Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen

Σχετικά έγγραφα
Teor imov r. ta matem. statist. Vip. 94, 2016, stor

a(z) = k 0 1 z k = k 0 2 k z k = k 0 z k = (1 + z) n. k


d 2 y dt 2 xdy dt + d2 x

f O(U) (f n ) O(Ω) f f n ; L (K) 0(n )

ΚΥΚΛΟΙ ΚΑΤΕΡΓΑΣΙΑΣ. κατά τον άξονα Ζ.

ΠΑΡΟΡΑΜΑΤΑ ΕΚΔΟΣΗ 12 ΜΑΡΤΙΟΥ 2018

Τριμελής εξεταστική επιτροπή: Επίκουρος Καθηγητής Πέτρος Γαλανόπουλος Καθηγητής Δημήτριος Μπετσάκος (επιβλέπων) Λέκτορας Ανέστης Φωτιάδης iii

Conditions aux bords dans des theories conformes non unitaires

Μιγαδική Ανάλυση. Δρ. Θ. Ζυγκιρίδης

Μεταπτυχιακή Μιγαδική Ανάλυση. Έβδομο φυλλάδιο ασκήσεων, Παραδώστε λυμένες τις 4, 9, 15, 19, 24 και 28 μέχρι

f(w) f(z) = C f(z) = z z + h z h = h h h 0,h C f(z + h) f(z)

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ

(i) f(x, y) = xy + iy (iii) f(x, y) = e y e ix. f(z) = U(r, θ) + iv (r, θ) ; z = re iθ

ss rt t r s t t t rs r ç s s rt t r t Pr r r q r ts P 2s s r r t t t t t st r t

u = 0 u = ϕ t + Π) = 0 t + Π = C(t) C(t) C(t) = K K C(t) ϕ = ϕ 1 + C(t) dt Kt 2 ϕ = 0

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Gradient Descent for Optimization Problems With Sparse Solutions

Monotonicity theorems for analytic functions centered at infinity. Proc. Amer. Math. Soc. (to appear). Growth theorems for holomorphic functions

Parts Manual. Trio Mobile Surgery Platform. Model 1033

cz+d d (ac + cd )z + bc + dd c z + d

Τυπολογίο Μαθηµατικών Μεθόδων Φυσικής ΙΙ

ΕΠΙΜΕΛΕΙΑ Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Συλλογή. Γενικού Λυκείου. Ημερησίου-Εσπερινού-Ομογενών

A Probabilistic Numerical Method for Fully Non-linear Parabolic Partial Differential Equations

Μετατροπή Αναλογικού Σήµατος σε. Ψηφιακό (A/D Conversion) Μετατροπή Ψηφιακού Σήµατος σε Αναλογικό (D/A Conversion)

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2




Κλασσική Θεωρία Ελέγχου

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΕΙΣΑΓΩΓΙΚΟ ΜΑΘΗΜΑ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 2013 ιδάσκων : Π.

Κεφάλαιο 2 Διαχείριση Σηµάτων σε Ψηφιακά Συστήµατα Ελέγχου

Alterazioni del sistema cardiovascolare nel volo spaziale


(... )..!, ".. (! ) # - $ % % $ & % 2007

4. Zapiši Eulerjeve dinamične enačbe za prosto osnosimetrično vrtavko. ω 2

-! " #!$ %& ' %( #! )! ' 2003

Επίλυση Δ.Ε. με Laplace

Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

HONDA. Έτος κατασκευής

ιανύσµατα A z A y A x 1.1 Αλγεβρικές πράξεις µεταξύ διανυσµάτων 1.2 Εσωτερικό γινόµενο δύο διανυσµάτων ca = ca x ˆx + ca y ŷ + ca z ẑ



C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:


!"#$ % &# &%#'()(! $ * +

Κλασσική Θεωρία Ελέγχου

To Je rhma tou Mergelyan

Σηµειώσεις Μιγαδικής Ανάλυσης Θέµης Μήτσης

Εφαρμοσμένα Μαθηματικά ΙΙ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012

f p = lim (1 a n ) < n=0

Σειρές Fourier: f(x) = ϕραγµένη : x ( L, L), f(x) = περιοδική : f(x) = f(x + 2L), τότε. f(x) = a 2 + f(x) dx = υπάρχει, τότε

Μάθημα: Θεωρία Δικτύων

Παρασκευή 1 Νοεμβρίου 2013 Ασκηση 1. Λύση. Παρατήρηση. Ασκηση 2. Λύση.

Ατρέας. Μέρος I. Σημειώσεις: Ατρέας Κεφ Κεχαγιάς Κεφ Βιβλία: Churchill - Brown (για μηχανικούς)

!"!# ""$ %%"" %$" &" %" "!'! " #$!

