Μηχανική ΙI. Μετασχηµατισµοί Legendre. της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα). Εάν

Σχετικά έγγραφα
Μηχανική ΙI. Μετασχηματισμοί Legendre. διπλανό σχήμα ότι η αντίστροφη συνάρτηση dg. λέγεται μετασχηματισμός Legendre της f (x)

Μηχανική ΙI Ροή στο χώρο των φάσεων, θεώρηµα Liouville

ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση

Απαντήσεις Διαγωνισµού Μηχανικής ΙΙ Ιουνίου Ερώτηµα 2

ΣΥΝΕΧΕΙΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΙ ΣΥΝΕΧΕΙΣ ΣΥΜΜΕΤΡΙΕΣ

Προσδιορισµός των χαρακτηριστικών (ιδιο-)συχνοτήτων και κανονικών τρόπων ταλάντωσης µε χρήση συµµετριών

Μηχανική ΙI. Λογισµός των µεταβολών. Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 2/2000

Μηχανική ΙI Ταλαντωτής µε µεταβλητή συχνότητα

Στροβιλισµός πεδίου δυνάµεων

Κανονικ ες ταλαντ ωσεις

Μηχανική ΙI. Λαγκρανζιανή συνάρτηση. Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 3/2001

ΣΗΜΕΙΑ ΙΣΟΡΡΟΠΙΑΣ ΓΡΑΜΜΙΚΟΠΟΙΗΣΗ. ΈΈστω ένα φυσικό σύστημα που περιγράφεται σε γενικευμένες συντεταγμένες από την Λαγκρανζιανή συνάρτηση

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση

Το θεώρηµα πεπλεγµένων συναρτήσεων

, όπου οι σταθερές προσδιορίζονται από τις αρχικές συνθήκες.

( ) ( ) Hamiltonian φορμαλισμός. = L!q i. p i. q i. , p i = H. !p i. !q i, L q i, t S = L dt µεγιστοποιείται σε µια λύση της εξίσωσης κίνησης

Κίνηση στερεών σωμάτων - περιστροφική

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

Θεωρία. έχει το γράφηµα του παραπλεύρως σχήµατος.

!q j. = T ji Kάθε πίνακας µπορεί να γραφεί σαν άθροισµα ενός συµµετρικού και ενός αντι-συµµετρικού πίνακα

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Ιούνιος 2004

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Φεβρουάριος Απαντήστε και στα 4 θέματα με σαφήνεια και συντομία. Καλή σας επιτυχία.

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Σεπτέμβριος 2004

Μηχανική ΙI Αδιαβατικά αναλλοίωτα

Ροµποτική. είτε µε το ανυσµατικό άθροισµα. όπου x = αποτελούν τα µοναδιαία ανύσµατα του

Η έννοια του συναρτησιακού (functional).

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I ιαγώνισµα 24 ιάρκεια εξέτασης: 2 ώρες Θεωρία. 2 (4 µονάδες)

Αριθµητική Παραγώγιση και Ολοκλήρωση

Ανάλυση Γ Λυκείου όριο συνάρτησης στο xο. 0, τότε

ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ

Συνάρτηση f, λέγεται η διαδικασία µε βάση την. Παρατηρήσεις - Σχόλια f

( ) ( ) ( )! r a. Στροφορμή στερεού. ω i. ω j. ω l. ε ijk. ω! e i. ω j ek = I il. ! ω. l = m a. = m a. r i a r j. ra 2 δ ij. I ij. ! l. l i.

