ιάλεξη 7 η, 8 η και 9 η

Σχετικά έγγραφα
1 η Επανάληψη ιαλέξεων

ιάλεξη 3 η komodromos@ucy.ac.cy Πέτρος Κωµοδρόµος Παρασκευή, 10 Σεπτεµβρίου,, 2004

ιαλέξεις Παρασκευή 8 Οκτωβρίου,, Πέτρος Κωµοδρόµος Στατική Ανάλυση των Κατασκευών Ι 1

Επίλυση 2ας. Προόδου & ιάλεξη 12 η. Τρίτη 5 Οκτωβρίου,,

Ανάλυση Ισοστατικών ικτυωµάτων

Επαναλήψεις. Τετάρτη, 1 & Παρασκευή,, 3 εκεµβρίου komodromos@ucy.ac.cy Πέτρος Κωµοδρόµος

ιαλέξεις Τρίτη, 2, Τετάρτη, 3, Παρασκευή 5 komodromos@ucy.ac.cy Πέτρος Κωµοδρόµος

ΠΠΜ 220: Στατική Ανάλυση Κατασκευών Ι

ιαλέξεις Μέθοδοι των δυνάµεων Πέτρος Κωµοδρόµος Στατική Ανάλυση των Κατασκευών Ι 1

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015

Μάθημα: Στατική ΙΙ 9 Φεβρουαρίου 2011 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης 2:15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

sin ϕ = cos ϕ = tan ϕ =

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016

ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή. Διδάσκων: Γιάννης Χουλιάρας

Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων. Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης

Μάθημα: Στατική ΙΙ 3 Ιουλίου 2012 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

Μέθοδος των Δυνάμεων

ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής. Διδάσκων: Γιάννης Χουλιάρας

ΕΠΙΠΕ Α ΙΚΤΥΩΜΑΤΑ. ομική Μηχανική Ι. Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ

ΘΕΜΑ 1 ΔΕΔΟΜΕΝΑ: Δίνονται: = cm ΕΠΙΛΥΣΗ: Ερώτημα α. k = 6000kN m. Μέθοδος των Δυνάμεων:

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018

ΠΕΡΙΕΧΟΜΕΝΑ. 1. ΟΙ ΓΡΑΜΜΙΚΟΙ ΦΟΡΕΙΣ Εισαγωγή Συστήματα συντεταγμένων. 7

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης

1. Ανασκόπηση Μεθόδων Ευκαμψίας (δυνάμεων)

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ

ΠΡΟΛΟΓΟΣ ΕΙΣΑΓΩΓΗ... 15

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΠΤΕΜΒΡΙΟΥ 2005 ΘΕΜΑ 1

2. Επίλυση Δικτυωμάτων με τις Μεθόδους Ευκαμψίας (ή Δυνάμεων)

2. Επίλυση Δικτυωμάτων με τις Μεθόδους Ευκαμψίας (ή Δυνάμεων)

ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΠείραμαΚάμψης(ΕλαστικήΓραμμή) ΕργαστηριακήΆσκηση 7 η

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

ΟΛΟΣΩΜΑ ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q. Διδάσκων: Γιάννης Χουλιάρας

6. Κάμψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών

ΕΠΩΝΥΜΟ :... ΟΝΟΜΑ :... ΒΑΘΜΟΣ:

ΚΑΤΑΛΟΓΟΣ ΑΣΚΗΣΕΩΝ. Έλεγχος της κινηματικής ευστάθειας (στερεότητας) σύνθετων γραμμικών φορέων με τη μέθοδο της εναλλαγής (δεσμικών) ράβδων

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ A. 1 Εισαγωγή στην Ανάλυση των Κατασκευών 3

Μάθημα: Στατική ΙΙ 6 Οκτωβρίου 2011 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης 2:15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

Εισαγωγικές Έννοιες (Επανάληψη): Δ02-2. Ισοστατικότητα

ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι

Πλαστική Κατάρρευση Δοκών

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018

ΑΣΚΗΣΗ 17 ΔΕΔΟΜΕΝΑ: Δίνονται: = cm ΕΠΙΛΥΣΗ: Ερώτημα α. k = 6000kN m. Μέθοδος των Δυνάμεων:

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017

ΔΥΝΑΜΙΚΗ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ

Μέθοδος Επικόμβιων Μετατοπίσεων

Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων

ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής

4. Επίλυση Δοκών και Πλαισίων με τις

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μηχανική Ι. Ενότητα 6: Ασκήσεις. Κωνσταντίνος Ι.

