8. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών

Σχετικά έγγραφα
5. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών

2. Μέθοδοι δυσκαμψίας (μετακινήσεων) για επίλυση δικτυωμάτων

1. Ανασκόπηση μεθόδων δυσκαμψίας (μετακινήσεων) για επίλυση δικτυωμάτων

4. Επίλυση Δοκών και Πλαισίων με τις

2. Επίλυση Δικτυωμάτων με τις Μεθόδους Ευκαμψίας (ή Δυνάμεων)

1. Ανασκόπηση Μεθόδων Ευκαμψίας (δυνάμεων)

2. Επίλυση Δικτυωμάτων με τις Μεθόδους Ευκαμψίας (ή Δυνάμεων)

ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα

5. Εισαγωγή στο Πρόγραμμα Ανάλυσης GT-Strudl

ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα. 2 η Πρόοδος. 9:00-10:10 μ.μ. (70 λεπτά) Πέμπτη, 30 Μαρτίου, 2017

2. Ανασκόπηση - Πρόγραμμα GT-Strudl

ΕΠΩΝΥΜΟ :... ΟΝΟΜΑ :... ΒΑΘΜΟΣ:

ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα. ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα. Ανάπτυξη Προγράμματος Ανάλυσης Επίπεδων Δικτυωμάτων

7. Προγραμματισμός Μεθόδου Άμεσης Δυσκαμψίας για Δικτυώματα

ιαλέξεις Παρασκευή 8 Οκτωβρίου,, Πέτρος Κωµοδρόµος Στατική Ανάλυση των Κατασκευών Ι 1

ιαλέξεις Μέθοδοι των δυνάµεων Πέτρος Κωµοδρόµος Στατική Ανάλυση των Κατασκευών Ι 1

10. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων (ΜΠΣ)

ΠΕΡΙΕΧΟΜΕΝΑ. 1. ΟΙ ΓΡΑΜΜΙΚΟΙ ΦΟΡΕΙΣ Εισαγωγή Συστήματα συντεταγμένων. 7

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ A. 1 Εισαγωγή στην Ανάλυση των Κατασκευών 3

Ανάλυση Ισοστατικών ικτυωµάτων

ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα

ΕΠΩΝΥΜΟ :... ΟΝΟΜΑ :... ΒΑΘΜΟΣ:

4. Προγραμματισμός Μεθόδου Άμεσης Δυσκαμψίας για Δικτυώματα

Μέθοδος Επικόμβιων Μετατοπίσεων

Μάθημα: Στατική ΙΙ 9 Φεβρουαρίου 2011 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης 2:15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

ΑΣΚΗΣΗ 9 - ΧΩΡΙΚΟ ΠΛΑΙΣΙΟ

ιάλεξη 7 η, 8 η και 9 η

Μάθημα: Στατική ΙΙ 3 Ιουλίου 2012 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

Μέθοδοι των Μετακινήσεων

Μάθημα: Στατική ΙΙ 6 Οκτωβρίου 2011 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης 2:15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

Μέθοδος των Δυνάμεων

Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : , 12:00-15:00 ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ

ΑΣΚΗΣΗ 6 - ΔΙΚΤΥΩΤΗ ΚΑΤΑΣΚΕΥΗ

Μέθοδος των Δυνάμεων (συνέχεια)

11. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων

ΟΛΟΣΩΜΑ ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q. Διδάσκων: Γιάννης Χουλιάρας

ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι

Επίλυση 2ας. Προόδου & ιάλεξη 12 η. Τρίτη 5 Οκτωβρίου,,

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ. ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής

ιαλέξεις Τρίτη, 2, Τετάρτη, 3, Παρασκευή 5 komodromos@ucy.ac.cy Πέτρος Κωµοδρόµος

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018

ΕΠΩΝΥΜΟ :... ΟΝΟΜΑ :... ΒΑΘΜΟΣ:

Εισαγωγικές Έννοιες (Επανάληψη): Δ02-2. Ισοστατικότητα

ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα

ΕΠΩΝΥΜΟ :... ΟΝΟΜΑ :... ΒΑΘΜΟΣ:

1 η Επανάληψη ιαλέξεων

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ

Μάθημα: Στατική ΙΙ 30 Ιουνίου 2011 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης 2:15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

