ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις στο μάθημα ΠΙΘΑΝΟΤΗΤΕΣ Ι

Σχετικά έγγραφα
Εξέταση στις ΠΙΘΑΝΟΤΗΤΕΣ I

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις περιόδου στο μάθημα ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές

ΣΥΝΔΥΑΣΤΙΚΗ (Δείγμα θεμάτων)

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

Τυχαία μεταβλητή (τ.μ.)

Θεωρία Πιθανοτήτων & Στατιστική

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ. Έννοια Ορισμοί Τρόπος υπολογισμού Kατανομή πιθανότητας Ασκήσεις

Διωνυμική Κατανομή. x Αποδεικνύεται ότι για την διωνυμική κατανομή ισχύει: Ε(Χ)=np και V(X)=np(1-p).

ΘΕΜΑ 3 Το ύψος κύματος (σε μέτρα) σε μία συγκεκριμένη θαλάσσια περιοχή είναι τυχαία μεταβλητή X με συνάρτηση πυκνότητας πιθανότητας

Ασκήσεις στις κατανομές και ειδικά στην διωνυμική κατανομή και κανονική κατανομή

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η

P (A B) = P (AB) P (B) P (A B) = P (A) P (A B) = P (A) P (B)

Δειγματικές Κατανομές

Ασκήσεις στην διωνυμική κατανομή

Θεωρία Πιθανοτήτων, εαρινό εξάμηνο Λύσεις του φυλλαδίου ασκήσεων επανάληψης. P (B) P (A B) = 3/4.

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50]

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Υπολογιστικά & Διακριτά Μαθηματικά

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ

Στοχαστικές Στρατηγικές

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Τμήμα Λογιστικής και Χρηματοοικονομικής. Θεωρία Πιθανοτήτων. Δρ. Αγγελίδης Π. Βασίλειος

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w

Έντυπο Υποβολής Αξιολόγησης Γ.Ε.

Βιομαθηματικά BIO-156

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2005

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2004

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων

Οι παραγγελίες ακολουθούν την κατανομή Poisson. Σύμφωνα με τα δεδομένα ο

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

Κεφάλαιο 3 Κατανομές. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς

Βιομαθηματικά BIO-156. Τυχαίες μεταβλητές Κατανομές Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2017

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι:

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

f , Σύνολο 40 4) Να συμπληρώστε τον παρακάτω πίνακα f , , Σύνολο 5) Να συμπληρώστε τον παρακάτω πίνακα

ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

Εισαγωγή Η Θεωρία Πιθανοτήτων παίζει μεγάλο ρόλο στη μοντελοποίηση και μελέτη συστημάτων των οποίων δεν μπορούμε να προβλέψουμε ή να παρατηρήσουμε την

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

Τυχαίες Μεταβλητές Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου

ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν

2. Στοιχεία Πολυδιάστατων Κατανοµών

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10

Θεωρία Πιθανοτήτων, εαρινό εξάμηνο Λύσεις του πέμπτου φυλλαδίου ασκήσεων.. Δηλαδή:

Α. α) ίνεται η συνάρτηση F(x)=f(x)+g(x). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F (x)=f (x)+g (x).

ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΗ ΧΗΜΕΙΑ Ι ΘΕΜΑΤΑ B Σεπτέμβριος 2008

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης

pdf: X U(a, b) 0, x < a 1 b a, a x b 0, x > b

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων

3. Κατανομές πιθανότητας

Ορισμός της Πιθανότητας (Ι)

2 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ και. Έστω Α, Β ενδεχόµενα ενός δειγµατικού χώρου Ω µε Ρ(Α) = 8

(f(x)+g(x)) =f (x)+g (x), x R

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα

Διαστήματα εμπιστοσύνης. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

Α ΕΝΟΤΗΤΑ. Πιθανότητες. Α.1 (1.1 παρ/φος σχολικού βιβλίου) Α.2 (1.2 παρ/φος σχολικού βιβλίου) Δειγματικός χώρος - Ενδεχόμενα. Η έννοια της πιθανότητας

