Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος Ι. Λυχναρόπουλος

Σχετικά έγγραφα
Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος 18/4/2018 Διδάσκων: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος (Λύσεις) Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Διανυσματικά Πεδία Επικαμπύλια Ολοκληρώματα Επιμέλεια: Ι. Λυχναρόπουλος

Παραδείγματα διπλών oλοκληρωμάτων Γ. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Διδάσκων: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ 4ο Σετ Ασκήσεων (Λύσεις) Διπλά Ολοκληρώματα Επιμέλεια: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 25/9/2017 Διδάσκων: Ι. Λυχναρόπουλος

Λύσεις στο επαναληπτικό διαγώνισμα 3

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Ι. Λυχναρόπουλος

Μαθηματικά για μηχανικούς ΙΙ ΛΥΣΕΙΣ/ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ

Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ

ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση)

Ασκήσεις Διανυσματικής Ανάλυσης

Ανασκόπηση-Μάθημα 29 Σφαιρικές συντεταγμένες- Εφαρμογές διπλού και τριπλού ολοκληρώματος- -Επικαμπύλιο ολοκλήρωμα α είδους

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ

Ολοκληρώματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Ολοκληρώματα. τεχνικές. 108 ασκήσεις. εκδόσεις.

2 η ΕΡΓΑΣΙΑ Παράδοση

ΜΑΘΗΜΑΤΙΚΑ ΙΙ ΠΑΡΑΔΕΙΓΜΑΤΑ Διανύσματα - Διανυσματικές Συναρτήσεις

Κεφάλαιο 5 Πολλαπλά Ολοκληρώματα

Ολοκληρώματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Ολοκληρώματα. τεχνικές. 108 ασκήσεις. εκδόσεις.

r (t) dt f ds r (t) = (x (t)) 2 + (y (t)) 2 + (z (t)) 2.

Εφαρμοσμένα Μαθηματικά ΙΙ

ΜΑΘΗΜΑΤΙΚΑ ΙΙ ΠΑΡΑΔΕΙΓΜΑΤΑ Συναρτήσεις Πολλών Μεταβλητών

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ Οι συντεταγμένες ενός σημείου Απόλυτη τιμή...14

Εφαρμοσμένα Μαθηματικά ΙΙ

Κεφάλαιο 3 Πολλαπλά Ολοκληρώματα

DIPLA KAI TRIPLA OLOKLHRWMATA

Εφαρμοσμένα Μαθηματικά ΙΙ

Εισαγωγή στις Φυσικές Επιστήμες ( ) Ονοματεπώνυμο Τμήμα ΘΕΜΑ 1. x x. x x x ( ) + ( 20) + ( + 4) = ( + ) + ( 10 + ) + ( )

< F ( σ(h(t))), σ (h(t)) > h (t)dt.

Ανασκόπηση-Μάθημα 32 Εύρεση Εμβαδού μέσω του Θεωρήματος Green- -Κυκλοφορία και εξερχόμενη ροή διανυσματικού πεδίου

0.8 Επικαµπύλια ολοκληρώµατα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ 2ο Σετ Ασκήσεων (Λύσεις) Διανυσματικές Συναρτήσεις Επιμέλεια: Ι. Λυχναρόπουλος

k ) 2 P = a2 x 2 P = 2a 2 x y 2 Q = b2 y 2 Q = 2b 2 y z 2 R = c2 z 2 R = 2c 2 z P x = 2a 2 Q y = 2b 2 R z = 2c 2 3 (a2 +b 2 +c 2 ) I = 64π

Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής

Για να προσδιορίσουμε τη μονοτονία της συνάρτησης η πρέπει να βρούμε το πρόσημο της h, το οποίο εξαρτάται από τη συνάρτηση φ(x) = e x 1

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Λύσεις Εξετάσεων Φεβρουαρίου Ακ. Έτους

b proj a b είναι κάθετο στο

9.9 Ανεξαρτησία του επικαμπυλίου ολοκληρώματος από την καμπύλη ολοκληρώσεως. Συνάρτηση δυναμικού

ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΤΗΣ 2/11/2018

Εργασία 2. Παράδοση 20/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες

ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙΙ Χειμερινό εξάμηνο Ασκήσεις 1.

x + ax x x 4 να είναι παραγωγίσιμη στο x Υπόδειξη: Μπορείτε να εφαρμόσετε κανόνα L Hospital ή μπορεί σας χρειαστεί η sin sin = 2sin cos

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ ΑΝΑΛΥΣΗ ΟΛΟΚΛΗΡΩΜΑΤΑ ΜΙΧΑΛΗΣ ΜΑΓΚΟΣ