ITU-R P (2012/02) khz 150

Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ÏÅÖÅ. x και f ( x ) >, τότε f ( ) 0

Εφαρμοσμένα Μαθηματικά - Σημειώσεις

ΘΕΜΑ 151 ο. x -f(t) 2f(x)+f (x)= 2 e dt και f(0) = 0.

m 1, m 2 F 12, F 21 F12 = F 21

Α Ρ Ι Θ Μ Ο Σ : 6.913

LCs 2 + RCs + 1. s 1,2 = RC ± R 2 C 2 4LC 2LC. (s 2)(s 3) = A. = 4 s 3 s=2 s + 2 B = (s 2)(s 3) (s 3) s=3. = s + 2. x(t) = 4e 2t u(t) + 5e 3t u(t) (2)

ΣΥΛΛΟΓΗ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

!"###$ "%&' ()() ($"& *)!""+"$"& #)*!"%",""*) # "*) #&-*&*$-# *&(&."# *)/0.1 *!(-%"$2 -*&*$-#%- *&&%"#"-!*&#* $ # "3#*,$&-*&*$-#

Déformation et quantification par groupoïde des variétés toriques

ÒÄÆÉÖÌÄ. ÀÒÀßÒ ÉÅÉ ÓÀÌÀÒÈÉ ÖÍØÝÉÏÍÀËÖÒ-ÃÉ ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓÈÅÉÓ ÃÀÌÔÊÉ- ÝÄÁÖËÉÀ ÀÌÏÍÀáÓÍÉÓ ÅÀÒÉÀÝÉÉÓ ÏÒÌÖËÄÁÉ, ÒÏÌËÄÁÛÉÝ ÂÀÌÏÅËÄÍÉËÉÀ ÓÀßÚÉÓÉ


5.2 (α) Να γραφούν οι εξισώσεις βρόχων για το κύκλωμα του σχήματος Π5.2α. (β) Να γραφούν οι εξισώσεις κόμβων για το κύκλωμα του σχήματος Π5.

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

HMY 799 1: Αναγνώριση Συστημάτων

= df. f (n) (x) = dn f dx n

Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε. 2003


( ) ( ) ( ) ( ) ( ) 槡 槡 槡 ( ) 槡 槡 槡 槡 ( ) ( )

ΜΜΦ Ι 1/ Μαθηµατικές Μέθοδοι Φυσικής ΙΙ. (Μάθηµα επιλογής) Μιγαδικοί αριθµοί - `Αλγεβρα των Μ.Α. + b n sin nπx. a n cos nπx.

X(f) E(ft) df x[i] = 1 F. x(t) E( ft) dt X(f) = x[i] = 1 F

Μιγαδικοί αριθμοί και στοιχειώδεις συναρτήσεις

(1) P(Ω) = 1. i=1 A i) = i=1 P(A i)

HMY 220: Σήματα και Συστήματα Ι

L A TEX 2ε. mathematica 5.2

X = συνεχης. Είναι εμφανές ότι αναγκαία προϋπόθεση για την ύπαρξη της ροπογεννήτριας

_YkR${R x(eu 7BjZ$BtR B VRR$t8 t '1

m i N 1 F i = j i F ij + F x


Σ.Η. ΜΑΣΕΝ ΣΠΟΥ ΑΣΤΗΡΙΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΙΑΛΕΞΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΘΟ ΩΝ ΦΥΣΙΚΗΣ Ι

z 3i w = z +3i + z 3i. z 3i άρα z 3i = z 3i = z 3i=w. Άρα w IR. z 3i =z-3i+ z 3i (z 3i)(z 3i) z 3i z 3i Β4. z w x yi 2x x yi ( x) y x y z

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

ΘΕΜΑ 101 ο. α. Να δείξετε ότι ο γεωμετρικός τόπος του z είναι η ευθεία (ε): x 2y 3 = 0.