2. Μέθοδοι δυσκαμψίας (μετακινήσεων) για επίλυση δικτυωμάτων

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1.

Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων (συνέχεια)

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ. ΘΕΜΑ 1 ο (35%) Να επιλυθεί ο υπερστατικός φορέας του σχήματος χρησιμοποιώντας τη μέθοδο των παραμορφώσεων.

Μέθοδοι των Μετακινήσεων

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2016

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015

Μέθοδος των Δυνάμεων (συνέχεια)

Μάθημα: Στατική ΙΙ 30 Ιουνίου 2011 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης 2:15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

Γενικευμένα Mονοβάθμια Συστήματα

ΑΣΚΗΣΗ 8. Για το φορέα του σχήματος να μορφωθούν τα διαγράμματα M, Q, N για ομοιόμορφο φορτίο και θερμοκρασιακή φόρτιση.

ΑΣΚΗΣΗ 9 - ΧΩΡΙΚΟ ΠΛΑΙΣΙΟ

Ενότητα: Υπολογισμός διατμητικών τάσεων

Τάσεις λόγω απλής κάμψης-επίπεδο φόρτισης περιέχει άξονα συμμετρίας της διατομής

ΑΣΚΗΣΗ 6 - ΔΙΚΤΥΩΤΗ ΚΑΤΑΣΚΕΥΗ

Μέθοδος των Δυνάμεων (συνέχεια)

Σκοπός της Αντοχής των Υλικών. Αναγκαιότητα του µαθήµατος, ρόλος του σε σχέση µε άλλα µαθήµατα των κατασκευών, προβλήµατα που επιλύει.

Μέθοδοι Ανάλυσης Απλών Δοκών & Πλαισίων (1)

8. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών

ΑΣΚΗΣΗ 6. Διαλέγουμε ως υπερστατικά μεγέθη τις κατακόρυφες αντιδράσεις στις τρεις αριστερές στηρίξεις.

ΕΠΩΝΥΜΟ :... ΟΝΟΜΑ :... ΒΑΘΜΟΣ:

3.2 Οδηγίες χρήσης του προγράμματος πεπερασμένων στοιχείων RATe ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ RATe

Μέθοδοι Ανάλυσης Απλών Δοκών & Πλαισίων (2)

ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Cross. Διδάσκων: Γιάννης Χουλιάρας

Οριακή κατάσταση αστοχίας έναντι ιάτµησης-στρέψης- ιάτρησης

ΛΥΣΕΙΣ άλυτων ΑΣΚΗΣΕΩΝ στην Αντοχή των Υλικών

ΙΑπόστολου Κωνσταντινίδη ιαφραγµατική λειτουργία. Τόµος B

20/10/2016. Δρ. Σωτήρης Δέμης. Εργαστηριακές Σημειώσεις Κάμψη Ξυλινης Δοκού. Πανεπιστημιακός Υπότροφος

ΕΛΕΓΧΟΣ ΟΚΟΥ ΣΕ ΚΑΜΨΗ

Σιδηρές Κατασκευές ΙΙ Διάλεξη 1 Πλευρικός λυγισμός. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών

ΙΣΟΣΤΑΤΙΚΟΙ ΦΟΡΕΙΣ - ΑΣΚΗΣΕΙΣ Κεφάλαιο 2. Κεφάλαιο 2. Υπολογισμός εντασιακών μεγεθών

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ. ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής

ιάλεξη 1 η komodromos@ucy.ac.cy Πέτρος Κωµοδρόµος Τρίτη, 7 Σεπτεµβρίου,, 2004 ΠΠΜ 220 Στατική Ανάλυση των Κατασκευών Ι 1

ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ. Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών

Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων (συνέχεια)

Κεφάλαιο 3 Κινητοί ατενείς φορείς με απολύτως στερεά τμήματα

5. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ. Ασκήσεις προηγούμενων εξετάσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ

ΕΣΩΤΕΡΙΚΕΣ ΕΛΕΥΘΕΡΩΣΕΙΣ ΜΕΘΟΔΟΣ ΣΥΝΔΥΑΣΜΕΝΩΝ ΚΟΜΒΩΝ

Στατική ε ίλυση ε ί εδων ισοστατικών φορέων ΣΦΕΛΙΟΥΡΑΣ ΙΠΠΟΚΡΑΤΗΣ ΧΡΗΣΤΟΥ ΚΩΝΣΤΑΝΤΙΝΟΣ

Περίληψη μαθήματος Ι

Κεφάλαιο 5 Φορείς με στοιχεία πεπερασμένης δυστένειας

ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΚΗΣ ΙΙ

Ενότητα ΑΡΧΕΣ ΣΧΕΔΙΑΣΜΟΥ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΙΙ

ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΚΗΣ ΙΙ. Δοκοί, Πλαίσια, Δικτυώματα, Γραμμές Επιρροής και Υπερστατικοί Φορείς

ΠEPIEXOMENA. σελ. iii ΠΡΟΛΟΓΟΣ KEΦAΛAIO 1 ΟΡΘΕΣ ΚΑΙ ΙΑΤΜΗΤΙΚΕΣ ΤΑΣΕΙΣ,

Transcript:

ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 7 η, 8 η και 9 η Ανάλυση Ισοστατικών οκών και Πλαισίων Τρίτη,, 21, Τετάρτη,, 22 και Παρασκευή 24 Σεπτεµβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Στατική Ανάλυση των Κατασκευών Ι 1

2 ο ιαγώνισµα Ανακοινώσεις Το 2 ο διαγώνισµα θα γίνει την Τρίτη 28 Σεπτεµβρίου,, 2004 στην αίθουσα διδασκαλίας (ΧΩ 01 101), στην αρχή του µαθήµατος (12:00 µ.µ.).) και θα είναι σύντοµης διάρκειας. Το διαγώνισµα θα είναι χωρίς σηµειώσεις και βιβλία Η ύλη θα είναι οτιδήποτε θα διδαχθείτε µέχρι τότε, δηλαδή: όσα έχετε διδαχθεί κατά την διάρκεια των διαλέξεων όσα περιέχονται στις σηµειώσεις που σας έχουν δοθεί όσα περιέχονται στην αντίστοιχη ύλη του βιβλίου σας: Πρόλογος Εισαγωγή (στο Πρώτο Μέρος) 1. Γενικές αρχές 3. ικτυώµατα (εκτός 3.6.3) 2. Απλή δοκός (εκτός 2.6) 4. Αρθρωτή δοκός 5. Πλαίσια Στατική Ανάλυση των Κατασκευών Ι 2

Εισαγωγή στις δοκούς Συνήθης τύποι δοκών Εντατικά µεγέθη επίπεδων δοκών χωρικών δοκών Θέµατα ιαφορικές εξισώσεις δοκών ιαγράµµατα εντατικών µεγεθών δοκών Ορθές και διατµητικές τάσεις Αρχής της επαλληλίας Φαινόµενα Ρ- Πλαίσια και πλαισιωτές κατασκευές Στατικότητα δοκών και πλαισίων Παραµορφωµένες µορφές δοκών και πλαισίων Στατική Ανάλυση των Κατασκευών Ι 3

το πιο κοινό δοµικό στοιχείο Εισαγωγή στις δοκούς σχετικά µικρές διαστάσεις στις δύο εγκάρσιες διευθύνσεις σε σχέση µε την τρίτη και συνήθως οριζόντια διαµήκη διεύθυνση, τον άξονα τους καταπονούνται συνήθως µε φορτία κάθετα στον διαµήκη άξονα τους συµπεριφορά και διαστασιολόγηση εξαρτάται: συνήθης δοκοί: από καµπτικές ροπές και παραµορφώσεις κοντές και υψίκορµες δοκοί: από τέµνουσες δυνάµεις ιαφορετικά είδη φορτίων: συγκεντρωµένα δυνάµεις ροπές κατανεµηµένα οµοιόµορφα τριγωνικά παραβολικά, κλπ. Στατική Ανάλυση των Κατασκευών Ι 4