Γενικά Μαθηματικά Ι. Ενότητα 17: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΩΝ ΔΑΣΟΛΟΓΙΑΣ

Δείκτες Poincaré και Θεώρημα Frommer

Εφαρμοσμένα Μαθηματικά

ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. Α.Προσπαθείστε και απομνημονεύστε τον παρακάτω πίνακα βασικών ολοκληρωμάτων: v x

ΕΠΙΚΑΜΠΥΛΙΑ ΚΑΙ ΕΠΙΕΠΙΦΑΝΕΙΑ ΟΛΟΚΛΗΡΩΜΑΤΑ

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

xsin ydxdy (α) Εάν το χωρίο R είναι φραγμένο αριστερά και δεξιά από τις ευθείες x=α και x=β και από πάνω και κάτω από τις καμπύλες dr = dxdy

40 Ασκήσεις στον ΟΛΟΚΛΗΡΩΤΙΚΟ ΛΟΓΙΣΜΟ ( Επεξεργασία του ΜΑΝΩΛΗ ΨΑΡΡΑ)

κυρτές συναρτήσεις. Αν η g είναι γνησίως αύξουσα τότε η gof : είναι κυρτή. . Θα δείξουμε ότι η h είναι γνησίως αύξουσα.

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ

( y) ( x) ( 0) ( ) ( 0) ( y) ( ) ( ) ( ) Παραδείγµατα και εφαρµογές. 1)Έστω D απλά συνεκτικός τόπος στο R που φράσσεται από την ( κατά τµήµατα 1

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α

Έντυπο Yποβολής Αξιολόγησης ΓΕ

ΠΕΡΙΕΧΟΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΟΡΘΟΓΩΝΙΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ...23 ΑΠΟΛΥΤΗ ΤΙΜΗ. ΑΝΙΣΟΤΗΤΕΣ...15 ΚΕΦΑΛΑΙΟ 3 ΕΥΘΕΙΕΣ...32 ΚΕΦΑΛΑΙΟ 4 ΚΥΚΛΟΙ...43

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 28 (με Δημητριάδος) Βόλος τηλ.

ln 1. ( ) vii. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη C f, τον άξονα η οποία είναι συνεχής στο και για την οποία ισχύει

ΜΑΘΗΜΑ 47 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 3 η ΕΚΑ Α

Εφαρμοσμένα Μαθηματικά ΙΙ

Συμπεριφορά συναρτήσεως σε κλειστές φραγμένες περιοχές. (x 0, y 0, f(x 0, y 0 ) z = L(x, y)

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

2 η Εργασία Ημερομηνία Αποστολής : 21 Ιανουαρίου Άσκηση 1. Να υπολογίσετε τα παρακάτω όρια χρησιμοποιώντας τον Κανόνα του L Hopital:

Λογισμός 4 Ενότητα 18

για κάθε x 0. , τότε f x στο Απάντηση είναι εσωτερικό σημείο του Δ και η f παρουσιάζει σ αυτό τοπικό μέγιστο, υπάρχει 0 τέτοιο, ώστε (x , ισχύει

EPIKAMPULIA KAI EPIFANEIAKA OLOKLHRWMATA

ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 2/2012

Εφαρμοσμένα Μαθηματικά ΙΙ 1ο Σετ Ασκήσεων (Λύσεις) Διανύσματα, Ευθείες Επίπεδα, Επιφάνειες 2ου βαθμού Επιμέλεια: Ι. Λυχναρόπουλος

(i) f(x, y) = xy + iy (iii) f(x, y) = e y e ix. f(z) = U(r, θ) + iv (r, θ) ; z = re iθ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Κεφάλαιο 4: Στοιχεία της εκδοχής hp της ΜΠΣ στις 2- διαστάσεις

13 ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες

ds ds ds = τ b k t (3)

cos t dt = 0. t cos t 2 dt = 1 8 f(x, y, z) = (2xyz, x 2 z, x 2 y) (2xyz) = (x2 z) (x 2 z) = (x2 y) 1 u du =

ΠΑΡΑΡΤΗΜΑ Γ. Επικαμπύλια και Επιφανειακά Ολοκληρώματα. Γ.1 Επικαμπύλιο Ολοκλήρωμα

( () () ()) () () ()

ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 2017

Λύσεις στο Επαναληπτικό Διαγώνισμα 2

ΠΑΡΟΡΑΜΑΤΑ ΣΤΟ ΒΙΒΛΙΟ ΤΟΥ Η. ΡΟΥΣΑΛΗ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. ΤΟ 3ο ΚΑΙ ΤΟ 4ο ΘΕΜΑ (ΕΚΔΟΣΕΙΣ ΠΑΤΑΚΗ)

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

σ (9) = i + j + 3 k, σ (9) = 1 6 k.