9. Προγραμματισμός Δυναμικής Ανάλυσης ΠΒΣ

ΕΣΩΤΕΡΙΚΕΣ ΕΛΕΥΘΕΡΩΣΕΙΣ ΜΕΘΟΔΟΣ ΣΥΝΔΥΑΣΜΕΝΩΝ ΚΟΜΒΩΝ

ιάλεξη 3 η komodromos@ucy.ac.cy Πέτρος Κωµοδρόµος Παρασκευή, 10 Σεπτεµβρίου,, 2004

ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι

ΠΡΟΛΟΓΟΣ ΕΙΣΑΓΩΓΗ... 15

ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα

11. Χρήση Λογισμικού Ανάλυσης Κατασκευών

ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή. Διδάσκων: Γιάννης Χουλιάρας

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2016

ΑΣΚΗΣΗ 2 - ΔΙΚΤΥΩΤH KATAΣΚΕΥΗ

ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΚΗΣ ΙΙ. Δοκοί, Πλαίσια, Δικτυώματα, Γραμμές Επιρροής και Υπερστατικοί Φορείς

7. Δυναμική Ανάλυση ΠΒΣ

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015

ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

ΠΠΜ 220: Στατική Ανάλυση Κατασκευών Ι

ΘΕΜΑ 1 ΔΕΔΟΜΕΝΑ: Δίνονται: = cm ΕΠΙΛΥΣΗ: Ερώτημα α. k = 6000kN m. Μέθοδος των Δυνάμεων:

ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι

ΕΣΩΤΕΡΙΚΕΣ ΕΛΕΥΘΕΡΩΣΕΙΣ ΜΕΘΟΔΟΣ ΤΡΟΠΟΠΟΙΗΜΕΝΩΝ ΜΗΤΡΩΩΝ ΣΤΙΒΑΡΟΤΗΤΑΣ

ΕΠΙΠΕ Α ΙΚΤΥΩΜΑΤΑ. ομική Μηχανική Ι. Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Cross. Διδάσκων: Γιάννης Χουλιάρας

ΘΕΜΑ 1 ο (6.00 μον.) ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ. Μάθημα : Ανάλυση Γραμμικών Φορέων με Μητρώα ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής. Διδάσκων: Γιάννης Χουλιάρας

Πλαστική Κατάρρευση Δοκών

Κεφάλαιο 1 Πάγιοι ατενείς φορείς υπό εξωτερικά φορτία και καταναγκασμούς

Λειτουργία προγράµµατος

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής

Εικόνα : Τετραώροφος πλαισιακός φορέας τριών υποστυλωµάτων

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ. ΘΕΜΑ 1 ο (35%) Να επιλυθεί ο υπερστατικός φορέας του σχήματος χρησιμοποιώντας τη μέθοδο των παραμορφώσεων.

Μέθοδος των Δυνάμεων (συνέχεια)

ΣΤΟΙΧΕΙΑ ΜΕΤΑΒΛΗΤΗΣ ΔΙΑΤΟΜΗΣ

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015

ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

Copyright RUNET and C. Georgiadis Βιβλίο Οδηγιών

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ. Ασκήσεις προηγούμενων εξετάσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ

ΚΕΦΑΛΑΙΟ. Οι γραμμικοί φορείς. 1.1 Εισαγωγή 1.2 Συστήματα συντεταγμένων

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΚΑΤΑΛΟΓΟΣ ΑΣΚΗΣΕΩΝ.. 1. Σύνοψη των βημάτων επίλυσης φορέων με τη ΜΜ.. xiv. 2. Συμβάσεις προσήμων...

ΠΠΜ 320: Δυναμική Ανάλυση των Κατασκευών

ΑΣΚΗΣΗ 17 ΔΕΔΟΜΕΝΑ: Δίνονται: = cm ΕΠΙΛΥΣΗ: Ερώτημα α. k = 6000kN m. Μέθοδος των Δυνάμεων:

9. Χρήση Λογισμικού Ανάλυσης Κατασκευών

ΑΣΚΗΣΗ 1 - ΔΙΚΤΥΩΤH KATAΣΚΕΥΗ

Παραδείγματα μελών υπό αξονική θλίψη

ΤΕΧΝΙΚΗ ΕΚΘΕΣΗ ΓΙΑ ΤΟ ΜΕΤΑΛΛΙΚΟ ΦΟΡΕΑ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

Επαναλήψεις. Τετάρτη, 1 & Παρασκευή,, 3 εκεµβρίου komodromos@ucy.ac.cy Πέτρος Κωµοδρόµος