Συνήθης τύποι επίπεδων δοκών - Απλές δοκοί, ενός ανοίγµατος, ανάλογα µε τον τρόπο στήριξης Στατική Ανάλυση των Κατασκευών Ι 5

- Συνεχής δοκοί: µε πολλαπλά ανοίγµατα και ενδιάµεσες στηρίξεις - Σύνθετες δοκοί ή δοκοί Gerber: µε ενδιάµεσες ελευθερίες Στατική Ανάλυση των Κατασκευών Ι 6

Εντατικά µεγέθη δοκών (στο επίπεδο) καµπτικές ροπές, Μ(x): γραµµικά µεταβαλλόµενες καθ ύψος της διατοµής ορθές τάσεις (θλιπτικές στο ένα πέλµα και εφελκυστικές στο άλλο) καθοριστικές στη διαστασιολόγηση συνήθων δοκών τέµνουσες δυνάµεις, V(x) : παραβολικά µεταβαλλόµενες καθ ύψος της διατοµής διατµητικές τάσεις καθοριστικές µόνο σε περιπτώσεις κοντών και υψίκορµων δοκών αξονικές δυνάµεις, N(x) : µεταφέρονται από οµοιόµορφες ορθές τάσεις καθοριστικές σε περιπτώσεις µεγάλων αξονικών φορτίων υποστυλώµατα κίνδυνος λυγισµού και φαινόµενων P- όταν έχουµε: σηµαντικά αξονικά φορτία εύκαµπτα µέλη Στατική Ανάλυση των Κατασκευών Ι 7

Εντατικά µεγέθη δοκών (στο χώρο) αξονικές δυνάµεις, N(x) τέµνουσες δυνάµεις, V y (x) και V z (x) καµπτικές ροπές, Μ y (x) και Μ z (x) ροπές στρέψης, Μ x (x) Στατική Ανάλυση των Κατασκευών Ι 8

Επίλυση δοκών Προσδιορισµός των αντιδράσεων Υπολογισµός των εντατικών µεγεθών Κατασκευή διαγραµµάτων εντατικών µεγεθών Προσδιορισµός των ακρότατων τιµών των εντατικών µεγεθών Κατασκευή περιβαλλουσών διαγραµµάτων εντατικών µεγεθών (καµπύλες ή ευθείες που απεικονίζουν τις µέγιστες τιµές των εντατικών µεγεθών κατά µήκος του δοµικού µέλους λαµβάνοντας υπόψη διάφορες περιπτώσεις και συνδυασµούς φορτίσεων) Στατική Ανάλυση των Κατασκευών Ι 9

Επίλυση αρθρωτών δοκών διαχωρισµός δοκού σε επιµέρους απλές δοκούς στηρίζουσες: µπορούν να ισορροπήσουν από µόνες τους στηριζόµενες: δεν µπορούν να ισορροπήσουν από µόνες τους ξεκινώντας από τις στηριζόµενες δοκούς µπορούµε µε τις εξισώσεις ισορροπίας να υπολογίσουµε τις αντιδράσεις στα άκρα τους έχοντας υπολογίσει τα εντατικά µεγέθη στις αρθρώσεις προχωράµε στον υπολογισµό των αντιδράσεων και των στηριζουσών δοκών Στατική Ανάλυση των Κατασκευών Ι 10