1. [Carrier, Krook and Pearson, Section 3-1 problem 1] Using the contour

lim Δt Δt 0 da da da dt dt dt dt Αν ο χρόνος αυξηθεί κατά Δt το διάνυσμα θα γίνει Εξετάζουμε την παράσταση

Transcript:

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen Dissertation date:

GF F GF F SLE GF F

D Ĉ = C { } Ĉ \ D D D = {z : z < 1} f : D D D D = D D, D = D D f f : D D D f P (D) D ˆD = D P (D) ˆD f : D D ˆf : D ˆD ˆD D D ˆD D Ĉ a D, b 1,b 2, b 3 P (D)

f : D D, ˆf : ˆD ˆD. f ˆf(0) = a ˆf (0) > 0, ˆf(0) = a ˆf(1) = b1, ˆf( i) =b1, ˆf(1) = b2, ˆf(i) =b 3 Hol(D, D) D Aut(D) Hol(D, D) D {g t } t 0 Hol(D, D) D D g 0 =id D, g t+s = g t g s, s, t 0 lim t 0 + g t (z) =z z D g t D z D t g t (z) t [0, + ) g t Aut(D) t 0, {g t } t 0 {g t } t 0 V : D C, {g t } t R g t := g 1 t t g t(z) =V (g t (z)), g 0 (z) =z, t 0, z D. V {g t } t 0

V (z) V (z) =V (0) zq(z) V (0) z 2, q(z) Re q(z) 0 V (z) q(z) =ib, b R φ Hol(D, D) φ id D τ D φ τ D lim z τ φ(z) =τ α = φ(z) τ lim z τ z τ 0 <α 1 0 <α<1 φ α =1 φ τ φ {g t } t 0 g 0 =id D τ τ {g t } t 0 V (z) τ D p : D C Re p 0 V (z) =(z τ)( τ z 1) p(z), z D. V (z) 0 τ {g t } t 0 p(z) τ V (z) g t (z) τ D t + {g t } t 0 D D D f : D 1 D 2 {g 1 t } t 0 D 1 {g 2 t } t 0 = {φ g 1 t φ 1 } t 0 D 2 V 1 V 2 {g 1 t } t 0 {g 2 t } t 0 V 1 V 2 φ V 2 V 1 φ V 2 = φ V 1 φ V 1 (z) = 1 φ 1 (z) V 1(φ 1 (z)).

f C 1 D z = x + iy f = f z = 1 ( 2 x i ) f, y f = f z = 1 ( 2 x + i ) f. y V D V f C 1 (D, C) f ( V + V ) f. L V L V = V + V. L V f V L V f f V ; L V f = LV f, L V Re f = ReL V f L V Im f = Im L V f L V ( f) = L V f, L V ( f) = L V f V D C n f : C n C z =(z 1,...,z n ) = ( ) z 1,..., z n = ( ) z 1,..., z n V (z) =(V1 (z),...,v n (z)) f V L V f(z) = ( V (z) + V (z) ) f(z). X t {F t } t 0 B t T>0 X t

B t [0,T] T 0 X t db t := lim n Δt 0 j=1 X tj 1 ( Btj B tj 1 ), 0=t 0 <t 1 <...<t n = T Δt := max j=1,..., n (t j t j 1 ) T 0 X t db t := lim n Δt 0 j=1 X t j 1 +t j 2 ( Btj B tj 1 ). T>0 T 0 X s db s t 0 X s db s Y t {F t } t 0 ( ) t P Y t = X s db s =1 t 0. 0 t 0 X s db s E ( T0 Xs 2 ds ) < T>0 t 0 X s db s P ( T0 Xs 2 ds < ) =1 Y t {F} t 0 M t M t = M 0 + t 0 X s db s F t X t X t Y t X T,Y T = X, Y T := lim n Δt 0 j=1 (X tj X tj 1 )(Y tj Y tj 1 ) 0 = t 0 < t 1 <... < t n = T Δt := max j=1,..., n (t j t j 1 ) X t Y t X t (ω) = Y t (ω) = t t b 1(ω, s) ds + σ 1(ω, s) db s (ω), 0 0 t t b 2(ω, s) ds + σ 2(ω, s) db s (ω), 0 0

b j (ω, t) σ j (ω, t) j =1, 2 F t ( ) ( T ) T P b j(ω, s) ds < =1, P σ j(ω, s) 2 ds =1, 0 0 T > 0 j =1, 2 X, Y t (ω) = t 0 σ 1(ω, s) σ 2 (ω, s) ds. T 0 X t db t = T 0 X t db t + 1 2 X, B T. w t = X 1 t + ix 2 t X 1 t X 2 t f : C C w t t f(w t )=f(w 0 )+ f(w s) dw s + 0 t + 1 2 0 2 f(w s ) d w s + 1 2 t + f(w s ) d w, w s, 0 t 0 t 0 f(w s ) d w s 2 f(w s ) d w s df (w t )= f(w t ) dw t + f(w t ) d w t + 1 2 2 f(w t ) d w t + 1 2 2 f(w t ) d w t + f(w t ) d w, w t. w t t n t w t = w 0 + b(w s) ds + σ k(w s ) dbs k, 0 0 b σ n B 1 t,...,b n t k=1 dw t = b(w t ) dt + n k=1 σ k (w t ) db k t.