ιανυσµατικά πεδία Όπως έχουµε ήδη αναφέρει ένα διανυσµατικό πεδίο είναι µια συνάρτηση

Μηχανική ΙI Αδιαβατικά αναλλοίωτα

Σηµειώσεις στις σειρές

KΕΦΑΛΑΙΟ 6 ΥΝΑΜΟΣΕΙΡΕΣ-ΣΕΙΡΕΣ TAYLOR

αx αx αx αx 2 αx = α e } 2 x x x dx καλείται η παραβολική συνάρτηση η οποία στο x

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

Αγγύλες Poisson. Ας θεωρήσουμε κάποια συνάρτηση των κανονικών μεταβλητών. Οι

p& i m p mi i m Με τη ίδια λογική όπως αυτή που αναπτύχθηκε προηγουµένως καταλήγουµε στην έκφραση της κινητικής ενέργειας του ρότορα i,

ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ 12,

Ένα εκκρεμές σε επιταχυνόμενο αμαξίδιο

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων

ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΓΕΝΙΚΗ ΜΟΡΦΗ

( x) (( ) ( )) ( ) ( ) ψ = 0 (1)

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ]

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική II 20 Σεπτεμβρίου 2010

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ

1.1 ΣΥΝΑΡΤΗΣΕΙΣ. 1. Ορισµός. 2. Συµβολισµός. 3. Επεξήγηση συµβόλων. 4. Γραφική παράσταση της συνάρτησης f : A R

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα.

F x h F x f x h f x g x h g x h h h. lim lim lim f x

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 3

( ) { } ( ) ( ( ) 2. ( )! r! e j ( ) Κίνηση στερεών σωμάτων. ω 2 2 ra. ω j. ω i. ω = ! ω! r a. 1 2 m a T = T = 1 2 i, j. I ij. r j. d 3! rρ. r! e!

1.1.3 t. t = t2 - t x2 - x1. x = x2 x

7. Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

( ) ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. Σηµείωση. 2. Παραδοχή α = Ιδιότητες x. αβ = α = α ( ) x. α β. α : α = α = α

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ 12) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 3

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

Άσκηση 1 (α) ============================================================== Έχουµε L = π, εποµένως η σειρά Fourier είναι: 1 2 a. cos. a n. b n.

Κανόνες παραγώγισης ( )

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

10ο Φροντιστηριο ΗΥ217 - Επαναληπτικό

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

1.3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ. 1. Ορισµός της παραγώγου συνάρτησης

ΠΟΤΕ ΙΣΧΥΕΙ Η ΑΡΧΗ ΤΗΣ ΕΛΑΧΙΣΤΗΣ ΔΡΑΣΕΩΣ. φυσικό σύστηµα; Πρόκειται για κίνηση σε συντηρητικό πεδίο δυνάµεων;

( ) ( ) ( ) Μη αδρανειακά συστήματα αναφοράς. ( x, y,z) καρτεσιανό. !!z = h x, y,z. !! y = q. x = f. !! z = h

3.1 Η ΕΝΝΟΙΑ ΤΗΣ ΓΡΑΜΜΙΚΗΣ ΕΞΙΣΩΣΗΣ

και να σχολιαστεί το αποτέλεσμα. ΤΕΛΟΣ

14 Εφαρµογές των ολοκληρωµάτων

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

Τι είναι τα διανύσµατα

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 22.

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων.

lim είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο x 0. β) Να εξετάσετε τη συνέχεια της συνάρτησης f (x) =

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ Οι συντεταγμένες ενός σημείου Απόλυτη τιμή...14

ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ

4.3. Γραµµικοί ταξινοµητές

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2

( )U 1 ( θ )U 3 ( ) = U 3. ( ) όπου U j περιγράφει περιστροφή ως προς! e j. Γωνίες Euler. ω i. ω = ϕ ( ) = ei = U ij ej j

ΜΑΘΗΜΑΤΙΚΗ ΙΑΤΥΠΩΣΗ ΚΑΙ ΛΥΣΗ ΦΥΣΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ


x(t) 2 = e 2 t = e 2t, t > 0

Kεφάλαιο 5. µετασχηµατισµού Laplace.

Κέντρο µάζας. + m 2. x 2 x cm. = m 1x 1. m 1

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. lim = 0. Βλέπε σελίδα 171 σχολικού. σχολικού βιβλίου.