Θεωρία Πιθανοτήτων & Στατιστική

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

Εισαγωγή στην Εκτιμητική

Στατιστική Περιγραφή Φυσικού Μεγέθους - Πιθανότητες

Τυχαία Μεταβλητή (Random variable-variable aléatoire)

Προσοχή: Για κάθε λανθασµένη απάντηση δεν θα λαµβάνεται υπόψη µία σωστή

Μέση τιμή, διασπορά, τυπική απόκλιση. 1) Για την τυχαία διακριτή μεταβλητή Χ ισχύει Ρ(Χ=x i)=

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

Εργαστήριο Μαθηµατικών & Στατιστικής. 1 η Πρόοδος στο Μάθηµα Στατιστική 5/12/08 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ. 3 ο Θέµα

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR. και c πραγματική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR.

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος

ρ. Ευστρατία Μούρτου

Στατιστική Ι-Θεωρητικές Κατανομές Ι

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ

xp X (x) = k 3 10 = k 3 10 = 8 3

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50]

ΠΙΘΑΝΟΤΗΤΕΣ. β) το ενδεχόμενο Α: ο αριθμός που προκύπτει να είναι άρτιος

x. Αν ισχύει ( ) ( )

Transcript:

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις στο μάθημα ΠΙΘΑΝΟΤΗΤΕΣ Ι Ονοματεπώνυμο: Όνομα Πατρός:... ΑΜ:. Ημερομηνία: Σ Παρακαλώ μη γράφετε στα παρακάτω τετράγωνα Μέρος Ι Μέρος ΙΙ Μέρος ΙΙΙ Σύνολο 1 Λ Σ Λ 1 3 4 ΜΕΡΟΣ Ι (μέγιστος αριθμός μονάδων: 40) Δώστε την κατάλληλη απάντηση (ΣΩΣΤΗ ( Σ ) ή ΛΑΘΟΣ ( Λ ) ) στις παρακάτω οκτώ προτάσεις. Κάθε σωστή επιλογή παίρνει πέντε (5) μονάδες. Για κάθε λανθασμένη επιλογή αφαιρούνται πέντε (5) μονάδες. 1. Αν, B είναι δύο ενδεχόμενα ενός δειγματικού χώρου Ω για τα οποία ισχύει ότι P ( ) = P( B) = 0.5, τότε P ( B) 0. 5 και P ( B) 0. 5.. Αν, B είναι δύο ξένα ενδεχόμενα ενός δειγματικού χώρου Ω, τότε P ( B ) = P( ) + P( B ) 1. 3. Έστω 1,, 3 και B ενδεχόμενα ενός δειγματικού χώρου Ω με P ( B) > 0. Αν τα ενδεχόμενα 1,, 3 είναι ξένα ανά δύο, τότε P B) = P( B) + P( B) + P( ). ( 1 3 1 3 B 4. Έστω, B, Γ ξένα ανά δύο ενδεχόμενα ενός δειγματικού χώρου Ω με P ( ) = P( B) = 1/ 4 και P ( Γ ) = 1/ 5. Η πιθανότητα να μην εμφανιστεί κανένα από τα ενδεχόμενα, B, Γ είναι ίση με 3 / 10. 5. Για κάθε τυχαία μεταβλητή X ισχύει ότι [ E( X )] E( X ). 6. Έστω X μια τυχαία μεταβλητή και a, β R δύο σταθερές. Η τυπική απόκλιση της τυχαίας μεταβλητής Y = ax + β δίνεται από τον τύπο σ Y = aσ X. Πιθανότητες Ι Σελίδα 1 από 7

