξονα και την ευθεία =

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 4 ΘΕΜΑ Δ Δίνεται η συνάρτηση f( ), αν =, αν = Δ. Να αποδείξετε ότι η f είναι συνεχής στο σημείο = και, στη συνέχεια, ότι είναι γνησίως αύξουσα. Δ. Δίνεται επιπλέον ότι η f είναι κυρτή. α) Να αποδείξετε ότι η εξίσωση f '( ) f u du= ( ) έχει ακριβώς μία λύση, η οποία είναι = (μονάδες 7) β) Ένα υλικό σημείο Μ ξεκινά τη χρονική στιγμή t= από ένα σημείο Α(,f( )) με < και κινείται κατά μήκος της καμπύλης y=f(), με =(t), y=y(t), t. Σε ποιο σημείο της καμπύλης ο ρυθμός μεταβολής της τετμημένης (t) του σημείου Μ είναι διπλάσιος του ρυθμού μεταβολής της τεταγμένης του y(t), αν υποτεθεί ότι (t)> για κάθε t. (μονάδες 4) Μονάδες Δ3. Θεωρούμε τη συνάρτηση g()=(f()+-) (-), (, + ) Να αποδείξετε ότι η συνάρτηση g έχει δύο θέσεις τοπικών ελαχίστων και μία θέση τοπικού μεγίστου. ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. Θεωρία σχολικό βιβλίο σελίδα 5 Α. Θεωρία σχολικό βιβλίο σελίδα 73 Α3. Θεωρία σχολικό βιβλίο σελίδα 5 Α4. α) Λάθος β) Σωστό γ) Σωστό δ) Σωστό ε) Λάθος ΘΕΜΑ Β Β. Έστω z = + yi με, y R Έχουμε: ( + y ) + i 4 i=

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 4 ( + y 4) + ( ) i= + y 4= και = = και y = y=± Άρα z = + i και z = i 39 39 + i i 39 4 9 3 Β. w= 3 = 3 = 3i = 3( i ) i = 3i i Β3. u+ w = 4z z i u 3i = 3+ 4i u 3i = 5 Άρα ο γεωμετρικός τόπος των εικόνων του u είναι κύκλος με κέντρο Κ(,3) και ακτίνα ρ=5 ΘΕΜΑ Γ Γ. Η h είναι συνεχής στο R ως αποτέλεσμα πράξεων μεταξύ συνεχών συναρτήσεων h ( ) = =, R + + h ( ) = <, R ( + ) Άρα η h είναι κοίλη στο R Γ. Αφού h () >, R τότε η h είναι γνησίως αύξουσα στο R. Για κάθε R έχουμε: h( h ( )) h( h ( )) < ln < ln + + h( h ( )) < ln ln( + ) h( h ( )) < ln( + ) h( h ( )) < h() h ( ) < < > > > + Γ3. lim h ( ) = lim(ln ln( + )) = lim ln = lim lnu = ln = + + + u + όπου u = + και lim u = lim = lim = + + + + + Άρα η C έχει οριζόντια ασύμπτωτη στο + την ευθεία y = h ( ) ( ) lim h ( ) = lim ln( + ) = lim( ln y) = ln =, όπου y y= + και lim y= lim( + ) = Άρα η C έχει πλάγια ασύμπτωτη στο την ευθεία y = h

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 4 Γ4. Για κάθε R έχουμε ϕ ( ) = ( h ( ) + ln) = h ( ) + ln= h ( ) = ln h - h ( ) = h() = Η φ είναι συνεχής στο [,] Για κάθε [,] έχουμε h ( ) h() h ( ) ln h ( ) + ln και, οπότε ( h( ) + ln) και άρα ϕ( ) για κάθε [,] Επομένως ( ) E = ϕ d= ln( + ) + ln d = ( ln( ) ln ) = + + d = ( ) d ( + ) ln( + ) d+ lnd= d d + + + + = [ ] [( + )ln( + )] + + ln [ ] = [ ] [ ] [( )ln( )] [ ] ln [ ] ( + )ln( + ) + ln + ( )ln = + ( + )ln τμ + ΘΕΜΑ Δ ( ) Δ. Έχουμε lim f ( ) = lim = lim = lim = = = f(), ( ) οπότε η f είναι συνεχής στο σημείο = * + Για κάθε R έχουμε f '( ) = Θεωρούμε την συνάρτηση h ( ) = +, R Η h είναι συνεχής στο R Για κάθε R έχουμε h ( ) = Για < είναι h ( ) <, οπότε η h είναι γνησίως φθίνουσα στο (,] και άρα για < είναι h ( ) > h() =. Για > είναι h ( ) >, οπότε η h είναι γνησίως αύξουσα στο [, + ) και άρα για > είναι h ( ) > h() =. * Επομένως f ( ) > για κάθε R και αφού η f συνεχής στο, τότε η f είναι γνησίως αύξουσα στο R

