f( ) + f( ) + f( ) + f( ). 4 γ) υπάρχει x 2 (0, 1), ώστε η εφαπτοµένη της γραφικής παράστασης της

Σχετικά έγγραφα
6 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 51.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

x x = e, x > 0 έχει ακριβώς δυο Γ4. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη γραφική

2011 ΘΕΜΑΤΑ ΘΕΜΑ Γ 1. Δίνεται η συνάρτηση f: δύο φορές παραγωγίσιμη στο, με f (0) = f(0) = 0, η οποία ικανοποιεί τη σχέση:

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017

7 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 61. Έστω συνάρτηση f παραγωγίσιµη στο R, τέτοια ώστε. (e + 1)dt = x 1

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ( ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

5o Επαναληπτικό Διαγώνισμα 2016

ΕΚΦΩΝΗΣΕΙΣ. οι f, g είναι συνεχείς στο και f (x) = g (x) για κάθε εσωτερικό σηµείο του, ÏÅÖÅ

1. ** Αν F είναι µια παράγουσα της f στο R, τότε να αποδείξετε ότι και η

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

Θ.Rolle Θ.Μ.T. Συνέπειες Θ.Μ.Τ

( ) ( ) ɶ = = α = + + = = z1 z2 = = Οπότε. Έχουµε. ii) γ) 1ος Τρόπος. Οπότε Ελάχιστη απόσταση είναι:

y = 2 x και y = 2 y 3 } ή

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α

Μαθηµατικά Θετικής & Τεχνολογικής Κατεύθυνσης Γ' Λυκείου 2001

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2011 ΕΚΦΩΝΗΣΕΙΣ

Γ1. Να μελετήσετε την f ως προς τη μονοτονία και να αποδείξετε ότι το σύνολο τιμών της είναι το διάστημα (0, + ).

Η f(x) y είναι συνεχής στο [0, 2α], σαν διαφορά των συνεχών f(x) και y = 8αx 8α 2

Θέματα Πανελλαδικών στις Παραγώγους. Εφαπτομένη

( x) β ], παρουσιάζει ελάχιστη τιµή α, δηλαδή υπάρχει. ξ µε g( ξ ) = 0. Το ξ είναι ρίζα της δοσµένης εξίσωσης.

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

ln 1. ( ) vii. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη C f, τον άξονα η οποία είναι συνεχής στο και για την οποία ισχύει

ΜΑΘΗΜΑ 47 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 3 η ΕΚΑ Α

********* Β ομάδα Κυρτότητα Σημεία καμπής*********

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÊÏÑÕÖÇ ÓÅÑÑÅÓ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 19 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1

Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης ΚΕΦΑΛΑΙΟ. 1 ο :Μιγαδικοί Αριθµοί

ΜΑΙΟΣ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ο 5 + i Α. Δίνεται ο μιγαδικός αριθμός z =. + i α) Να γράψετε τον z στη μορφή α + βi, α, β IR. Στην παρ

3o Επαναληπτικό Διαγώνισμα 2016

για κάθε x 0. , τότε f x στο Απάντηση είναι εσωτερικό σημείο του Δ και η f παρουσιάζει σ αυτό τοπικό μέγιστο, υπάρχει 0 τέτοιο, ώστε (x , ισχύει

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ).

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. lim = 0. Βλέπε σελίδα 171 σχολικού. σχολικού βιβλίου.

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 4. [ ] z, w. 3 f x, x 1,3 όπου 3 μιγαδικοί των οποίων οι εικόνες

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

(, ) ( x0, ), τότε να αποδείξετε ότι το. x, στο οποίο όμως η f είναι συνεχής. Αν f ( x) 0 στο

( ) ( ) lim f x lim g x. z-3i 2-18= z-3 2 w-i =Im(w)+1. x x x x

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 20 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Θέματα. Α1. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του x,

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Α ΜΕΡΟΣ

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Θέματα. Α1. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του x

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Β ΜΕΡΟΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2012 ΕΚΦΩΝΗΣΕΙΣ. β α

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

= R {x συν x = 0} ισχύει: 1 ( εφ x)' = συν

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. Β κύκλος

aμαθηματικα ΚΑΤΕΥΘΥΝΣΗΣ 2014

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΔΙΑΓΩΝΙΣΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2019 ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α

ΦΕΒΡΟΥΑΡΙΟΣ Ο συντελεστής διεύθυνσης της εφαπτοµένης της γραφικής παράστασης τη f(x) στο σηµείο x ο είναι f x ) (Μονάδες 4)

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ÏÅÖÅ. x και f ( x ) >, τότε f ( ) 0