dw t = b(w t )+ 1 2 n k=1 σ k (w t ) σ k(w t ) dt + w t = w 0 + t 0 b(w s )+ 1 2 n k=1 n k=1 σ k (w s ) σ k(w s ) ds + σ k (w t ) db k t, n t k=1 0 σ k(w s ) db k s. f : C C f(w t ) df (w t )=L b f(w t ) dt + = L b + 1 2 n k=1 n L 2 σ k k=1 L σk f(w t ) db k t f(w t ) dt + n k=1 L σk f(w t ) db k t. w t C n f C 2 n b : C n C σ k : C n C {g t } t 0 t g t(z) =V (g t (z)), g 0 (z) =z, t g t ( ) D V D g t Hol(D, D) t 0 z D w t (z) w 0 = z {w t } t 0 dw t (z) =b(w t (z),t) dt + n k=1 σ k (w t (z),t) dbt k, w 0 (z) =z, z D. σ k (w) w σ k(w) f t(z) z f t(z)

b(z,t), σ 1 (z,t),...σ n (z,t) C 2 z C 1 t T (z) w t (z) w t (z) =z T (z) D t t>0 D t = {z D : T (z) >t} D s D t s t R t D t w t R t := w t (D t ) w t : D t R t t 0 1 b(z,t) C 1 t>0 C d z D σ 1 (z,t),...,σ n (z,t) C 1 t C d+1 z w t : D t R t C d t 0 1 b(z,t), σ 1 (z,t),...σ n (z,t) C 1 t>0 C z D w t (z) :D t R t C t 0 1 b(z,t), σ 1 (z,t),...σ n (z,t) C 1 t>0 z D w t (z) :D t R t t 0 1 w t (z) dw t (z) =b(w t (z)) dt + n k=1 σ k (w t (z)) dbt k, w 0 (z) =z, z D, b(z) σ 1 (z),...,σ n (z) C w t (z) D t 0 g w t (z) dw t (z) =b(w t (z),t) dt + n k=1 σ k (w t (z),t) dbt k, w 0 (z) =z, z D,

d w t (z) = b( w t (z),t) dt + n k=1 σ k ( w t (z),t) dbt k, w 0 (z) =z, z D, T (z), T (z) {ζ t } t 0 ζ t := w t w t U(z) := min[inf{t >0:w t (z) D t },T(z)] D t = {z D : T (z) >t} dζ t (z) = [ b(ζt (z),t)+ w t b(ζ t (z),t) ] dt + n k=1 [ σ k (ζ t (z),t)+ w t σ k (ζ t (z),t)] db k t, {η t } t 0,η t = wt 1 dη t (z) = (η t b)(η t (z),t) dt = η t (z) b(z,t) dt n k=1 n k=0 (η t σ k )(η t (z),t) db k t η t (z) σ k (z,t) db k t, SLE κ SLE(κ, ρ)

t t H = {z :Imz>0} S = {z :0< Im z<1} d [1, + ] {φ s,t } 0 s t<+ φ s,s = id D φ s,t = φ u,t φ s,u 0 s u t<+ z D T > 0 k z,t L d ([0,T], R), φ s,u (z) φ s,t (z) 0 s u t T. t u k z,t(ξ)dξ

z D φ s,t (z) t [s, + ) d [1, + ] V : D [0, + ) C [0, + ) t V (z,t) z D z V (z,t) t [0, + ) K D T > 0 k K,T L d ([0,T], R), V (z,t) k K,T (z) z K t [0,T] t [0, + ) V (,t) {φ s,t } d 1 V (z,t) d, z D t [0, + ) t φ s,t(z) =V (φ s,t (z),t). V (z,t) d 1 {φ s,t } 0 s t<+ d H(z,t) H(z,t) =V (z,t) z D t [0, + ) {f t } 0 t< f t : D C d [1, + ] f t f s (D) f t (D) 0 s<t<+, K D T>0 k K,T L d ([0,T], R) f s (z) f t (z) k K,T (ξ)dξ s z K 0 s t T. t

f t (D) t {f t } t 0 d {φ s,t } d φ s,t = f 1 t f s. {φ s,t } 0 s t<+ d {f t } t 0 d, φ s,t = ft 1 f s 0 s t f(0) = 0 f (0) = 1 Ω:= t 0 f t (D) {z : z < R} R (0, + ]. {g t } t 0 = {F f t } t 0, F :Ω C R 1/β 0, φ β 0 = lim 0,t(0) t + 1 φ 0,t (z) 2. {f t } t 0 d s f s(z) = V (z,s)f s(z) ( s 0), V (z,s) {φ s,t } 0 s t<+. V (,t) t 0 p t d [1, + ) p : D [0, + ) C, t p(z,t) L d loc([0, + ), C) z D z p(z,t) D t [0, + )