ιαφορικές εξισώσεις δοκών ΕΣ απειροστού στοιχείου dx: Εξισώσεις ισορροπίας: 11

ιαφορικές εξισώσεις και διαγράµµατα εντατικών µεγεθών η καµπτική ροπή έχει ακρότατα όπου η τέµνουσα δύναµη µηδενίζεται όπου υπάρχει συγκεντρωµένη δύναµη αντίστοιχο άλµα στο διάγραµµα τεµνουσών δυνάµεων ( Τ ) αλλαγή κλίσης στο διάγραµµα καµπτικών ροπών όπου υπάρχει συγκεντρωµένη ροπή αντίστοιχο άλµα στο διάγραµµα καµπτικών ροπών ( ΚΡ) αν το φορτίο είναι πολυώνυµο βαθµού n η τέµνουσα δύναµη θα είναι πολυώνυµο βαθµού n+1 η καµπτική ροπή θα είναι πολυώνυµο βαθµού n+2 Στατική Ανάλυση των Κατασκευών Ι 12

ιαγράµµατα εντατικών µεγεθών ( Τ ) αριθµός τοµών κάθετα στον άξονα της δοκού εφαρµογή εξισώσεων ισορροπίας στο ΕΣ του αποκοµµένου τµήµατος διατύπωση εκφράσεων για τα εσωτερικά εντατικά µεγέθη αλλαγή του µεγέθους της τέµνουσας µεταξύ δύο σηµείων Α και Β: το ολοκλήρωµα ισούται µε το εµβαδόν της επιφάνειας της καµπύλης του φορτίου µεταξύ των σηµείων Α και Β η κλίση του Τ ισούται µε το αρνητικό µέγεθος του φορτίου αν το φορτίο είναι προς τα κάτω τότε η κλίση είναι αρνητική συγκεντρωµένη δύναµη άλµα στην τιµή της τέµνουσας δύναµης ( Τ ) Στατική Ανάλυση των Κατασκευών Ι 13

ιαγράµµατα εντατικών µεγεθών ( ΚΡ) αλλαγή του µεγέθους της ροπής µεταξύ δύο σηµείων Α και Β το ολοκλήρωµα ισούται µε το εµβαδόν της επιφάνειας της καµπύλης των τεµνουσών δυνάµεων ( Τ ) µεταξύ των σηµείων Α και Β η κλίση της καµπύλης των καµπτικών ροπών σε ένα σηµείο ισούται µε το µέγεθος της τέµνουσας στο συγκεκριµένο σηµείο αν σε ένα σηµείο η τέµνουσα δύναµη είναι θετική τότε και η κλίση της καµπύλης της καµπτικής ροπής σε εκείνο το σηµείο είναι θετική τα ακρότατα των καµπτικών ροπών εµφανίζονται στα σηµεία όπου οι αντίστοιχες τέµνουσες δυνάµεις ισούνται µε µηδέν συγκεντρωµένη ροπή άλµα στην τιµή της καµπτικής ροπής ( ΚΡ) Στατική Ανάλυση των Κατασκευών Ι 14

Κατασκευή διαγραµµάτων εντατικών µεγεθών υπολογισµός των αντιδράσεων ξεκινώντας µε τις τιµές της τέµνουσας δύναµης και της καµπτικής ροπής στο αριστερό άκρο προχωρούµε προς τα δεξιά εξετάζουµε όλα τα σηµεία µε σχετικές αλλαγές (π.χ. όπου υπάρχουν συγκεντρωµένες δυνάµεις ή ροπές, ή όπου αρχίζουν και τελειώνουν κατανεµηµένα φορτία, κλπ.) προσθέτοντας τα αντίστοιχα εµβαδά κάτω από τις καµπύλες των φορτίων και τεµνουσών δυνάµεων, αντίστοιχα, σαν αλλαγές των τιµών των αντίστοιχων διαγραµµάτων Στατική Ανάλυση των Κατασκευών Ι 15

Καµπυλότητα της παραµορφωµένης δοκού κατασκευή διαγράµµατος καµπτικών ροπών ( ΚΡ) θετική καµπτική ροπή η καµπυλότητα στρέφει τα κοίλα προς τα πάνω (εφελκύει την κάτω ίνα της δοκού) αρνητική καµπτική ροπή η καµπυλότητα στρέφει τα κοίλα προς τα κάτω (εφελκύει την άνω ίνα της δοκού) µηδενική καµπτική ροπή σηµείο καµπής στην καµπυλότητα, δηλαδή αλλάζει η πλευρά στην οποία βλέπουν τα κοίλα από πάνω κάτω ή αντίστροφα. Στατική Ανάλυση των Κατασκευών Ι 16