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι ( )

Transcript:

Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 7/5/2000 Μηχανική ΙI Μετασχηµατισµοί Legendre Έστω µια πραγµατική συνάρτηση. Ορίζουµε την παράγωγο συνάρτηση της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα). Εάν 1 υπάρχει αµφιµονοσήµαντη αντιστοιχία µεταξύ x και p οπότε υπάρχει η αντίστροφη συνάρτηση της η την οποία και επιλέγουµε να γράψουµε για λόγους συµµετρίας ως όπου µια συνάρτηση του η παράγωγος της οποίας είναι το. Παρατηρούµε στο διπλανό σχήµα ότι η αντίστροφη συνάρτηση δίνεται από το ίδιο γράφηµα εναλλάσσοντας βέβαια το ρόλο της µεταβλητής και της συνάρτησης. Η συνάρτηση λέγεται µετασχηµατισµός Legendre της. Προφανώς ο µετασχηµατισµός Legendre της είναι πάλι η. Παρατηρήστε ότι για να υπάρχει ο µετασχηµατισµός Legendre της απαιτείται και αντίστοιχα για να υπάρχει ο µετασχηµατισµός Legendre της απαιτείται. Επειδή όµως η ύπαρξη µετασχηµατισµού Legendre της βεβαιώνει την ύπαρξη µετασχηµατισµού Legendre της όπως φαίνεται και από το σχήµα. 1 Εννοείται ότι η παράγωγος αυτή δεν θα πρέπει να µηδενίζεται σε κανένα σηµείο της περιοχής ενδιαφέροντος ή µε άλλα λόγια θα πρέπει να έχει σταθερό πρόσηµο είτε θετικό είτε αρνητικό.

Θα προσδιορίσουµε τώρα τον µετασχηµατισµό Legendre της. Παρατηρούµε από το σχήµα ότι το εµβαδόν του χωρίου ( ) ισούται µε. Οµοίως το εµβαδόν του χωρίου ( ) ισούται µε. Το δε άθροισµα των δύο αυτών εµβαδών είναι. Συνεπώς ή δηλαδή η ποσότητα είναι µια σταθερά C. Η σχέση αυτή προσδιορίζει τον µετασχηµατισµό Legendre της. Επειδή δε η αντίστροφη συνάρτηση προσδιορίζεται µετά από παραγώγιση της µπορούµε να προσθέσουµε στην µια κατάλληλη σταθερά ούτως ώστε η σταθερά C να γίνει µηδενική. Συνεπώς ο µετασχηµατισµός Legendre της είναι η η οποία προσδιορίζεται από τη σχέση: όπου το θεωρείται συνάρτηση του. Οµοίως ο µετασχηµατισµός Legendre της είναι η συνάρτηση η οποία προσδιορίζεται από τη σχέση όπου τώρα το θεωρείται συνάρτηση του. Ας επιβεβαιώσουµε ότι πράγµατι η συνάρτηση είναι ο µετασχηµατισµός Legendre της : Πρέπει να δείξουµε ότι. Στην παραγώγιση της θεωρούµε το ως εξαρτηµένη µεταβλητή από το οπότε: επειδή όµως θα είναι πράγµατι:. Παράδειγµα: Να βρεθεί ο µετασχηµατισµός Legendre της µε. Το συναρτήσει του είναι: άρα. Ο µετασχηµατισµός Legendre της είναι η όπου δηλαδή οι εκθέτες και ικανοποιούν τη σχέση. Η ίδια διαδικασία µπορεί να ακολουθηθεί αν έχουµε πολλές µεταβλητές. Έστω η συνάρτηση και. Ορίζουµε το µετασχηµατισµό Legendre της

