II. Τυχαίες Μεταβλητές τυχαία μεταβλητή (τ.μ.) Χ : Αναφέρεται πάνω σε μία μετρούμενη ποσότητα του τυχαίου πειράματος Εκφράζει μία συνάρτηση (απεικόνιση) από τον δειγματικό χώρο (Ω) σε έναν αριθμητικό χώρο (R X ), Ω -> R X Η ποσότητα είναι τυχαία καθώς αναφέρεται σε χώρο αβεβαιότητας: P(X=) = P(ζ Ω : X(ζ)=) Αθροιστική συνάρτηση κατανομής πιθανότητας (σ.κ.π.) () = P( X ) = P(ζ Ω : X(ζ) ) Πιθανότητες Μέρος 3 ο Κ. Μπλέκας (/7)
II. Ιδιότητες της σ.κ.π. () (α). 0 (), εφόσον είναι πιθανότητα (β). lim lim 0 (γ). αν < 2 τότε ( ) ( 2 ), δηλ. η () είναι μη φθίνουσα (δ). Η σ.κ.π. () είναι συνεχής από δεξιά (δεξιά συνεχής) h ( ) lim h 0 (ε). αν a<b τότε P(a<X b) = (b) (a) (στ). P(X=a) = (a) (a - ) (δηλ. το άλμα της σ.κ.π. στο σημείο X=a) (ζ). P(X>) = - P(X ) = -() Πιθανότητες Μέρος 3 ο Κ. Μπλέκας (2/7)
II2. Διακριτές Τυχαίες Μεταβλητές Μία τυχαία μεταβλητή (τ.μ.) Χ είναι διακριτή εάν το σύνολο τιμών της είναι πεπερασμένο ή το πολύ απείρως αριθμήσιμο. R X = {, 2,,, } Η σ.κ.π. () = P( X ) είναι μη φθίνουσα, δεξιά συνεχής και κλιμακωτή με άλματα στις τιμές της μεταβλητής. Το σύνολο πιθανοτήτων των τιμών της τ.μ. Χ ορίζει την συνάρτηση () = P(X=) R X που ονομάζεται συνάρτηση πυκνότητας (ή μάζας) πιθανότητας () και για την οποία ισχύουν τα παρακάτω: ( ) 0 i i R X PX i PX k k Πιθανότητες Μέρος 4 ο Κ. Μπλέκας (3/8) k i k
II3. Ειδικές κατανομές διακριτών τ.μ. (Α) Ομοιόμορφη (Uiorm) κατανομή Όλες οι τιμές της μεταβλητής είναι ισοπίθανες Σύνολο τιμών της μεταβλητής R X = {, 2,, } Συνάρτηση πυκνότητας πιθανότητας () ( i ) = / i=,, Συνάρτηση κατανομής πιθανότητας (σ.κ.π.) PX ακέραιο μέρος του Πιθανότητες Μέρος 4 ο Κ. Μπλέκας (4/8)
(Β) Beroulli κατανομή Beroulli πείραμα ή δοκιμή: το τυχαίο πείραμα το αποτέλεσμα του οποίου είναι δυαδικό: αποτυχία (0) ή επιτυχία (). ρ (-ρ) είναι η πιθανότητα επιτυχίας (αποτυχίας). Σύνολο τιμών της μεταβλητής R X = {0,} σ.κ.π. Πιθανότητες Μέρος 4 ο Κ. Μπλέκας (5/8) 0 0 0 X P 0
(Γ) Διωνυμική (biomial) κατανομή Μετρά το πλήθος των επιτυχιών σε ανεξάρτητες Beroulli δοκιμές κάθε μία από τις οποίες έχει πιθανότητα επιτυχίας ρ. συμβολίζουμε τ.μ. X ~ b(,ρ). σύνολο τιμών της μεταβλητής R X = {0,,, } - Αν ρ=0.5 τότε η είναι συμμετρική, δηλ. () = (-) - Αναδρομικός τύπος: - Για *=[(+)ρ] έχουμε την μέγιστη τιμή (κορυφή της κατανομής) Πιθανότητες Μέρος 4 ο Κ. Μπλέκας (6/8)
(Δ) Αρνητική Διωνυμική (Negative biomial) κατανομή Μετρά το πλήθος των Beroulli δοκιμών που απαιτούνται ώστε να πετύχουμε επιτυχίες. συμβολίζουμε τ.μ. X ~ Nb(,ρ). σύνολο τιμών της μεταβλητής R X = {, +, } Αναδρομικός τύπος: Πιθανότητες Μέρος 4 ο Κ. Μπλέκας (7/8)
(Ε) Γεωμετρική (Geometrical) κατανομή Μετρά το πλήθος των Beroulli δοκιμών μέχρι την πρώτη επιτυχία. συμβολίζουμε τ.μ. X ~ G(ρ) δηλ. G(ρ) Nb(=,ρ) σύνολο τιμών της μεταβλητής R X = {, 2, } Πιθανότητα να περιμένουμε τουλάχιστον χρον. στιγμές έως ότου εμφανιστεί κάτι σ.κ.π. PX άρα PX Ιδιότητα της απώλειας μνήμης PX m X P( X m) m Η πιθανότητα να περιμένουμε επιπλέον τουλάχιστον m χρονικές στιγμές είναι η ίδια με την πιθανότητα να περιμέναμε m χρον. στιγμές από την αρχή. Πιθανότητες Μέρος 4 ο Κ. Μπλέκας (8/8)
(ΣΤ) Υπεργεωμετρική (Hyper-Geometrical) κατανομή Έστω δοχείο με Ν αντικείμενα εκ των οποίων τα m έχουν μία κοινή ιδιότητα. Επιλέγουμε τα αντικείμενα και μετράμε πόσα από αυτά έχουν την ιδιότητα των m αντικειμένων. συμβολίζουμε τ.μ. X ~ hg(n,m,), σύνολο τιμών R X = {0,,, mi(,m)} αναδρομικός τύπος: Πιθανότητες Μέρος 4 ο Κ. Μπλέκας (9/8) N m N m X P m N m
(Ζ) Poisso κατανομή Μετρά το πλήθος εμφάνισης ενός φαινομένου σε ένα συγκεκριμένο χρονικό ή χωρικό διάστημα. (π.χ. αριθμός άφιξης πελατών, πλήθος σταλθέντων πακέτων από έναν εξυπηρετητή (server), αριθμός επισκέψεων μιας ιστοσελίδας, κλπ.) συμβολίζουμε τ.μ. X ~ P(λ), σύνολο τιμών της μεταβλητής R X = {0,, }! PX e λ: ρυθμός εμφάνισης του φαινομένου αναδρομικός τύπος: Πιθανότητες Μέρος 4 ο Κ. Μπλέκας (0/8)