Re p(z,t) 0 z D t [0, + ) V (z,t) d 1 t V (,t) 0 τ :[0, + ) D p(z,t) d, z D t [0, + ) V (z,t) =(z τ(t)) (τ(t) z 1) p(z,t). τ :[0, + ) D p(z,t) d 1, d {φ s,t } V (z,t) (p, τ) V (z,t) {φ s,t } 0 s t<+ τ(t) V (z,t) {φ s,t } 0 s t<+ d [1, + ] {φ s,t } 0 s t<+ Hol(D, D) d φ s,s =id D φ s,t = φ s,u φ u,t 0 s u t< z D T > 0 k z,t L 2 ([0,T], R) φ s,u (z) φ s,t (z) k z,t(ξ) dξ, u s, t, u [0,T] s u t d [1, + ] {f t } t 0 Hol(D, D) d t

f t : D D f 0 =id D, f s (D) f t (D) 0 s<t<+ K D T > 0 k K,T L d ([0,T], R) f s (z) f t (z) k K,T (ξ)dξ s z K 0 s t T {f t } t 0 t φ s,t (z) =f 1 s f t, 0 s t<. {φ s,t } 0 s t<+ f t (z) :=φ 0,t V d [1, + ] z D, g t (z) D t g t(z) = V (g t (z),t), g 0 (z) =z. t 0, D t z D, g t (z) t, g t (z) z D t D t D f t := gt 1 d t f t(z) =f t(z) V (z,t), f 0 =id D. D t = g 1 t (D) =f t (D) t K t = D \ D t t {D t } t 0 {K t } t 0 0 s t< D s D t K s K t

τ(t) τ 0 τ 0 D τ 0 =0 p(0,t) 1 p(z,t) V (z,t) = zp(z,t), p(z,t) p(0,t) 1. p(0,t) 1 φ s,t (z) =e s t z +..., z D, f t (z) =e t z +..., z D. f t (z) =e t z +..., z D. {φ s,t } 0 s t<+ {f t } t 0 lim t et φ 0,t (z) =f 0 (z) V (z,t) = z eiu(t) + z e iu(t), u(t). z

D C D C \ C D {f t } t 0 t f t(z) =z eiu(t) + z e iu(t) z f t(z) u(t) f t(0) = e t ɛ>0 δ>0 s, t 0 0 t s δ f t (D) ɛ 0 f t (D)\f s (D) {f t } t 0 f t(0) = e t Γ:[0, + ) C t 0 f t (D) C \ Γ[t, + ) 0 Γ {f t } t 0 u(t) u(t) f(0) = 0 f (0) = 1 S S f S f(z) =z + a 2 z 2 + a 3 z 3 +..., z D. a n n S n =2 a 2 =2 f(z) =e iθ k(e iθ z) θ [0, 2π) k(z) k(z) = z (1 z) 2 = z +2z2 +3z 3 +..., z D. n =3

n =4, 5 6 n a n = n f S n N f(z) =e iθ k(e iθ z) θ [0, 2π) f S f(d) =C \ Γ Γ Γ=(, 1/4] S f {f t } t 0 f(z) =f 0 (z) {f t } t 0 {φ s,t } 0 s t<+ lim t et φ 0,t (z) =f 0 (z). F : S C S S S n S n S u(t) S S τ(t) τ 0 τ 0 D

D τ 0 = 1 V (z,t) = (z +1) 2 p(z,t). H τ 0 D H z 2 i 1 z 1+z, ( ) 2i z V H (z,t) =4ip 2i + z,t = i p(z,t), p(z,t) :=4p ( 2i z 2i+z,t) z H t 0 Re p(z,t) 0 z H V H 1 (z,t) = u(t) z, u(t) t i p(z,t) = z u(t), 2 V H 2 (z,t) = u(t) z. t f 2 t(z) = f, t(z) u(t) f 0 (z) =z, z H, t f 1 t(z) = f 0 (z) =z, tanh[(f t(z) u(t))/2], z S,