7. Η συνάρτηση κατανομής F μιας διακριτής τυχαίας μεταβλητής X είναι συνεχής συνάρτηση. 8. Αν f 1, f είναι δύο συναρτήσεις πυκνότητας, τότε η συνάρτηση 3 f1( x) + 4 f ( x) = 5 είναι συνάρτηση πυκνότητας. ΜΕΡΟΣ ΙΙ (μέγιστος αριθμός μονάδων: 40) Στις επόμενες οκτώ ερωτήσεις διαλέξτε μια από τις πέντε επιλογές που δίνονται. Κάθε σωστή επιλογή παίρνει πέντε (5) μονάδες. Για κάθε λανθασμένη επιλογή αφαιρείται μία (1) μονάδα. 1. Οι διαφορετικοί τρόποι με τους οποίους μπορούν να σταθμεύσουν 8 αυτοκίνητα σε 10 θέσεις στάθμευσης είναι ίσος με α. 7 β. 5 γ. 90 δ. 64 ε. 45. Το 40% των φοιτητών ενός πανεπιστημιακού τμήματος είναι άντρες. Αν το 8% των αντρών και το 10% των γυναικών που φοιτούν στο τμήμα είναι αριστούχοι, τότε το ποσοστό των αριστούχων του τμήματος είναι ίσο με α. 8.4% β. 9.% γ. 8.6% δ. 9.4% ε. 9.6% β 3. Η πιθανότητα να φέρει κεφαλή ένα νόμισμα είναι ίση με 1 / 3, ενώ η αντίστοιχη πιθανότητα για ένα δεύτερο είναι ίση με 1 /. Η πιθανότητα να εμφανιστεί ακριβώς μια κεφαλή σε μια ρίψη των δύο νομισμάτων είναι ίση με α. 1 / 3 β. 1 / 4 γ. 1 / 9 δ. 1 / ε. 1 / 6 4. Έστω F (t) η συνάρτηση κατανομής μιας τυχαίας μεταβλητής X. Η συνάρτηση κατανομής F Y (t) της τυχαίας μεταβλητής Y = X δίνεται από τον τύπο α. F Y ( t) = F( t ) β. F Y ( t) = 1 F( t) γ. F Y ( t) = 1 F(( t) ) δ. ( t) = F( t) ε. ( t) = 1 F( t) F Y F Y 5. Έστω X μια συνεχής τυχαία μεταβλητή X με συνάρτηση πυκνότητας f (x) που δίνεται από τον τύπο Τότε, η σταθερά c R είναι ίση με = c / x 4, x 3, c R. α. c = 81 β. c = 64 γ. c = 7 δ. c = 16 ε. c = 1 Πιθανότητες Ι Σελίδα από 7

6. Έστω X μια διακριτή τυχαία μεταβλητή με σύνολο τιμών R = {, 1,0,1,,4,9 } και συνάρτηση πιθανότητας = 1/ 7 για κάθε x RX. Για την τυχαία μεταβλητή ισχύει ότι η πιθανότητα P ( Y 4) είναι ίση με α. 1 / 3 β. 5 / 7 γ. 4 / 9 δ. 1 / 6 ε. 3 / 4 X Y = X 7. Έστω X μια συνεχής τυχαία μεταβλητή X με συνάρτηση πυκνότητας f (x) που δίνεται από τον τύπο = 3x, 0 x 1. Η συνάρτηση πυκνότητας f Y (y), 1 y, της τυχαίας μεταβλητής Y = X + 1 δίνεται από τον τύπο α. f Y ( y) = 3y + 6y + 3 β. f Y ( y) = 3y 6y + 3 γ. ( y) = 3y 1 δ. f ( ) = 3y Y y + 1 ε. f Y ( y) = 3y f Y 8. Έστω X μια διακριτή τυχαία μεταβλητή με σύνολο τιμών R X = {1, } και συνάρτηση πιθανότητας f (x) για την οποία ισχύει f ( 1) = ( λ 1)/8, f () = (9 λ)/8. Η σταθερά λ R μπορεί να πάρει την τιμή α. την τιμή λ = β. την τιμή λ = 3 γ. την τιμή λ = 4 δ. την τιμή λ = 5 ε. όλες τις προηγούμενες τιμές Πιθανότητες Ι Σελίδα 3 από 7