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. σε µια σελίδα Α4 ανά έτος.. προσαρµοσµένα στις επιταγές του ΝΤ MΑΘΗΜΑΤΙΚΑ ΟΜΟΓΕΝΩΝ 05 ΣΕΠΤΕΜΒΡΙΟΥ

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

( ) f( x ) ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Επώνυμο: Όνομα: Τμήμα: Ημερομηνία: Α Βαθ. Β Βαθ. Μ.Ο. (ενδεικτικές λύσεις)

Ολοκληρώματα. Κώστας Γλυκός ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΟΣ. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

Διαγώνισμα (Μονάδες 2) β. Μια συνάρτηση f μπορεί να μην είναι συνεχής στα άκρα ακαι β αλλά να είναι συνεχής στο [ α, β ].

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ln x e οπότε lim x x lim lim = + lim = 0 1 x = 0. x 1 ) = = 1 (ln x) (x)

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

f(x 2) 5 x 1 α) Να αποδείξετε ότι: i) f (3) = 5 και ii) f (3) = 6 x 2 f(x)

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

x R, να δείξετε ότι: i)

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

1o. Θ Ε Μ Α Β Ε. Γ Κ Ο Ρ Α. βρίσκεται ολόκληρη μέσα στο τετράγωνο ΑΒΓΔ.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α. , έχει κατακόρυφη ασύμπτωτη την x 0.

Τελευταία Επανάληψη. την ευθεία x=1 και τoν x x. 2 1 x. Λύση. x 2 1 x 0, άρα. x 1 x. x x 1. γ) x 1 e x x 1 x e ln x 1 x f x.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

την αρχή των αξόνων και ύστερα να υπολογίσετε το εμβαδόν του

Α1. Θεωρία Σελίδες Σχολικού Βιβλίου ΜΑΘΗΜΑΤΙΚΑ Θετικής& Τεχνολογικής κατεύθυνσης Γ ΛΥΚΕΙΟΥ, ΕΚΔΟΣΗ 2014

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

ÏÑÏÓÇÌÏ ÇÑÁÊËÅÉÏ ( )( ) ( )( ) Γ' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. w w + 1= + 1. α= α.

Ασκήσεις Επανάληψης Γ Λυκείου

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2013 ΕΚΦΩΝΗΣΕΙΣ

g x είναι συνάρτηση 1 1 στο Ag = R αλλά δεν είναι γνησίως

Κεφάλαιο 2ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2019

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 3 Ιανουαρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ :3

Πες το με μία γραφική παράσταση

2o Επαναληπτικό Διαγώνισμα 2016

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:ΠΑΡΑΓΩΓΟΙ

ΜΑΘΗΜΑΤΙΚΑ - ΠΛΗΡΟΦΟΡΙΚΗ

Ερωτήσεις πολλαπλής επιλογής

Transcript:

ΘΕΜΑΤΑ. Η συνάρτηση f είναι παραγωγίσιµη στο κλειστό διάστηµα [, ] και ισχύει f () > για κάθε (, ). Αν f() και f(), να δείξετε ότι: α. η ευθεία y τέµνει τη γραφική παράσταση της f σ' ένα ακριβώς σηµείο µε τετµηµένη (, ). β) υπάρχει (, ), τέτοιο ώστε f( ) f( ) f( ) f( ) f( ). γ) υπάρχει (, ), ώστε η εφαπτοµένη της γραφικής παράστασης της f στο σηµείο Μ(, f( )) να είναι παράλληλη στην ευθεία y. α. Έστω g() f() g () f () () f () >, (, ). ΘΕΜΑ o Θετική Άρα η συνάρτηση g είναι γνησίως αύξουσα στο [, ], συνεπώς η εξίσωση g() έχει το πολύ µία ρίζα στο [, ] (). ος τρόπος µε Θεώρηµα Bolzano Η g είναι συνεχής ως άθροισµα συνεχών στο [, ]. g() f() g() f() g() g() <. Άρα εφαρµόζεται το Θεώρηµα Bolzano, εποµένως υπάρχει τουλάχιστον ένα (, ) ώστε g ( ) f( ) (). Άρα από () και () η ρίζα είναι µοναδική. ος τρόπος µε Θεώρηµα Ενδιαµέσων Τιµών Η f είναι συνεχής στο [, ]. f() < < f() Επειδή f() < < f() το είναι τιµή της συνάρτησης f, εποµένως από Θεώρηµα Ενδιαµέσων Τιµών υπάρχει τουλάχιστον ένα (, ) ώστε f( ) (). Άρα από () και () η ρίζα είναι µοναδική. β. Επειδή η συνάρτησης f είναι γνησίως αύξουσα στο [, ], έχουµε:

f < < f() < f( ) < f() f < < f() < f( ) < f() ( ) f < < f() < f( ) < f() f < < f() < f( ) < f() f() < f( ) f( ) f( ) f( ) < f() f() < < f() () f() < η < f() () ος τρόπος µε Θεώρηµα Bolzano Θεωρούµε τη συνάρτηση h() f() h(), [, ]. Η h είναι συνεχής στο [, ] ως διαφορά συνεχών συναρτήσεων h() δηλαδή h() h() <. 8 <, 6 >, Άρα εφαρµόζεται το Θεώρηµα Bolzano, εποµένως υπάρχει τουλάχιστον ένα (, ) ώστε h( ) f( ) f( ) f f f f. ος τρόπος µε Θεώρηµα Ενδιαµέσων Τιµών Επειδή f() < η < f() () το η είναι τιµή της συνάρτησης f, εποµένως από Θεώρηµα Ενδιαµέσων Τιµών υπάρχει τουλάχιστον ένα (, )

γ) Έχουµε ώστε f( ) η. Η f είναι συνεχής στο [, ] και Η f είναι παραγωγίσιµη στο (, ). Σύµφωνα µε το θεώρηµα µέσης τιµής υπάρχει ένα τουλάχιστον (, ) τέτοιο ώστε f ( ) f() f(). Η εφαπτοµένη της C f στο Μ έχει τον ίδιο συντελεστή διεύθυνσης µε την ευθεία y (τον αριθµό ) άρα είναι παράλληλες.. Τη χρονική στιγµή t χορηγείται σ έναν ασθενή ένα φάρµακο. Η συγκέντρωση του φαρµάκου στο αίµα του ασθενούς δίνεται από τη συνάρτηση f(t) αt t ( ) β, t, όπου α και β είναι σταθεροί θετικοί πραγµατικοί αριθµοί και ο χρόνος t µετράται σε ώρες. Η µέγιστη τιµή της συγκέντρωσης είναι ίση µε µονάδες και επιτυγχάνεται 6 ώρες µετά τη χορήγηση του φαρµάκου. α) Να βρείτε τις τιµές των σταθερών α και β. β) Με δεδοµένο ότι η δράση του φαρµάκου είναι αποτελεσµατική, όταν η τιµή της συγκέντρωσης είναι τουλάχιστον ίση µε µονάδες, να βρείτε το χρονικό διάστηµα που το φάρµακο δρα αποτελεσµατικά. ΘΕΜΑ o Θετική α) Για κάθε t έχουµε: f(t) βαt β t και f (t) β α ( t ) β t β (t) (β t ) t(β t ) α (β t ) β β t t α (β t ) β β t α (β t ). Επειδή η f παρουσιάζει ακρότατο στη θέση 6 το και είναι παραγωγίσιµη στο [, ) έχουµε f (6) και f(6). f (6) β 6 (β 6) β 6, αφού β θετικός αριθµός.

f(6) 6α 6 6α 6 6 β) Για α και β 6 έχουµε f(t) βαt β t α. 8t 6 t Η δράση του φαρµάκου είναι αποτελεσµατική, όταν 8t f(t) 6 t, t. t t 6 t [, ].. ίνεται η συνάρτηση f µε f() 8 6, < < α) Να βρεθούν τα f(), (α β ) ln( e) (α )e, f(). β) Να βρεθούν τα α, β, ώστε η συνάρτηση f να είναι συνεχής στο. γ) Για τις τιµές των α, β του ερωτήµατος β) να βρείτε το f(). α) έχουµε: f() ( 8 6) 6, f() [(α β ) ln( e) (α) e - ] ΘΕΜΑ o Τεχνολογική (α β ) ln( e) (α ) e - t e u (α β ) lnu (α ) e t (α β )lne (α )e α β α. u e t β) Η f είναι συνεχής στο αν και µόνο αν f() f() f() α β α α β α α β α (α ) β, επειδή οι αριθµοί (α ), β είναι µη αρνητικοί, έχουµε (α ) και β α - και β. γ) Για κάθε και για α -, β έχουµε f() ln( e). Άρα f() ln( e), αφού ( e).