3.2 Οδηγίες χρήσης του προγράμματος πεπερασμένων στοιχείων RATe ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ RATe

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών. Πολυβάθμια Συστήματα. Ε.Ι. Σαπουντζάκης. Καθηγητής ΕΜΠ. Δυναμική Ανάλυση Ραβδωτών Φορέων

Γενικευμένα Mονοβάθμια Συστήματα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016

Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων (συνέχεια)

Transcript:

ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 8. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 1

Σύγχρονες μέθοδοι ανάλυσης κατασκευών μέθοδος των δυνάμεων ή ευκαμψίας oι άγνωστοι στις σχηματιζόμενες εξισώσεις είναι δυνάμεις και ροπές μέθοδος των μετακινήσεων ή δυσκαμψίας oι άγνωστοι στις σχηματιζόμενες εξισώσεις είναι μετακινήσεις Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 2

Ανάλυση δοκών και πλαισίων με τη μέθοδο δυσκαμψίας Μητρώα δυσκαμψίας δοκών 2x2 στροφικό μητρώο δυσκαμψίας καμπτόμενης δοκού 4x4 μητρώο δυσκαμψίας δοκού στο τοπικό σύστημα συντεταγμένων 6x6 μητρώο δυσκαμψίας δοκού στο τοπικό σύστημα συντεταγμένων Μετασχηματισμοί μητρώων δυσκαμψίας δοκών Άμεση μέθοδος δυσκαμψίας σε δοκούς και πλαίσια Μη επικόμβια φορτία Γραφική επίλυση με τη μέθοδο δυσκαμψίας Επίλυση δράσεων καταναγκασμών με τη μέθοδο δυσκαμψίας Προγραμματισμός άμεσης μεθόδου δυσκαμψίας για πλαίσια Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 3

Μέθοδος των μετακινήσεων ή δυσκαμψίας βασίζεται στα μητρώα δυσκαμψίας των επιμέρους μελών της κατασκευής βάσει των οποίων σχηματίζεται το συνολικό μητρώο δυσκαμψίας Κ της κατασκευής oι άγνωστοι στις σχηματιζόμενες εξισώσεις είναι οι μετακινήσεις των ελεύθερων κόμβων της κατασκευής επιλύνοντας το σύστημα των εξισώσεων το οποίο σχηματίζεται, υπολογίζονται οι μετακινήσεις των βαθμών ελευθερίας των κόμβων της κατασκευής ακολούθως, χρησιμοποιώντας τα επιμέρους μητρώα δυσκαμψίας του κάθε μέλους, υπολογίζονται τα εντατικά μεγέθη στα άκρα του κάθε μέλους χρήσιμη για επιλύσεις γενικών προβλημάτων με Η/Υ εύκολη αυτοματοποίηση και προγραμματισμός της μεθόδου Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 4

Βάσεις μεθόδου δυσκαμψίας εξισώσεις ισορροπίας καταστατικό νόμο του υλικού συνθήκες συμβιβαστότητας των παραμορφώσεων κοινός τρόπος ανάλυσης ισοστατικών και υπερστατικών φορέων Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 5

Γενική περιγραφή μεθόδου καθορισμός σχέσεων εντατικών μεγεθών και των αντίστοιχων μετακινήσεων των μελών ενός φορέα, βάσει των μητρώων δυσκαμψίας των επιμέρους μελών της κατασκευής κατάλληλοι μετασχηματισμοί από τοπικό σε απόλυτο σύστημα συντεταγμένων εφαρμογή εξισώσεων ισορροπίας στους κόμβους σχηματισμός μητρώου δυσκαμψίας της κατασκευής εφαρμογή συνοριακών συνθηκών επίλυση σχηματιζόμενου συστήματος εξισώσεων υπολογισμός μετακινήσεων ελεύθερων κόμβων κατασκευής υπολογισμός αντιδράσεων στις στηρίξεις υπολογισμός εντατικών μεγεθών στα άκρα του κάθε μέλους Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 6

Μητρώα δυσκαμψίας δοκών Στροφικό μητρώο ευκαμψίας (2x2) καμπτόμενης δοκού Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 7

Στροφικό μητρώο ευκαμψίας (2x2) καμπτόμενης δοκού Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 8

Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 9

Στροφικό μητρώο δυσκαμψίας (2x2) καμπτόμενης δοκού Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 10