u(t) :[0, + ) R S {z :0< Im z<π} { f t } t 0 f t = φ f t φ 1 φ : S D φ(z) :=i ez i e z + i. φ 0 1 i + i { f t } t 0 f t t (z) = V ( f t (z),t), f 0 (z) =z, z D V (z,t) = 1 2 (1 + z2 ) 1 iz+ eu(t) (z i) i + z e u(t) (1 + iz) < 1 V (z,t) = tanh[(z u(t))/2] φ V (i, t) = V ( i, t) = 0 t 0 ±i { f t } t 0 τ(t) = sech u(t)+i tanh u(t). u(t) u(t) {φ s,t } 0 s t<+ φ s,t (D) 0 s t<+ [0, ) C u(t) Lip(1/2) 1/2

u 1/2loc < 4 u 1/2loc := inf sup u(t) u(s). ɛ>0 t s <ɛ t s u(t) u(s) lim t s t s SLE κ u(t) = κb t B t κ>0 SLE κ t f t(z) =f t (z) ei κbt + f t (z) e i κb t ft (z), f 0(z) =z, z D, SLE κ t f 2 t(z) = f t (z), f 0 (z) =z, z H, κb t SLE κ t f 2 t(z) = tanh[(f t (z) κb t )/2], f 0(z) =z, z S. γ γ SLE κ SLE κ SLE κ SLE κ>0 SLE κ γ κ [0, 4] κ (4, 8) κ [8, ) SLE κ min (2, 1+κ/8)

SLE SLE SLE κ 1 0 1 0 SLE κ (D, 1, 0) D a D b D φ : D D φ(0) = b ˆφ(1) = a SLE κ (D, a, b) =SLE κ (φ(d), ˆφ(1),φ(0)) D a b γ SLE κ (D, 1, 0) φ γ SLE κ (φ(d), ˆφ(1),φ(0)) γ[0,t] SLE κ (D t,γ(t),b) D t D \ γ[0,t] b SLE κ (D t,γ(t),b) γ SLE SLE κ w t (z) =f t (z)/e i κb t dw t (z) =w t (z) 1+w t(z) 1 w t (z) dt i κw t db t, w 0 (z) =z, z D. D C 0 (D) D {p n } n=1 C 0 (D) p C 0 (D) K supp(p n p) K n =1, 2,...

m+p m x p y p n m+p m x p yp n K m, p = 1, 2,... C0 (D) T C0 (D) T (p n ) T (p) p n p C0 (D) D D(D) D (D) A D (, ) L 2 (D, A) (p, q) := D p(z) q(z) da(z), p q L 1 loc(d, A) D h L 1 loc(d, A) h L 1 (U) U U D L 1 loc(d) L p (D, A) L 1 loc(d, A) p 1 h L 1 loc(d, A) h L 2 (D, A) (h, p) p D(D) h D p (h, p), p D(D), L 1 loc(d) D (D) D (h, p) h p D w D f w : D D f w (w) =0, f w(w) > 0 D G D (z,w) = log f w (z). G D (z,w) = log 1 wz z w G H (z,w) = log z w z w p D(D) 1 2π G D(z,w)Δp(w) da(w) =p(z). D Δ w G D (z,w) =2πδ(z w), z D, G D (z,w) =0, z D.

Δ D(D) ker Δ = {0} D(D) Δ Δ 1 p(z) = 1 2π G D(z,w) p(w) da(w). D D(D) L 2 (D, A) (, ) (, ) L 2 (D,A) p, q D(D) (p, q) := D p(z) q(z) da(z). p, q D(D) (p, q) := D p(z) q(z) da(z). D(D) (p, q) E(D) := 2 G D(z 1,z 2 ) p(z 1 ) q(z 2 ) da(z 1 ) da(z 2 ). D D p, q D(D) (p, q) = 1 4π ( Δp, q) E(D), (p, q) =( Δp, q), (p, q) = 1 4π (Δp, Δq) E(D). D(D) p := (p, p), p := (p, p), p E(D) := (p, p) E(D). p p p E(D) p (Ω, F, P) D Φ:Ω D (D) Φ GF F D p D(D) (Φ, p) p 2 E(D)

Cov ((Φ, p), (Φ, q)) = (p, q) E(D). H(D) D(D) (, ) H(D) H(D) L 2 (D, A) L 1 loc(d) D (D) {e n } n=1 H(D) {α n } n=1 2 π α n e n. n=1 p D(D) 2 π n=1 α n (p,e n ) L 2 (Ω, P) 2 π n=1 α n (p,e n ) 2 L 2 (Ω,P)= 4π n=1 (p,e n ) 2, 4π n=1 (p,e n ) 2 =4π n=1 ( Δ 1 p,e n ) 2 =4π Δ 1 p 2 = p 2 E(D)<, p D(D) Φ D Φ=2π n=1 α n e n {e n } n=1 H(D) {α n } n=1 B D D H(B) H(D) Harm(B) H(D) H(D) =H(B) Harm(B). P H(B) P Harm(B)