. Φάρµακο χορηγείται σε ασθενή για πρώτη φορά. Έστω f(t) η συνάρτηση που περιγράφει τη συγκέντρωση του φαρµάκου στον οργανισµό του ασθενούς µετά από χρόνο t από τη χορήγησή του, όπου t. Αν ο ρυθµός µεταβολής της f(t) είναι α) Να βρείτε τη συνάρτηση f(t). 8 t : β) Σε ποια χρονική στιγµή t, µετά τη χορήγηση του φαρµάκου, η συγκέντρωσή του στον οργανισµό γίνεται µέγιστη; γ) Να δείξετε ότι κατά τη χρονική στιγµή t 8 υπάρχει ακόµα επίδραση του φαρµάκου στον οργανισµό, ενώ πριν τη χρονική στιγµή t η επίδρασή του στον οργανισµό έχει µηδενιστεί. ( ίνεται ότι ln,) α) Για κάθε t έχουµε f (t) 8 t όπου c πραγµατική σταθερά. ΘΕΜΑ o Τεχνολογική f (t) (8ln(t ) t) f(t) 8 ln(t ) t c, Επειδή τη χρονική στιγµή t δεν υπάρχει συγκέντρωση του φαρµάκου στον οργανισµό θα είναι f() 8ln( ) c c. Άρα f(t) 8ln(t ) t, t. β) Για κάθε t είναι f (t) f (t) t, 8 t - (t ), t οργανισµό γίνεται µέγιστη τη χρονική στιγµή t. f (t) > t [, ) και f f (t) < t >. f Άρα η f παρουσιάζει ολικό µέγιστο ο. µ. f() στη θέση το f(), εποµένως η συγκέντρωση του φαρµάκου στον γ) f(8) 8ln(8 ) 8 8(ln9 ) 8(ln ) 6(ln ) >, αφού > e ln > lne ln >. Άρα κατά τη χρονική στιγµή t 8 υπάρχει ακόµα επίδραση του φαρµάκου στον οργανισµό. f() 8ln( ) 8ln 8, -,8 <. Η συνάρτηση f είναι γνησίως φθίνουσα στο [8, ], άρα το σύνολο τιµών είναι f([8, ]) [f(), f(8)]. Η συνάρτηση f είναι συνεχής στο [8, ] f() < < f(8) f([8, ]), δηλαδή το ανήκει στο σύνολο τιµών

Άρα υπάρχει χρονική στιγµή t (8, ) τέτοια ώστε f(t ), εποµένως η επίδραση του φαρµάκου στον οργανισµό έχει µηδενιστεί πριν τη χρονική στιγµή t.. Έστω f: συνάρτηση συνεχής στο. Έστω J: η συνάρτηση µε J() [(f(t)) t f(t) t ] dt, για. Να αποδείξετε ότι η συνάρτηση J παρουσιάζει ελάχιστο στο σηµείο t f(t) dt. Για κάθε έχουµε J() (f(t)) dt t f(t) dt t dt και J () ( (f(t)) dt ) () ( t f(t) d t t dt ) t f(t) dt - t dt t t f(t) dt - t f(t) d t. Οπότε J () t f(t) dt, J () > > t f(t) dt και J () < < t f(t) dt. Άρα η συνάρτηση J παρουσιάζει ελάχιστο στο σηµείο t f(t) dt. 6. Έστω η συνάρτηση f: (, ), µε f() ln( ). Έστω c πραγµατικός µεγαλύτερος του. Έστω ότι η ευθεία µε εξίσωση y c και η γραφική παράσταση της f τέµνονται σε δύο διαφορετικά σηµεία του επιπέδου, τα Α και Β. Να αποδείξετε ότι οι εφαπτόµενες της γραφικής παράστασης της f, στα Α και Β, είναι κάθετες µεταξύ τους. Επειδή ln( ) > > >, ο τύπος της f χωρίς απόλυτη τιµή γράφεται f() ln( ), ln( ), < < Οι τετµηµένες των κοινών σηµείων της ευθείας y c και της C f βρίσκονται από τη λύση της εξίσωσης f() c ln( ) c

Έστω ln( ) c c> ln( ) c ή c (c ) ln( ) - (c ) e ή e. c e (c ) και e. Χωρίς βλάβη της γενικότητας έστω ότι Α(, f( )) και B(, f( )). Για να δείξουµε ότι οι εφαπτόµενες της C f στα Α και Β είναι κάθετες µεταξύ τους, αρκεί να δείξουµε ότι f ( ) f () -. Εποµένως Για > έχουµε f () Επειδή c > είναι c > έχουµε c e > >, και (c ) e < < <. και για < < έχουµε f () - f ( ) f ( ) c e ( (c) e ) c e (c ) e. - e -.. Έστω f, g:, είναι συναρτήσεις συνεχείς στο τέτοιες, ώστε να ισχύει f() g(), για. Έστω ότι η ευθεία µε εξίσωση y - είναι ασύµπτωτη της γραφικής παράστασης της f, καθώς. α) Να βρείτε τα όρια g() και g() ηµ f(). β) Να αποδείξετε ότι η ευθεία µε εξίσωση y είναι ασύµπτωτη της γραφικής παράστασης της g, καθώς. α) Επειδή η ευθεία µε εξίσωση y είναι ασύµπτωτη της γραφικής παράστασης της f, καθώς, έχουµε f() και (f() ) -. Από την f() g() g() f(), για, οπότε g() Άρα γατί f() g() ηµ f() ( f() ). g() ηµ (f() ) -,