ΜΕΡΟΣ ΙΙΙ (μέγιστος αριθμός μονάδων: 40) Απαντήστε στα επόμενα τέσσερα (4) θέματα αιτιολογώντας τις απαντήσεις σας. Κάθε θέμα παίρνει 10 μονάδες. Προσπαθήστε να μην χρησιμοποιήσετε περισσότερο χώρο από αυτόν που δίνεται σε κάθε θέμα. 1. Ένα εξάρτημα παρουσιάζει δύο ειδών βλάβες, τύπου a και τύπου β, οι οποίες εμφανίζονται ανεξάρτητα η μια από την άλλη. Η πιθανότητα να εμφανιστεί η βλάβη τύπου a είναι 10%, ενώ η πιθανότητα να εμφανιστεί η βλάβη τύπου β είναι 15%. Ποια είναι η πιθανότητα (α) να εμφανιστούν και οι δύο βλάβες συγχρόνως; (β) να εμφανιστεί μία τουλάχιστον από τις δύο βλάβες; (γ) να μην εμφανιστεί καμία από τις δύο βλάβες; (δ) να εμφανιστεί βλάβη τύπου β, αν είναι γνωστό ότι έχει ήδη εμφανιστεί βλάβη τύπου a ; Πιθανότητες Ι Σελίδα 4 από 7

. Ο αριθμός X των γεννήσεων σε ένα νοσοκομείο της Πάτρας σε μια ημέρα ακολουθεί την κατανομή Poisson με παράμετρο λ και γνωρίζουμε ότι η πιθανότητα να συμβεί μια γέννηση σε μια ημέρα είναι τετραπλάσια της πιθανότητας να συμβούν δύο γεννήσεις σε μια ημέρα. (α) Να δειχτεί ότι η τιμή της παραμέτρου λ είναι ίση με 1 /. (β) Να υπολογιστεί η πιθανότητα να συμβούν τουλάχιστον δύο γεννήσεις σε μια ημέρα γνωρίζοντας ότι έχει συμβεί τουλάχιστον 1 γέννηση. (γ) Να δοθεί ο αναμενόμενος αριθμός των γεννήσεων σε μια ημέρα. Πιθανότητες Ι Σελίδα 5 από 7

3. Από μια κάλπη που περιέχει 60 λαχνούς αριθμημένους από το 1 έως το 60 επιλέγουμε 3 λαχνούς. Η τυχαία μεταβλητή X δηλώνει το πλήθος των λαχνών οι οποίοι φέρουν αριθμό που διαιρείται με το 3. Να δοθεί η συνάρτηση πιθανότητας της τυχαία μεταβλητή X και να υπολογιστεί η πιθανότητα να μην επιλεγεί λαχνός που φέρει αριθμό που διαιρείται με το 3 (α) στην περίπτωση που η επιλογή των λαχνών γίνει με επανατοποθέτηση. (β) στην περίπτωση που η επιλογή των λαχνών γίνει χωρίς επανατοποθέτηση. Πιθανότητες Ι Σελίδα 6 από 7

4. Το σφάλμα X που γίνεται κατά τη μέτρηση (μέσω ενός συγκεκριμένου οργάνου) είναι συνεχής τυχαία μεταβλητή με συνάρτηση πυκνότητας f (x) που δίνεται από τον τύπο x, = 0, 1 x 1 αλλού. (α) Να υπολογιστεί η πιθανότητα να είναι το σφάλμα μιας μέτρησης μικρότερο του 1 / κατ απόλυτη τιμή. (β) Να υπολογιστεί η μέση τιμή και η διακύμανση του σφάλματος μέτρησης. Πιθανότητες Ι Σελίδα 7 από 7