ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ ΙΟΥΝΙΟΥ 4 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ Α A. Έστω μια συνάρτηση f παραγωγίσιμη σε ένα διάστημα (α, β), με εξαίρεση ίσως ένα σημείο στο οποίο, όμως, η f είναι συνεχής. Αν η f() διατηρεί πρόσημο στο (α, ) (,β), τότε να αποδείξετε ότι το f( ) (α, β) δεν είναι τοπικό ακρότατο και η f είναι γνησίως μονότονη στο Μονάδες 7 A. Να διατυπώσετε το θεώρημα του Bolzano. Μονάδες 4 A3. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Τι ονομάζουμε αρχική συνάρτηση ή παράγουσα της f στο Δ ; Μονάδες 4 A4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθ, αν η πρόταση είναι λανθασμένη. α) Η εξίσωση z z = ρ, ρ > παριστάνει κύκλο με κέντρο το σημείο Κ(z ) και ακτίνα ρ, όπου z, z μιγαδικοί αριθμοί. (μονάδες ) β) Έστω μια συνάρτηση f που είναι ορισμένη σε ένα σύνολο της μορφής (α, ) (,β). Ισχύει η ισοδυναμία lim f ( ) = lim f ( ) lim f ( = ) = + (μονάδες ) ΤΕΛΟΣ ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Αν είναι < α <, τότε lim α = (μονάδες ) δ) Έστω μια συνάρτηση f συνεχής σε ένα διάστημα Δ και δυο φορές παραγωγίσιμη στο εσωτερικό του Δ. Αν η f είναι κυρτή στο Δ, τότε υποχρεωτικά f() > για κάθε εσωτερικό σημείο του Δ. g() ε) ( f(t) dt) = ( ) α f g() g() (μονάδες ) με την προϋπόθεση ότι τα χρησιμοποιούμενα σύμβολα έχουν νόημα. (μονάδες ) Μονάδες ΘΕΜΑ Β Θεωρούμε τους μιγαδικούς αριθμούς z,w για τους οποίους ισχύουν: z i i w =, z z + i w φανταστικός B. Να αποδείξετε ότι ο γεωμετρικός τόπ των εικόνων των μιγαδικών αριθμών z, είναι ο κύκλ με κέντρο την αρχή των αξόνων και ακτίνα ρ =, εκτός από το σημείο M, του κύκλου. Μονάδες B. Από τους παραπάνω μιγαδικούς αριθμούς z, του ερωτήματ Β, να βρείτε εκείνους για τους οποίους ισχύει w = Μονάδες 8 B3. Αν είναι z =, τότε να αποδείξετε ότι 4 7 w + i w = Μονάδες 7 ΤΕΛΟΣ ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ
ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Γ Δίνεται η συνάρτηση ( ) f n, αν > =, αν = Γ. Να εξετάσετε αν η συνάρτηση f είναι συνεχής στο σημείο = Μονάδες 4 Γ. Να βρείτε το σύνολο τιμών της συνάρτησης f Μονάδες 7 Γ3. i) Να αποδείξετε ότι, για >, ισχύει η ισοδυναμία 4 f() f(4) 4 = = (μονάδες ) ii) Nα αποδείξετε ότι η εξίσωση 4 4, = >, έχει ακριβώς δύο ρίζες, τις = και = 4 (μονάδες 6) Μονάδες 8 Γ4. Να αποδείξετε ότι υπάρχει ένα, τουλάχιστον, ξ (, 4) τέτοιο, ώστε ξ ( ) ( ) f(ξ) f(t) dt = f ξ f(ξ) Μονάδες 6 ΤΕΛΟΣ 3ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ
ΑΡΧΗ 4ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Δ Έστω η παραγωγίσιμη συνάρτηση f: A, A = (, + ) με σύνολο τιμών f(a)=, τέτοια, ώστε f() ( ) f () f() + 3 =, για κάθε (, + ) Δ. Nα αποδείξετε ότι η συνάρτηση f αντιστρέφεται (μονάδες 4) και να βρείτε την αντίστροφη συνάρτηση Για τα ερωτήματα Δ και Δ3, δίνεται ότι f της f (μονάδες 3) f () ( 3), = + Μονάδες 7 Δ. Να μελετήσετε τη συνάρτηση f ως πρ την κυρτότητα. (μονάδες 3) Στη συνέχεια, να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση της συνάρτησης παράστασης της f ευθεία = (μονάδες 6) f, την εφαπτομένη της γραφικής στο σημείο που αυτή τέμνει τον άξονα yy, και την Μονάδες 9 Δ3. Για κάθε θεωρούμε τα σημεία A (, f ()), B( f (), ) των γραφικών παραστάσεων των συναρτήσεων f και f αντίστοιχα. i) Να αποδείξετε ότι, για κάθε, το γινόμενο των συντελεστών διεύθυνσης των εφαπτομένων των γραφικών παραστάσεων των f συναρτήσεων και f στα σημεία A και B αντίστοιχα, είναι ίσο με (μονάδες 3) ii) Να βρείτε για ποια τιμή του η απόσταση των σημείων A, B γίνεται ελάχιστη, και να βρείτε την ελάχιστη απόστασή τους. (μονάδες 6) Μονάδες 9 ΤΕΛΟΣ 4ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ
ΑΡΧΗ 5ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΟΔΗΓΙΕΣ (για τους εξεταζομένους). Στο εξώφυλλο του τετραδίου να γράψετε το εξεταζόμενο μάθημα. Στο εσώφυλλο πάνω-πάνω να συμπληρώσετε τα Ατομικά στοιχεία μαθητή. Στην αρχή των απαντήσεών σας να γράψετε πάνω-πάνω την ημερομηνία και το εξεταζόμενο μάθημα. Να μην αντιγράψετε τα θέματα στο τετράδιο και να μη γράψετε πουθενά στις απαντήσεις σας το όνομά σας.. Να γράψετε το ονοματεπώνυμό σας στο πάνω μέρ των φωτοαντιγράφων αμέσως μόλις σας παραδοθούν. Τυχόν σημειώσεις σας πάνω στα θέματα δεν θα βαθμολογηθούν σε καμία περίπτωση. Κατά την αποχώρησή σας να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα. 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέματα μόνο με μπλε ή μόνο με μαύρο στυλό με μελάνι που δεν σβήνει. Μολύβι επιτρέπεται, μόνο αν το ζητάει η εκφώνηση, και μόνο για πίνακες, διαγράμματα κλπ. 4. Κάθε απάντηση επιστημονικά τεκμηριωμένη είναι αποδεκτή. 5. Διάρκεια εξέτασης: τρεις (3) ώρες μετά τη διανομή των φωτοαντιγράφων. 6. Ώρα δυνατής αποχώρησης: 8: ΣΑΣ ΕΥΧΟΜΑΣΤΕ KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ 5ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ ΙΟΥΝΙΟΥ 4 ΑΠΑΝΤΗΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Σχολικό βιβλίο σελίδα 63 Α. Σχολικό βιβλίο σελίδα 9 Α3. Σχολικό βιβλίο σελίδα 33 Α4. α. Σωστό, β. Σωστό, γ. Λάθ, δ. Λάθ, ε. Σωστό. ΘΕΜΑ Β B. τρόπ w w = -w z - i z - i z + i -z + i = - = z + i z + i z - i z + i (z + i) (z + i) = (z - i) (-z + i) 4zz + zi + zi - = -4zz + zi + zi zz = z = z = 4 4 Επομένως ο ζητούμεν γ.τ. είναι + 8zz = ο κύκλ C με κέντρο την αρχή των αξόνων και ακτίνα ρ = Εξαιρείται το σημείο Μ, - i διότι z -
B. τρόπ z - i z = + yi ( + yi) - i + yi - i z + i, yir ( + yi) + i + yi + i w = = = ( + yi - i) ( - yi - i) = ( + yi + i) ( - yi - i) = 4-4 yi - i + 4yi + 4y + y - i - y () + (y + ) 4 + 4y - 4 = - i () + (y + ) () + (y + ) 4 + 4y - w I R(w) = = () + (y + ) 4 + 4y - = 4 + 4y = + Επομένως ο ζητούμεν γ.τ. είναι i Εξαιρείται το σημείο Μ, - διότι z - - y = 4 ο κύκλ C με κέντρο την αρχή των αξόνων και ακτίνα ρ = B. oς τρό π z - i z - i w = = = z + i z + i z - i = z + i z - i = z + i (z - i)(z + i) = (z + i)(z - i) 4zz + zi - zi + = 4zz - zi + zi + z = 4zi = 4zi z = z z IR z = ±
B. τρόπ z - i z - i w = = = z + i z + i z - i = z + i z - i = z + i z - i = z + i άρα η εικόνα του z με Α, και Β, -, δηλαδή τον άξονα. Επομένως z IR βρίσκεται στη μεσοκάθετο του ΑΒ z = z = ± B3. Για z = είναι : τρόπ - i ( - i) - i w = = = = - i + i ( + i)( - i) τρό π - i -i - i w = = = + i + i -i ( + i) = - i + i Για w = - i έχουμε : 4 7 4 7 4 8 w + iw = (-i) + i(-i) = i - i = - =
ΘΕΜΑ Γ Γ. im f () = im n n θέτω u = με im = im n = - + + διότι im = + και im n = -, άρα + + + + n u im f ( ) = im = im = = f () + + n u- επομένως η f είναι συνεχής στο = Γ. Για > είναι f () = n f () = = = - n n - n f () = = - n = n = = f () > n n n n n - n > - n > n < < < + f () + - f () Δ = [, ] H f είναι συνεχής και γνησίως αύξουσα στο Δ f () = και f () =, f (Δ ) =,
Δ = (, + ) H f είναι συνεχής και γνησίως φθίνουσα στο Δ + f σχης im f () = f () = im f () = im + + θέτω u = n n με im + n + + = im = + DL'H n άρα im f () = im u = im = = + + u f (Δ ) =, Τέλ f (A) = f (Δ ) f (Δ ) =, n n 4 "-" n n4 4 Γ3. i) f () = f (4) = = 4 n "-" 4 4 4n = n4 n = n4 = 4 Γ3. ii) 4 Οι εξισώσεις f () = f (4) και = 4 είναι ισοδύναμες. 4 Η εξίσωση = 4 έχει προφανείς ρίζες τις = και = 4, άρα η εξίσωση f () = f (4) έχει ρίζες τις = και = 4. Η f είναι γν. αύξουσα στο Δ, άρα η εξίσωση f () = f (4) έχει μοναδική ρίζα στο Δ την =. Η f είναι γν. φθίνουσα στο Δ, άρα η εξίσωση μοναδική ρίζα στο Δ την = 4. f () = f (4) έχει Επομένως η εξίσωση 4 = 4, >, έχει ακριβώς δύο ρίζες, τις = και = 4.