ως προς κάποιο τη συνάρτηση η οποία έχει την ιδιότητα. Ακολουθώντας τα προηγούµενα βήµατα βρίσκουµε ότι η (χωρίς την αθροιστική σύµβαση). Οµοίως ορίζουµε ως µετασχηµατισµό Legendre της ως προς όλα τα τη συνάρτηση η οποία έχει την ιδιότητα για κάθε :. Είναι εύκολο να διαπιστώσετε ότι η δίνεται από την (µε την αθροιστική σύµβαση τώρα). H Χαµιλτονιανή συνάρτηση Η Λαγκρανζιανή συνάρτηση ενός φυσικού συστήµατος είναι συνάρτηση των γενικευµένων συντεταγµένων και των γενικευµένων ταχυτήτων και εν γένει του χρόνου δηλαδή είναι µια συνάρτηση. Οι κανονικές ορµές ορίζονται από τη σχέση. Οι κανονικές ορµές είναι συνεπώς συναρτήσεις των και του χρόνου και ορίζονται χωρίς να γίνεται καµία αναφορά στη φυσική κίνηση του συστήµατος προκύπτουν ως µαθηµατικά κατασκευάσµατα απευθείας από τη Λαγκρανζιανή. Η Χαµιλτονιανή συνάρτηση ορίζεται ως ο µετασχηµατισµός Legendre της ως προς όλες τις γενικευµένες ταχύτητες δηλαδή είναι η συνάρτηση που ικανοποιεί τη σχέση:. Σύµφωνα µε τα προηγούµενα η Χαµιλτονιανή συνάρτηση δίδεται από τη σχέση όπου οι γενικευµένες ταχύτητες θεωρούνται στην παραπάνω έκφραση συναρτήσεις των και του χρόνου. Ας ελέγξουµε αν πράγµατι η Χαµιλτονιανή συνάρτηση ικανοποιεί τη σχέση: για κάθε. Πράγµατι: και επειδή θα έχουµε ότι για κάθε. Είναι χρήσιµο στο σηµείο αυτό να υπολογίσουµε τη µερική παράγωγο της Χαµιλτονιανής συνάρτησης ως προς τις µεταβλητές και οι οποίες έµειναν ανενεργές κατά τον µετασχηµατισµό Legendre. Έχουµε:

όπου κατά τη µερική παραγώγιση και παραµένουν σταθερά όλα τα και όλα τα που είναι διαφορετικά από το ενώ κατά την παραγώγιση παραµένουν σταθερά όλα τα και όλα τα που είναι διαφορετικά από το και κατά την παραγώγιση παραµένουν σταθερά όλα τα και όλα τα που είναι διαφορετικά από το. (Ο τελευταίος όρος µέσα στο άθροισµα προκύπτει αφού η L είναι συνάρτηση όλων των q αλλά και των τα οποία όµως τώρα θεωρούνται συναρτήσεις των q p και t.) Επειδή καταλήγουµε στη σχέση:. Οµοίως υπολογίζουµε ότι και συνεπώς: Για να µπορεί να επιτευχθεί ο µετασχηµατισµός Legendre της Λαγκρανζιανής. συνάρτησης απαιτείται ο Εσσιανός (Hessian) πίνακας να είναι θετικός (να έχει θετικές ιδιοτιµές). Αυτή η συνθήκη συνήθως πάντοτε ικανοποιείται διότι η Λαγρανζιανή συνάρτηση είναι τετραγωνική µορφή των γενικευµένων ταχυτήτων και ο Εσσιανός πίνακας ισούται µε τον πίνακα των συντελεστών της κινητικής ενέργειας που είναι συνήθως θετικός (στην απλή περίπτωση µαζών σε ένα καρτεσιανό σύστηµα ο Εσσιανός πίνακας είναι ο διαγώνιος πίνακας µε στοιχεία τις µάζες των σωµάτων). Ο µετασχηµατισµός Legendre της Χαµιλτονιανής συνάρτησης ως προς όλες τις ορµές είναι η Λαγκρανζιανή συνάρτηση όπου οι γενικευµένες ταχύτητες ορίζονται ως. Η Λαγρανζιανή συνάρτηση είναι τότε όπου τώρα οι ορµές θεωρούνται συνάρτηση των και του χρόνου. Με παρόµοιο τρόπο είναι εύκολο να διαπιστώσετε ότι τότε θα είναι. Στη φύση πρωταρχική θέση έχει η Λαγκρανζιανή συνάρτηση η οποία µπορεί να προσδιορισθεί πολλές φορές µε ανάλυση των συµµετριών του φυσικού συστήµατος όπως είδαµε σε προηγούµενα κεφάλαια ή και κατευθείαν από την ανάλυση του φυσικού συστήµατος. Η Χαµιλτονιανή συνάρτηση όταν το σύστηµα είναι χρονικά ανεξάρτητο είναι η έκφραση της ενέργειας του συστήµατος (θυµηθείτε το ολοκλήρωµα Jacobi) η οποία δεν προκύπτει αµέσως και υπολογίζεται ως µετασχηµατισµός Legendre της