f Harm(B) (f,g) =0 g H(B) (f,δg) L 2 (B,A) =0 g H(B). B Harm(B) H(D) B Φ B B Φ B := 2 π n=1 α n f n {f n } n=1 H(B) {α n } n=1 Φ B D p D(D) (Φ B, p) p 2 E(B) p D(D) (Φ B, p) =2 π =2 π =2 π n=1 n=1 n=1 α n (f n, p) α n (f n, Δ 1 p) α n (f n,p H(B) ( Δ 1 p)), (Φ B, p) 4π P H(B) ( Δ 1 p) 2 = ΔP H(B) ( Δ 1 p) 2 E(B) = ΔP H(B) ( Δ 1 p)+δp Harm(B) ( Δ 1 p) 2 E(B)= p 2 E(B). GF F h D h D (D) GF F h ˆΦ D =Φ D +h GF F h D ˆΦ D h h μ h D B D A(D\B) ˆΦ B =Φ B +h GF F B p D(D) Φ B D h B (h, p) L 2 (D,A) = D h(z) p(z) da(z)

ˆΦ B D GF F φ : D 1 D 2 Ψ D (D 2 ) Ψ φ Ψ φ D 1 (Ψ φ, p) =(Ψ, (φ 1 ) 2 p(φ 1 )), p C 0 (D 1 ). Ψ L 1 loc(d 2 ) Ψ(φ(z)) p(z) da(z) = Ψ(w) (φ 1 (w)) 2 p(φ 1 (w)) da(w). D 1 D 2 Φ D2 φ D 2 GF F D 1 SLE GF F SLE 4 GF F SLE κ κ SLE GF F SLE 4 Φ H Φ H ˆΦ H =Φ H 2 arg z. ˆΦ H ˆΦ H =0 ˆΦ H = π B t ˆΦ H {w t } t 0 SLE 4 dw t (z) = 2 w t (z) dt 2 db t, w 0 (z) =z, z H. ˆΦ H SLE 4 T > 0 ˆΦ H ˆΦ H w T

{φ s,t } 0 s t<+ t φ s,t(z) = φ s,t (z) eiu(t) +φ s,t(z) e iu(t) φ, s,t(z) φ s,s (z) =z, z D, {f t } t 0 t f t(z) =zf t(z) eiu(t) + z e iu(t) z, f 0(z) = lim t e t φ 0,t (z). {f t } t 0 φ s,t = ft 1 f s {f t } t 0 [0, + ) φ s,t (D) D \ φ s,t (D) γ D \ γ 0 u(t) D \ γ u(t) φ 0,t0 (D) =D \ γ t 0 > 0 u(t) Ĉ φ s,t (D)

u(t) Lip(1/2) u(t) 1/2loc (4, ) Lip(1/2) u(t) 1/2loc =0 V (t, z) =(z τ(t))(τ(t) z 1) p(z,t), τ(t) =e ikbt,k 0 τ(t) =e ikbt k R t φ t(z) = (τ(t) φt(z))2 τ(t) p(φ t (z),t), φ 0 (z) =z, z D. p(z,t) = p(z/τ(t)) p(z) :D C ψ t (z) = φt(z) τ(t) t ψ t(z) =(ψ t (z) 1) 2 p(ψ t (z)) ikψ t (z), ψ 0 (z) =z. {ψ t } t 0 {ψ t } t 0 {φ t } t 0 {φ t } t 0 Aut(D) p(z,t) = p(z/τ(t)) p(z) =A 1+z + Bi, A,B R. 1 z ψ t k τ(t)

2( Im p(0) p(0) ) <k<2( Im p(0) + p(0) ) 2( Im p(0) p(0) ) <k<2( Im p(0) + p(0) ) k<2( Im p(0) p(0) ) k>2( Im p(0) + p(0) ) φ t (z) k 4 A 2 +4 Bk+k 2 {ψ t } t 0 p(z) p(z,t) = p(z/τ(t)) w t = φ t /e ikbt dw t = ( k2 2 w t +(w t 1) 2 p(w t ) ) dt ikw t db t, w 0 (z) =z. {w t } t 0 {φ t (D)} t 0 SLE SLE dw t (z) =b(w t (z)) dt + σ(w t (z)) db t, w 0 (z) =z, z D, D b σ w t Hol(D, D) t 0 b σ w t Aut(D) t 0