ηµ και ηµ ηµ, αφού >, ηµ, άρα - ηµ, επειδή από κριτήριο παρεµβολής έχουµε β) Από α) έχουµε λ - -. g(). ηµ Επειδή β (g() ) (f() ) (f() ) Η ευθεία µε εξίσωση y, είναι ασύµπτωτη της γραφικής παράστασης της συνάρτησης g, καθώς.. 8. Θεωρούµε παραγωγίσιµη συνάρτηση f: f() ( ) f () e για κάθε, µε f(). α) Να αποδείξετε ότι f() e,. τέτοια ώστε: β) Να µελετήσετε ως προς τη µονοτονία τη συνάρτηση f. α) Για κάθε είναι f() ( ) f () e ( ) f() ( ) f () (e ) [( ) f()] (e ) ( ) f() e c (), όπου c πραγµατική σταθερά. Για έχουµε f() και η () γράφεται ( ) f() e c c c. Έτσι από την () έχουµε ότι ( ) f() e f() β) Για κάθε έχουµε f () (e ) ( ) e ( ) ( ) το ίσον να ισχύει µόνο για. Άρα η f είναι γνησίως αύξουσα στο. e( ) e ( ) e() ( ) e,., µε

9. Θεωρούµε συνάρτηση f συνεχή στο. α) Να αποδείξετε ότι f( ) d f() d. β) Έστω ότι f( ) d f() d. Να αποδείξετε ότι υπάρχει ένα τουλάχιστον ξ (, ) τέτοιο, ώστε f(ξ). α) Για το ολοκλήρωµα f( ) d, Θέτουµε u (u ) d du και έχουµε: Για u ενώ για u. Οπότε f( ) d f(u) du β) Η δοθείσα ισότητα λόγω του α) γράφεται f(u) du f() d. f() d f() d f() d. Θεωρούµε τη συνάρτηση g() f(u) du, [, ]. Η g είναι συνεχής στο [, ] (διαφορά συνεχών συναρτήσεων) Η g είναι παραγωγίσιµη στο (, ) (διαφορά παραγωγίσιµων συναρτήσεων) µε g () f(). g() f(u) du -, g() f(u) du 8 -, άρα g() g(). Σύµφωνα µε το θεώρηµα Rolle υπάρχει ένα τουλάχιστον ξ (, ) τέτοιο, ώστε g (ξ) f(ξ) f(ξ).. Θεωρούµε συνεχή συνάρτηση f: που ικανοποιεί την ισότητα: ( t ) f(t) dt 6 (t t) dt,. α) Να αποδείξετε ότι f(). β) Να βρείτε την εξίσωση της εφαπτοµένης της γραφικής παράστασης της f στο σηµείο της Α(, f()).

α) Η δοθείσα ισότητα γράφεται ( t ) f(t) dt ( t ) f(t) dt (6t 6t) dt t t ( t ) f(t) dt ( ) ( t ) f(t) dt (),. Παραγωγίζουµε τα δύο µέλη της () και έχουµε ( )f() f(),. β) Για κάθε έχουµε ( ) ( ) f () ( ) f () ενώ f(). ( ) Η εξίσωση της εφαπτοµένης είναι: y f() f ()( ) y. και. Θεωρούµε τη συνάρτηση f µε f(),. α) Να αποδείξετε ότι η εξίσωση f() f(y) µε, y, παριστάνει κύκλο και να βρείτε το κέντρο και την ακτίνα του. β) Να υπολογίσετε το εµβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση της f και τον άξονα. α) Η εξίσωση f() f(y) γράφεται, y y y y - 6 y y - 6 ( ) (y ), που είναι εξίσωση κύκλου µε κέντρο Κ(, ) και ακτίνα ρ. β) f() ή. Η f είναι συνεχής στο [, ] και f() για κάθε [, ], οπότε το εµβαδό είναι: E f() d - f() d - ( ) d - τ.µ.