Μητρώο δυσκαμψίας δοκού στο τοπικό σύστημα συντεταγμένων Χρησιμοποιώντας το στροφικό μητρώο δυσκαμψίας δοκού Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 11

Εύρεση 1 ης στήλης Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 12

Εύρεση 2 ης στήλης Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 13

Εύρεση 3 ης στήλης Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 14

Εύρεση 4 ης στήλης Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 15

Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 16

Συμπερίληψη αξονικών δυνάμεων Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 17

6x6 μητρώο δυσκαμψίας δοκού στο τοπικό σύστημα συντεταγμένων Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 18

Συναρτήσεις μορφών καμπτικής παραμόρφωσης δοκών Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 19

Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 20

Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 21

Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 22

Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 23

Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 24

Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 25

Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 26

Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 27

Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 28

Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 29

Μετασχηματισμοί μητρώων δυσκαμψίας δοκών Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 30

- Μετασχηματισμοί εντατικών μεγεθών: Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 31

- Μετασχηματισμοί μετακινήσεων: Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 32

Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 33

Μητρώο δυσκαμψίας καμπτόμενης δοκού (αμελώντας τις αξονικές παραμορφώσεις) Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 34

Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 35

Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 36

Μητρώο δυσκαμψίας καμπτόμενης δοκού (συμπεριλαμβάνοντας τις αξονικές παραμορφώσεις) Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 37

Σχηματισμός μητρώου δυσκαμψίας κατασκευής Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 38

Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 39

Επιβολή συνοριακών συνθηκών και επίλυση μετακινήσεις κόμβων αντιδράσεις στηρίξεων εντατικά μεγέθη Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 40

Παράδειγμα-1 Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 41

Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 42

Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 43

Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 44

Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 45

Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 46

Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 47

Εφαρμογή συνοριακών συνθηκών Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 48

Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 49

Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 50

Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 51

Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 52

Επίλυση με το GTStrudl UNITS M N CENTIGRADE JOINT COORDINATES 1 0 0 2 0 3 3 4 0 4 4 3 STATUS SUPPORT JOINTS 1 3 TYPE PLANE FRAME MEMBER INCIDENCES 1 1 2 2 2 4 3 3 4 MATERIAL CONCRETE CONSTANTS E 30E9 ALL MEMBER PROPERTIES 1 3 AX 0.16 IZ 0.0021333 2 AX 0.18 IZ 0.0054 LOAD 1 'NODAL LOADS' JOINT LOADS 2 FORCE X 50E3 2 MOMENT Z -300E3 4 FORCE X 50E3 4 MOMENT Z 700E3 STIFFNESS ANALYSIS OUTPUT DECIMAL 5 LIST FORCES LIST REACTIONS LIST SUM REACTIONS UNITS MM LIST DISPLACEMENTS Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 53

------------------------------------------------------------------------------------------------------------------ LOADING - 1 NODAL LOADS ----------------------------------------------------------------------------------------------------------------- MEMBER FORCES MEMBER JOINT /-------------------- FORCE -------//-------------------- MOMENT --------------------/ AXIAL SHEAR Y SHEAR Z TORSIONAL BENDING Y BENDING Z 1 1 57280.42578-77429.62500-62197.57031 1 2-57280.42578 77429.62500-170091.28125 2 2 127429.62500 57280.42578-129908.71094 2 4-127429.62500-57280.42578 359030.40625 3 3-57280.42578 177429.62500 191319.23438 3 4 57280.42578-177429.62500 340969.65625 ACTIVE UNITS MM N RAD DEGC SEC RESULTANT JOINT DISPLACEMENTS FREE JOINTS JOINT --------/ /-----------------DISPLACEMENT-----------------//-------------------ROTATION----------- X DISP. Y DISP. Z DISP. X ROT. Y ROT. Z ROT. 2 GLOBAL 1.07102-0.03580-0.00253 4 GLOBAL 0.97663 0.03580 0.00351 Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 54

Μη επικόμβια φορτία - Χρήση ισοδύναμων επικόμβιων φορτίων - χρησιμοποιώντας αντιδράσεις αμφίπακτης δοκού Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 55

Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 56

Αντικαταστούμε όλα τα μη επικόμβια φορτία με στατικά ισοδύναμα επικόμβια φορτία, τα οποία υπολογίζονται θεωρώντας ότι τα άκρα του μέλους είναι πακτωμένα και επιλύνοντας τη δοκό για τα συγκεκριμένα εξωτερικά επιβαλλόμενα φορτία. Εφαρμόζοντας τις αντιδράσεις που υπολογίστηκαν στις πακτώσεις αλλά με αντίθετο πρόσημο στους κόμβους του μέλους, ο φορέας μπορεί να επιλυθεί με όλα τα εξωτερικά επιβαλλόμενα επικόμβια φορτία συμπεριλαμβάνοντας και τα ισοδύναμα επικόμβια φορτία λόγω εξωτερικά επιβαλλόμενων μη επικόμβιων φορτίων. (μετακινήσεις) Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 57

Αντιδράσεις στις στηρίξεις: Εντατικά μεγέθη μελών: Με δεδομένες τις μετακινήσεις των κόμβων στα άκρα ενός μέλους μπορούν να υπολογιστούν τα αντίστοιχα εντατικά μεγέθη στα άκρα του μέλους χρησιμοποιώντας το μητρώο δυσκαμψίας του μέλους. Τα τελικά εντατικά μεγέθη ενός μέλους με μη επικόμβια φορτία θα προκύψουν αφού αθροιστούν στα εντατικά μεγέθη που θα υπολογισθούν από τις μετακινήσεις και τα εντατικά μεγέθη της αμφίπακτης δοκού την οποία νοητά επιβάλλαμε, ώστε να αναιρεθεί η θεώρηση που κάναμε για να μπορέσουμε να ορίσουμε ισοδύναμα επικόμβια φορτία. Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 58

= + = + Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 59

Παράδειγμα-2: Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 60

Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 61

Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 62

Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 63

Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 64

Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 65

Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 66

Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 67

Μητρώα δυσκαμψίας δοκών με ελευθερίες στα άκρα Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 68

Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 69

Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 70

Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 71

Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 72

Γραφική επίλυση με τη μέθοδο δυσκαμψίας Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 73

Παράδειγμα-3 Η συνεισφορά των αξονικών παραμορφώσεων, συχνά στη πράξη, μπορεί να θεωρηθεί αμελητέα και να παραληφθεί. Αυτό όμως δεν σημαίνει κατ ουδένα λόγο ότι τα μέλη μίας κατασκευής δεν έχουν μηδενικές δυνάμεις, αλλά απλά ότι οι αξονικές παραμορφώσεις σχετικά με τα άλλα είδη παραμόρφωσης, για συνηθισμένα δομικά στοιχεία και φορτίσεις είναι σημαντικά μικρότερες των καμπτικών παραμορφώσεων, οι οποίες συνήθως είναι οι πιο σημαντικές. Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 74

Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 75

Εύρεση 1 ης στήλης μητρώου δυσκαμψίας Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 76

Εύρεση 2 ης στήλης μητρώου δυσκαμψίας Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 77

Εύρεση 3 ης στήλης μητρώου δυσκαμψίας Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 78

Μητρώο δυσκαμψίας πλαισίου Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 79

Γραφική επίλυση με τη μέθοδο δυσκαμψίας Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 80

Εντατικά μεγέθη αριστερού υποστυλώματος Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 81

Εντατικά μεγέθη δεξιού υποστυλώματος Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 82

Εντατικά μεγέθη δοκού Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 83

Παράδειγμα-4 Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 84

Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 85

Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 86

Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 87

Εντατικά μεγέθη αριστερού υποστυλώματος Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 88

Εντατικά μεγέθη δεξιού υποστυλώματος Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 89

Εντατικά μεγέθη δοκού Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 90

Διαγράμματα εντατικών μεγεθών δοκού = + Έχοντας υπολογίσει και τα εντατικά μεγέθη, τέμνουσες και ροπές, στα άκρα των μελών και λαμβάνοντας υπόψη τα επικόμβια φορτία μπορούμε από ισορροπία των κόμβων να προσδιοριστούν οι αξονικές δυνάμεις στα μέλη, των οποίων τις παραμορφώσεις θεωρήσαμε αμελητέες και παραλείψαμε στην επίλυση του φορέα με τη μέθοδο δυσκαμψίας. Έτσι οι αξονικές δυνάμεις των υποστυλωμάτων προκύπτουν να είναι θλιπτικές, 5.53 ΚΝ στο αριστερό και 74.47 ΚΝ στο δεξιό υποστύλωμα. Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 91