b(z) dh t (z) =σ(h t (z)) db t, H 0 (z) =z, z D, D {H t } t 0 t h t(z) =σ(h t (z)), h 0 (z) =z, z D H t = h Bt {g t } t 0 g t := Ht 1 w t = w t h 1 B t dg t (z) = ( h 1 B t b ) (g t (z)) dt, g 0 (z) =z, z D. ( h 1 B t b ) {g t } t 0 Hol(D, D) {w t } t 0 Hol(D, D) b σ D SLE dw t (z) = b(w t (z)) dt + σ(w t (z)) dbt k, w 0 (z) =z, z D, b σ D t = {z D : w t (z) t}, w t : D t D t 0 g t = Ht 1 w t dg t (z) = ( h 1 B t b ) (g t (z)) dt, g 0 (z) =z, z D, {g t } t 0

b SLEs b D lim Re r 1 b(reiθ ) re iθ =0 e iθ D e iθ0 e iθ0 =1 D b D ( b(z) =α z iβ+ γ 1+z ) αz 2, 1 z z D, α C, β R γ 0 l H n (z) := z n+1, n Z, z H, D l D n := φ l H n φ : H D l D n φ φ(z) = z 2i z+2i l D n(z) = 2 n 1 ( i) n (z 1) n+1 (z +1) n+1. S = {z :0< Im z<π} ψ(z) = Log 2+z 2 z ( ) l S n(z) =ψ l H n (z) = 2 n sinh(z) tanh n z. 2 D span R {l D 1,l D 0,l D 1 } l D n,n= 2,...,1 D b D b(z) =b 2 l D 2(z)+b 1 l D 1(z)+b 0 l D 0 (z)+b 1 l D 1 (z), b 2 0 b 1,b 0,b 1 R D l D n l D n

D D σ D b D b(z) =b 2 l D 2(z)+b 1 l D 1(z)+b 0 l D 0 (z)+b 1 l D 1 (z), b 2 0,b 1,b 0,b 1 R, σ(z) =σ 1 l D 1(z)+σ 0 l D 0 (z)+σ 1 l 1, σ 1,σ 0,σ 1 R, σ 1 0. u t :[0, + ) R b, σ u t {f t } t 0 V (t, z) = ( h 1 u t b ) (z), {h t } t 0 D σ b 2 =2, σ 1 =1, b σ 2l 2 l 1 2l 2 + 1 2 l 0 l 1 + 1 4 l 1 2l 2 1 2 l 0 l 1 1 4 l 1 u t = κb t κ 0 w t = h κb t g t dw t (z) = b(w t (z)) dt + κσ(w t (z)) db t, w 0 (z) =z, z D. {w t } t 0 b σ SLE κ κ [0, 4] κ (4, 8) κ [8, )

ABP SLE b =2l 2 σ = l 1 + 1 4 l 1 t f t(z) = 1 (e iu(t) + f t (z)) 3 4 e iu(t) e iu(t) f t (z). τ(t) = e iu(t) p(z) = 1 1+z 4 1 z u(t) = κb t κ 0 ABP SLE ABP {f t } t 0 SLE ABP {w t } t 0 b σ κ =4 {w t } t 0 dw t (z) = b(w t (z)) dt +2σ(w t (z)) db t, w 0 (z) =z, z H. Φ H H B t b σ h H ˆΦ H := Φ H + h(z), ˆΦ H w T ˆΦ H T>0 GF F SLEs dg H (w t (z 1 ),w t (z 2 )) = 1 2 h(w t(z 1 )),h(w t (z 2 )), G H H, z 1,z 2 H z 1 z 2 h

h(w t (z)) t h SLE 4 2 B t αt, α R αt b(z) = 2 z α, σ = 1, h(z) = α 2 Im z 2 arg z. b(z) = 2 z βz,β R, σ = 1, h(z) = 2 arg z. SLE 4 2 B t αt, α R b(z) = 2 z α + z 2 + α 4 z2, h(z) = 1 α arg(2 z) 2 arg z + 1+α arg(2 + z). 2 2 b(z) = 2 ( z +1 β 1 ) ( 1 z 2 4 β ) z 2,β R, 2 h(z) = 2 arg(2 z) 2 arg z, b(z) = 2 ( z 1 β 1 ) ( β z 2 2 1 ) z 2,β R, 4 h(z) = 2 arg(2 + z) 2 arg z, SLE 4 2 B t αt α R b(z) = 2 z α z 2 α z2 4, α R, h(z) = 2 α Im arctan 2 z 2 arg z + 1 arg(4 + z 2 ). 2 GF F α = 0 SLE 4 h GF F

b σ SLEs ABP SLE ABP SLE SLEs SLE SLE(κ; ρ) SLEs SLE(κ; ρ) SLE(κ; ρ)

SLE(4)

SLE 4