Γ4. Θεωρούμε τη συνάρτηση g, με g () = f () - g συνεχής στο [, 4] ως πράξεις συνεχών f (t) dt g παραγωγίσιμη στο (, 4) ως πράξεις παραγωγισίμων με g () = f () f (t) dt + f () - f () g () = f () - f (t) dt = g (4) = f (4) - f (t) dt =, διότι n 4 n n 4 4 f (4) = = = = ξ 4 n =. από Θ.Roll υπάρχει ένα τουλάχιστον ξ (, 4), τέτοιο ώστε g (ξ) = f (ξ) f (t) dt + f (ξ) - f (ξ) = f (ξ) f (t) dt = - f (ξ) - f (ξ) ξ f ( ξ) f (t) dt = f (ξ) - f (ξ) ΘΕΜΑ Δ Δ. τρόπ : Παραγωγίζουμε κατά μέλη τη σχέση f () f () - f () + 3 =, για κάθε > () και έχουμε : f () f () - f () + 3 = () f () f () - f () + 3 + f () - f () + 3 = f ( ) f () f () f () f () - f () + 3 + f () f () - f () = f () f () f () f () - f () + 3 + f () f ξ () - = f () f () f () - f () + 3 + f () - = f () f () f () + = f () = f () f () + Είναι f () >, άρα η f είναι γνησίως αύξουσα στο (, + ), άρα η f είναι -, άρα η f αντιστρέφεται.
Δ. oς τρόπ f () f () - f () + 3 =, για κάθε > f ( ) f ( ) = () Έστω f ( ) = f ( ) f ( ) = f ( ) -f ( ) = -f ( ) f ( ) = f ( ) -f ( ) = -f ( ) (+) ( ) () f ( ) - f ( ) = f ( ) - f ( ) f ( ) - f ( ) + 3 = f ( ) - f ( ) + 3 (3) f ( ) f ( ) (),(3) f ( ) - f ( ) + 3 = f ( ) () = άρα η f είναι -, άρα η f αντιστρέφεται. - f ( ) + 3 Στην σχέση () αν θέσουμε όπου f () = y, θα έχουμε y - y + 3 =, άρα f (y) = y y - y - f () = - + 3, IR - Δ. f () = - + 3, IR = f (A) - y + 3 ή f () = - + 3 = - + 3 + - - = - + 3 + - = + - f () = + = + + = + + = + και το "=" ισχύει μόνο για = - - Άρα η f είναι κυρτή στο IR.
- f () = - + 3 = 3 f () = + = - - - ε : y - f () = f () - y - 3 = y = + 3 η εφαπτομένη της C στο σημείο της Α (, 3) f - - Η f είν f - αι κυρτή στο IR, άρα η C βρίσκεται πάνω από την (ε) με εξαίρεση το σημείο επαφής Α. - Ε = f () - ( + 3) d = - + 3 - ( + 3) d = - + 3 d - ( + 3) d = - + 3 d - + 3 = - + 3 - - + 3 d - - 3 = - 3 - - d - - 3 = - 3 - - d - - 3 = - 3 - - + - d - - 3 = - 3 - + - - 3 = - 3 - + - - 3 = - 3 - + - - - 3 = 4 - τ.μ.
Δ3. i) τρόπ λ = f () = + - - λ = f f () = = f f () - + Επομένως τρόπ - Είναι f f () =, - f f () + λ = λ για κάθε IR Παραγωγίζουμε κατά μέλη και έχουμε : - - f f () f () = () λ λ = - - - Δ3. ii) (AB) = d () = - f () + f () - = f () - τρόπ - Έχουμε αποδείξει ότι f () - ( + 3), για κάθε IR - f () - 3, για κάθε IR και το "=" ισχύει μόνο για = - - (AB) = d () = f () - = f () - 3 τρόπ - Θεωρώ τη συνάρτηση g, με g () = f () -, - Eίναι g () = f () - IR - και g () = f () και το "=" ισχύει μόνο για = - άρα η g είναι γνησίως αύξουσα και επειδή g () = η g έχει μοναδική ρίζα το. g g () > g () > g () >
- + g () - + g () Eίναι g () g () g () 3 άρα (ΑΒ) = d () = g () = g() 3 Eπομένως η απόσταση ΑΒ γίνεται ελάχιστη όταν = και η ελάχιστη αυτή απόσταση είναι d = 3 min