Λαγκρανζιανής. Αν και η Λαγρανζιανή συνάρτηση έχει την πρωταρχική θέση η Χαµιλτονιανή όµως όπως θα δούµε µας επιτρέπει να περιγράψουµε τη δυναµική µε τον καλύτερο δυνατό τρόπο. Οι εξισώσεις του Χάµιλτον Επειδή η Χαµιλτονιανή συνάρτηση είναι ο µετασχηµατισµός Legendre της Λαγκρανζιανής θα ισχύουν οι σχέσεις (1) και. (2) Οι σχέσεις αυτές δεν έχουν κανένα δυναµικό περιεχόµενο και δεν εκφράζουν κάποιο φυσικό νόµο. Είναι απλώς αντίστροφες σχέσεις ορισµού. Η (2) εκφράζει τις ταχύτητες συναρτήσει των ορµών (και των θέσεων και του χρόνου) όπως η (1) εκφράζει τις ορµές συναρτήσει των ταχυτήτων (και των θέσεων και του χρόνου). Η δυναµική εµπεριέχεται στις εξισώσεις Euler-Lagrange: ή. Επειδή όµως από τον ορισµό του µετασχηµατισµού Legendre (βλέπε παραπάνω) οι δυναµικές εξισώσεις µπορεί να γραφούν ισοδυνάµως και ως (3) Οι εξισώσεις (2) και (3): λέγονται εξισώσεις του Χάµιλτον ή κανονικές εξισώσεις του Χάµιλτον 2. Οι πρώτου βαθµού εξισώσεις αυτές ως προς τα είναι ισοδύναµες µε τις εξισώσεις δευτέρου βαθµού Euler-Lagrange ως προς το. Οι κανονικές εξισώσεις είναι ουσιαστικά οι εξισώσεις Euler-Lagrange σε µια διαφορετική µαθηµατική µορφή. Παρ' 2 Οι εξισώσεις αυτές παρουσιάζονται για πρώτη φορά σε εργασία του Lagrange το 1809 που πραγµατευόταν την θεωρία διαταραχών µηχανικών συστηµάτων. Ο Lagrange όµως δεν αναγνώρισε τη σηµασία τους. Ο Cauchy σε ένα αδηµοσίευτο µνηµόνιο του 1831 φαίνεται ότι ήταν ο πρώτος που αναγνώρισε τη σηµασία των εξισώσεων αυτών. Ο ιρλανδός φυσικός Hamilton βασίζει όλη την έρευνά του στη µηχανική και οπτική στις εξισώσεις αυτές που τις παρουσιάζει σε δηµοσίευσή του το 1835.

όλα αυτά οι κανονικές εξισώσεις είναι ανώτερες των εξισώσεων Euler-Lagrange πρώτον διότι οι χρονικοί παράγωγοι εµφανίζονται αποµονωµένα στο αριστερό σκέλος των κανονικών εξισώσεων και δεύτερον διότι όπως θα δούµε στη συνέχεια η επιλογή των µεταβλητών οδηγεί σε απλή περιγραφή της εξέλιξης του συστήµατος.