Ορθές και διατµητικές τάσεις ορθές τάσεις ορθογωνική διατοµή b x h Στατική Ανάλυση των Κατασκευών Ι 17

διατµητικές τάσεις ορθογωνική διατοµή b x h Στατική Ανάλυση των Κατασκευών Ι 18

Αρχή της Επαλληλίας "οι αντιδράσεις και η συνολική εντατική και παραµορφωσιακή κατάσταση µιας κατασκευής λόγω κάποιων φορτίσεων, ή δράσεων γενικότερα, ισούται µε το άθροισµα των επιµέρους αντιδράσεων, εντατικών και παραµορφωσιακών καταστάσεων, οι οποίες προκύπτουν αναλύοντας τον φορέα για κάθε µια από αυτές τις φορτίσεις ή δράσεις ξεχωριστά" = Στατική Ανάλυση των Κατασκευών Ι 19

Φαινόµενα P- Στατική Ανάλυση των Κατασκευών Ι 20

Πλαίσια και πλαισιωτές κατασκευές αποτελούνται από δοκούς και υποστυλώµατα τα οποία συνδέονται στερεά σε κόµβους υπό γωνία, συνήθως 90 ο οι συνδέσεις επιτρέπουν µεταβίβαση εντατικών µεγεθών αµετάβλητες οι γωνίες σύνδεσης στους κόµβους έλεγχος ορθότητας αποτελεσµάτων: για να ισορροπεί ένα πλαίσιο πρέπει να ισορροπούν και όλοι οι κόµβοι του ΚΡ σχεδιάζονται συνήθως από την εφελκυόµενη µεριά για την αύξηση δυσκαµψίας πλαισιωτών κατασκευών τοιχία διαγώνιοι Στατική Ανάλυση των Κατασκευών Ι 21

Στατικότητα απλών δοκών Α < Ε + N µηχανισµός ή χαλαρός φορέας Α = Ε + N ισοστατικός και ενδεχοµένως σταθερός φορέας Α > Ε + N υπερστατικός και ενδεχοµένως σταθερός φορέας ( βαθµός στατικής αοριστίας: : R - G - N) Ν: Επίπεδοι φορείς: N = 3 Α: αντιδράσεις Χωρικοί φορείς: N = 6 Ε: αριθµός εσωτερικών ελευθεριών Στατική Ανάλυση των Κατασκευών Ι 22

Στατικότητα πλαισίων (φορέων µε βρόγχους) Τοµές για να απλοποιηθεί ο φορέας α < n N µηχανισµός ή χαλαρός φορέας α = n N ισοστατικός και ενδεχοµένως σταθερός φορέας α > n N υπερστατικός και ενδεχοµένως σταθερός φορέας ( βαθµός στατικής αοριστίας: α - n N) N Ν: Επίπεδοι φορείς: N = 3 Χωρικοί φορείς: N = 6 α: αντιδράσεις συµπεριλαµβανοµένων εντατικών µεγεθών σε τοµές n: αριθµός επιµέρους τµηµάτων φορέα Στατική Ανάλυση των Κατασκευών Ι 23

Στατικότητα πλαισίων Στατική Ανάλυση των Κατασκευών Ι 24

Παραµορφωµένες µορφές δοκών και πλαισίων µετακινήσεις δοκών και πλαισίων: κυρίως λόγω καµπτικών παραµορφώσεων σχεδιασµός παραµορφωµένης µορφής: κατασκευή διαγράµµατος καµπτικών ροπών ( ΚΡ) καµπυλότητα συµβατή µε ΚΡ συµβατότητα µε δεσµεύσεις στις στηρίξεις συµβατότητα µε συνδέσεις µελών αµετάβλητες σταθερές συνδέσεις κόµβων ευκρινής καθορισµός της φοράς µετατοπίσεων και στροφών της καµπυλότητας (κοίλα) των σηµείων καµπής ισορροπία κόµβων 25