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 4 f ( ) f() Δ. α) Για κάθε έχουμε = = Επομένως f( ) f() ( ) lim = lim = lim = lim = lim = ( ) Άρα η f είναι παραγωγίσιμη στο = με f () = Θεωρούμε την συνάρτηση Έχουμε G() = f () ' f ( ) G ( ) = fudu ( ), R f( u) du= f( u) du=, οπότε η = είναι λύση της εξίσωσης G() = Επειδή η f είναι κυρτή στο R τότε η f είναι γνησίως αύξουσα στο R Για > είναι > > >, οπότε f( ) = > Για < είναι < < <, οπότε f( ) = > Για = είναι f() = > Επομένως f() > για κάθε R Για > είναι f ( ) > f () f ( ) > f ( ) > Άρα f ( ) Για < είναι Άρα f( u) du> G( ) > f ( ) < f () f ( ) < f ( ) < f ( ) f( u) du > f( u) du > G( ) < f ( ) Επομένως η = είναι μοναδική λύση της εξίσωσης G() = β) Είναι yt () = f( t ()), οπότε y () t = f ( ()) t () t, t

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 4 Αν t η χρονική στιγμή κατά την οποία είναι ( t ) = y ( t ) τότε έχουμε ( t ) > ( t ) = f ( ( t )) ( t ) f ( ( t )) = f f ( ( t )) = f ( ( t )) = f () ( t ) =, οπότε yt ( ) = f( t ( )) = f() = Άρα το M (,) είναι το ζητούμενο σημείο της καμπύλης Δ3. Έχουμε g( ) = ( + ) ( ) = ( ) ( ), (, + ) g ( ) = ( )( )( ), (, + ) Είναι g ( ) = = ή = ή = Θεωρούμε την συνάρτηση ( ) K =, (, + ) Επειδή Κ ( ) = > για κάθε (, + ), η Κ είναι γνησίως αύξουσα στο (, + ) οπότε η εξίσωση Κ() = έχει το πολύ μια ρίζα στο (, + ) Η Κ συνεχής στο [,] και ισχύει Κ() Κ () = ( ) < Άρα σύμφωνα με το ΘΒ υπάρχει ρ (, ) ώστε Κ(ρ)=, το οποίο μαναδικό. Για < < ρ είναι Κ() < K(ρ) = και για > ρ είναι Κ() > K(ρ) = ρ + + + + + K() + + g () + + g() Γν.φθίνουσα Γν. αύξουσα Γν.φθίνουσα Γν. αύξουσα τ.ελάχιστο τ. μέγιστο τ. ελάχιστο Άρα η g έχει δύο θέσεις τοπικών ελαχίστων και μία θέση τοπικού μεγίστου. ΤΙΣ ΑΠΑΝΤΗΣΕΙΣ ΕΠΙΜΕΛΗΘΗΚΕ Ο ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ ΤΩΝ ΦΡΟΝΤΙΣΤΗΡΙΩΝ «ΟΜΟΚΕΝΤΡΟ» ΦΛΩΡΟΠΟΥΛΟΥ ΚΟΥΣΗΣ Π. ΣΙΦΝΑΙΟΣ Δ. ΤΖΩΡΤΖΙΝΗΣ Ι. ΦΙΛΙΟΓΛΟΥ Ε. ΦΛΩΡΟΠΟΥΛΟΣ Α. ΦΩΤΟΥ Φ.