Επίλυση με το GTStrudl TYPE PLANE FRAME UNITS M NEWTONS CENTIGRADE JOINT COORDINATES 1 0 0 2 0 3 3 4 0 4 4 3 STATUS SUPPORT JOINTS 1 3 MEMBER INCIDENCES 1 1 2 2 2 4 3 3 4 CONSTANTS E 30E9 ALL G 13E9 ALL MEMBER PROPERTIES 1 3 AX 1000 AY 1000 IZ 0.002133 2 AX 1000 AY 1000 IZ 0.0054 LOAD 1 'Epiballomena fortia' JOINT LOADS 2 FORCE X 50E3 4 FORCE Y 50E3 MEMBER LOADS 2 FORCE Y UNIFORM w -20E3 STIFFNESS ANALYSIS OUTPUT DECIMAL 7 LIST FORCES LIST REACTIONS LIST SUM REACTIONS UNITS MM LIST DISPLACEMENTS Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 92

PROBLEM - Frame 3 TITLE - Frame under uniformly distributed load ACTIVE UNITS M N RAD DEGC SEC ---------------------------------------------------------------------------------------------------------------- --- LOADING - 1 Epiballomena fortia --- --------------------------------------------------------------------------------------------------------------- MEMBER FORCES MEMBER JOINT /--------------- FORCE ------------//-------------- MOMENT ------------/ AXIAL SHEAR Y SHEAR Z TORSIONAL BENDING Y BENDING Z 1 1 5526.0937500 43160.2070312 74212.4218750 1 2-5526.0937500-43160.2070312 55268.2109375 2 2 6839.7915039 5526.0937500-55268.2109375 2 4-6839.7915039 74473.9140625-82627.4375000 3 3 74473.9140625 56839.7929688 87891.9453125 3 4-74473.9140625-56839.7929688 82627.4375000 Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 93

PROBLEM - Frame 3 TITLE - Frame under uniformly distributed load ACTIVE UNITS M N RAD DEGC SEC --------------------------------------------------------------------------------------------------------------- --- LOADING - 1 Epiballomena fortia --- ---------------------------------------------------------------------------------------------------------------- RESULTANT JOINT LOADS SUPPORTS JOINT /---------------------FORCE---------------------//--------------------MOMENT--------------------/ X FORCE Y FORCE Z FORCE X MOMENT Y MOMENT Z MOMENT 1 GLOBAL -43160.2109375 5526.0942383 74212.4140625 3 GLOBAL -56839.7929688 74473.9140625 87891.9453125 SUM OF REACTIONS ABOUT COORDINATE X 0.000 Y 0.000 Z 0.000 /---------------------FORCE---------------------//--------------------MOMENT--------------------/ LOADING X FORCE Y FORCE Z FORCE X MOMENT Y MOMENT Z MOMENT 1-100000.00 80000.00 0.0000000E+00 0.0000E+00 0.0000E+00 460000.0 Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 94

PROBLEM - Frame 3 TITLE - Frame under uniformly distributed load ACTIVE UNITS MM N RAD DEGC SEC ---------------------------------------------------------------------------------------------------------------- --- LOADING - 1 Epiballomena fortia --- ---------------------------------------------------------------------------------------------------------------- ACTIVE UNITS MM N RAD DEGC SEC RESULTANT JOINT DISPLACEMENTS SUPPORTS JOINT /-----------------DISPLACEMENT-----------//-------------ROTATION----------------/ X DISP. Y DISP. Z DISP. X ROT. Y ROT. Z ROT. 1 GLOBAL 0.0000000 0.0000000 0.0000000 3 GLOBAL 0.0000000 0.0000000 0.0000000 RESULTANT JOINT DISPLACEMENTS FREE JOINTS JOINT /-----------------DISPLACEMENT-------------//----------ROTATION----------------/ X DISP. Y DISP. Z DISP. X ROT. Y ROT. Z ROT. 2 GLOBAL 2.1837094-0.0000006-0.0004441 4 GLOBAL 2.1837084-0.0000074-0.0001234 Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 95

Χωρικές δοκοί και πλαίσια Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 96

Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 97

Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 98

Προγραμματισμός άμεσης μεθόδου δυσκαμψίας Καθορισμός δεδομένων για ανάλυση επίπεδων πλαισίων: Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 99

Αυτόματη διαδικασία ανάλυσης πλαισίων: Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 100

Αυτόματη διαδικασία ανάλυσης πλαισίων (συν.): Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 101

Αυτόματη διαδικασία ανάλυσης πλαισίων (συν.): Πέτρος Κωμοδρόμος ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 102