6. Ορισμένο Ολοκλήρωμα

ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση)

(, ) ( x0, ), τότε να αποδείξετε ότι το. x, στο οποίο όμως η f είναι συνεχής. Αν f ( x) 0 στο

ΚΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ

7 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 61. Έστω συνάρτηση f παραγωγίσιµη στο R, τέτοια ώστε. (e + 1)dt = x 1

1.1. Διαφορική Εξίσωση και λύση αυτής

1 ΔΙΑΝΥΣΜΑΤΑ ΣΤΟΝ ΤΡΙΣΔΙΑΣΤΑΤΟ ΧΩΡΟ

ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ. α) Το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [a, b] είναι όριο?

Κεφάλαιο 7 Επικαμπύλια και Επιφανειακά Ολοκληρώματα

Περιεχόµενα. 1 Ολοκληρώµατα ιπλό Ολοκλήρωµα... 1

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ.3.7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Transcript:

/4/05 Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) Αν z z 0 δείξτε ότι: z z ( z ) Παραγωγίζουμε την z z 0 ως προς θεωρώντας ότι η z είναι συνάρτηση των και : z z z z z z 0 () z Παραγωγίζουμε την z z 0 ως προς θεωρώντας ότι η z είναι συνάρτηση των και : z z z z 0 () z Παραγωγίζουμε την () ως προς z 6z z () ( z ) Αντικαθιστούμε την () στην () και παίρνουμε τελικά: z 6z z 6z z z z z ( z ) ( z ) ( z ) Άσκηση (Μονάδες ) Εξετάστε αν το σημείο (, /) αποτελεί κρίσιμο σημείο της συνάρτησης f (, ) 4 και αν ναι σε τι τοπικό ακρότατο αντιστοιχεί. Βρίσκουμε τις μερικές παραγώγους: f (, ) f (, ) 4 Για να είναι το (, /) κρίσιμο σημείο θα πρέπει σε αυτό το σημείο οι f, f να δίνουν 0. Πράγματι:

f (, ) 0 f (, ) 0 Υπολογίζουμε τις παραγώγους δεύτερης τάξης: f (, ) 6, f (, ), f (, ) Στο σημείο (, /) θα είναι: f (, ), f (, ), f (, ) Επομένως η Εσσιανή στο σημείο (, /) γίνεται f f f ( ) 0 0 Άρα το σημείο (, /) αντιστοιχεί σε Σαγματικό σημείο. Άσκηση (Μονάδες.5) Υπολογίστε το ολοκλήρωμα 8 9 0 I dd αφού προηγουμένως πραγματοποιήσετε αλλαγή στη σειρά ολοκλήρωσης. Τα άκρα ολοκλήρωσης δηλώνουν το ακόλουθο χωρίο: Αλλάζοντας τη σειρά ολοκλήρωσης το χωρίο πρέπει να σπάσει σε δύο υποχωρία. Έτσι θα έχουμε: 6 8 I I I dd dd 0 Για το πρώτο ολοκλήρωμα έχουμε:

I dd 4 d 4 4 5 4 5 4 d 0 0 5 Για το δεύτερο ολοκλήρωμα έχουμε: 6 8 0 I dd 8 8 ( 8) 6 d 6 6 6 8 6 6 8 d 69 66 96 6 69 78 97 540 Τελικά: I. 0 Άσκηση 4 (Μονάδες.5) Υπολογίστε το επικαμπύλιο ολοκλήρωμα I 4 d c όπου c το τρίγωνο με κορυφές τα σημεία P(,0), Q(6,0) και R(4,)

Παραμετροποιούμε το κάθε ευθύγραμμο τμήμα: c : toq( t) OP t 6,0 ( t),06t( t),0t,0, 0t '( t) 0 c : tor ( t) OQ t 4, ( t) 6,0 4t 6( t),t t 6, t, 0 t '( t) c : top ( t) OR t,0 ( t) 4, t 4( t), ( t) t 4, t, 0 t '(t) Θα είναι I II I 4 d 4 d 4 d c c c Θα χρησιμοποιήσουμε τον ακόλουθο τύπο για κάθε ένα ευθύγραμμο τμήμα C t f ( d, ) f t ( ), t ( ) '( tdt ) C t I 4 d 4 t (0) 0dt 0 C 0 8 6 I 4 d 46t( t) dt 48t8t dt 4t4t t 4 44 ( ) ( ) 0 4 4 C 4 00 0t t t 0 Έτσι παίρνουμε: 6 I II I I d t t dt t t dt 0 Άσκηση 5 (Μονάδες.5) Να υπολογιστεί το διπλό ολοκλήρωμα e dd για T (, ) :, 0, 0 T κάνοντας χρήση του μετασχηματισμού: u, v Το χωρίο Τ είναι το ακόλουθο:

Επιλύουμε τις σχέσεις του μετασχηματισμού ως προς και u v, u v Οι συνθήκες του χωρίου Τ εκφραζόμενες σε u και v δίνουν: u u v u v u v u v Επομένως το χωρίο ολοκλήρωσης μετασχηματίζεται στο: Η Ιακωβιανή του μετασχηματισμού είναι η: (, ) u v Juv (, ) ( uv, ) u v Θα εφαρμόσουμε ολοκλήρωση πρώτα ως προς v και μετά ως προς u:

u v u v u u e dd e dvdu e dv du T u u v u u ue du u e e du e e udu u u 4 e e e e Άσκηση 6 (Μονάδες.5) Δίνεται το πεδίο F,. Χρησιμοποιείστε το θεώρημα Green, αφού προηγουμένως δείξετε ότι ισχύουν οι προϋποθέσεις του, για να υπολογίσετε την κυκλοφορία ˆ FTds κατά μήκος του κύκλου c: 4 με κίνηση κατά την ορθή C φορά. Είναι: P Q, Q P, Το θεώρημα Green μπορεί να εφαρμοσθεί καθώς το χωρίο R είναι απλά συνεκτικό και η καμπύλη C είναι απλή, κλειστή, λεία και διαγράφεται κατά την ορθή φορά. Επίσης η F και οι παράγωγοι της είναι συνεχείς στο R Το θεώρημα Green δίνει: ˆ Q P F T ds da da da C R R R Το τελευταίο ολοκλήρωμα υπολογίζεται εύκολα σε πολικές συντεταγμένες: 4 r rrdrd d r dr 0 4 0 48 Άσκηση 7 (Μονάδες ) Βρείτε το έργο της μετατόπισης ενός σώματος μεταξύ των σημείων Α( π,) και Β(π/, ) κατά μήκος της καμπύλης c του σχήματος μέσα στο πεδίο: F(, ) cos, sin A c B

Είναι: P cos, Qsin P Q cos Άρα το πεδίο είναι συντηρητικό. Θα υπολογίσουμε τη συνάρτηση δυναμικού. Έχουμε: f cos () f sin () Ολοκληρώνοντας την () παίρνουμε: f (, ) cos d sin g ( ) () Παραγωγίζουμε την () ως προς και συγκρίνουμε με την (): g f sin g g( ) c f sin Η συνάρτηση δυναμικού είναι τελικά η: f (, ) sin c Έτσι από το θεμελιώδες θεώρημα των επικαμπύλιων ολοκληρωμάτων παίρνουμε: 9 W F ds f( B) f( A) f( /, ) f(,) c Ερωτήσεις Mathematica (Bonus Μονάδες.5). Δώστε τις εντολές Mathematica που είναι απαραίτητες για την ολοκλήρωση των ακόλουθων ενεργειών: Δημιουργήστε τη συνάρτηση: f (, ) 4 cos Απάντηση: f[_,_]:=4 Cos[] Κάντε τη γραφική παράστασή της. Απάντηση: PlotD,,,,,,, Υπολογίστε την μερική παράγωγο: f (, ) Απάντηση:,,/.,. Περιγράψτε τι σημαίνει η ακόλουθη εντολή: @% N Απάντηση: Υπολογισμός της αριθμητικής τιμής του ου αποτελέσματος

. Χρησιμοποιείστε την εντολή Table για να δημιουργήσετε έναν πίνακα Α 55, όπου κάθε στοιχείο του ισούται με το άθροισμα των δεικτών της θέσης του. Στη συνέχεια εμφανίστε τον Α σε μορφή πίνακα. Απάντηση: Table,,,5,,,5 4. Αν στην εντολή Plot διαπιστώσουμε ότι ένας κύκλος εμφανίζεται ως έλλειψη, πώς μπορούμε να το διορθώσουμε; Απάντηση: Χρησιμοποιούμε το option: AspectRatio >Automatic 5. Κάντε την γραφική παράσταση της καμπύλης με εξίσωση: Απάντηση: ContourPlot 4,, 0, 0,, 0, 0 6. Έστω ότι η μεταβλητή b ισούται με ( 4) ln 7 5 4. Με ποιόν τρόπο μπορώ να απομονώσω τον παρονομαστή +7 και να τον αποδώσω σε μια νέα μεταβλητή; Απάντηση: H πραγματική εντολή είναι η,,,,,, αλλά επειδή δεν είναι εύκολο να βρεθεί χωρίς υπολογιστή, η δεκτή απάντηση για την πρόοδο είναι η,,,