03 _ Παράμετροι θέσης και διασποράς. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ.

Σχετικά έγγραφα
ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς )

i Σύνολα w = = = i v v i=

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. ν 1 + ν ν κ = v (1) Για τη σχετική συχνότητα ισχύουν οι ιδιότητες:

Κεφάλαιο 5. Οι δείκτες διασποράς

Εισαγωγή στη Στατιστική

Κεφάλαιο 5 Δείκτες Διασποράς

Εξαρτημένα δείγματα (εξαρτημένες μετρήσεις)

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ

Μ Ε Τ Ρ Α Δ Ι Α Σ Π Ο Ρ Α Σ.

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : ,

ν ν = 6. όταν είναι πραγµατικός αριθµός.

Θέμα Α. Θέμα Β. ~ 1/9 ~ Πέτρος Μάρκου. % σχεδιάζουμε το πολύγωνο αθροιστικών σχετικών συχνοτήτων τοις

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

Ποιο από τα δύο τµήµατα είχε καλύτερη επίδοση; επ. Κωνσταντίνος Π. Χρήστου

ΣΤΑΤΙΣΤΙΚΗ ΙΙ. Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΕΠΑ.Λ. Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ)

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w

ν ν = 6. όταν είναι πραγµατικός αριθµός.

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C

F x h F x f x h f x g x h g x h h h. lim lim lim f x

γ. Η διακύμανση είναι μέτρο διασποράς και είναι καθαρός αριθμός, δηλαδή δεν έχει μονάδες. Μονάδες 9

Ενότητα 3: Περιγραφική Στατιστική (Πίνακες & Αριθμητικά μέτρα)

Γ. Πειραματισμός - Βιομετρία

ΑΠΑΝΤΗΣΕΙΣ. 40. Ακόμα είναι. και F1 f και ακόμα Τέλος έχουμε F3 f1 f2 f3 F2 f. N i

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ

ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3.

Περιγραφική Στατιστική

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε.

Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη

Έστω 3 πενταμελείς ομάδες φοιτητών με βαθμολογίες: Ομάδα 1: 6,7,5,8,4 Ομάδα 2: 7,5,6,5,7 Ομάδα 3: 8,6,2,4,10 Παρατηρούμε ότι και οι τρεις πενταμελείς

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436

Μέτρα θέσης και διασποράς

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι

ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 2 Ο

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ

(f(x)+g(x)) =f (x)+g (x), x R

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 2ο: ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑ Α

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΜΕΤΡΑ ΚΕΝΤΡΙΚΗΣ ΤΑΣΗΣ

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η

Βιοστατιστική ΒΙΟ-309

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

Βιοστατιστική ΒΙΟ-309

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.

Έτος : Διάλεξη 2 η Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική

Αν Α και Β είναι δύο ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι: Αν Α Β τότε Ρ(Α) Ρ(Β)

ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ ΠΕΜΠΤΗ 26 ΑΠΡΙΛΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ : ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

09_Μη παραμετρικοί έλεγχοι υποθέσεων. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ.

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436

ΕΞΕΤΑΣΕΙΣ στο τέλος του εξαμήνου με ΑΝΟΙΧΤΑ βιβλία ΕΞΕΤΑΣΕΙΣ ο καθένας θα πρέπει να έχει το ΔΙΚΟ του βιβλίο ΔΕΝ θα μπορείτε να ανταλλάσετε βιβλία ή να

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

Θέμα: Ενδεικτικό Θέμα εξετάσεων: Μέτρα θέσης Παλινδρόμηση

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος.

Μάθηµα 3 ο. Περιγραφική Στατιστική

Ποιοτική & Ποσοτική Ανάλυση εδομένων Εβδομάδα 5 η 6 η

Βιοστατιστική ΒΙΟ-309

Κεφάλαιο Τέσσερα Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΑΡΤΗΣΕΙΣ ΓΝΗΣΙΩΣ ΑΥΞΟΥΣΑ ΣΥΝΑΡΤΗΣΗ ΓΝΗΣΙΩΣ ΦΘΙΝΟΥΣΑΣΥΝΑΡΤΗΣΗ ΤΟΠΙΚΟ ΜΕΓΙΣΤΟ ΤΟΠΙΚΟ ΕΛΑΧΙΣΤΟ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΚΕΦΑΛΑΙΟ. 1. α. Tι ονοµάζεται συνάρτηση από το σύνολο Α στο σύνολο Β; β. Tι ονοµάζεται πραγµατική συνάρτηση πραγµατικής µεταβλητής;

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

i μιας μεταβλητής Χ είναι αρνητικός αριθμός

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Πληθυσμός: Το συνόλου του οποίου τα στοιχεία εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά τους.

Στατιστική Ι. Μέτρα Διασποράς (measures of dispersion) Δρ. Δημήτρης Σωτηρόπουλος

Ελλιπή δεδομένα. Εδώ έχουμε Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

04_Κανονική Τυπική κατανομή εύρεση εμβαδού. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ.

ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ

f , Σύνολο 40 4) Να συμπληρώστε τον παρακάτω πίνακα f , , Σύνολο 5) Να συμπληρώστε τον παρακάτω πίνακα

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ TECHNOLOGICAL EDUCATIONAL INSTITUTE OF WESTERN GREECE

1) ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ - ΑΤΑΞΙΝΟΜΗΤΑ ΔΕΔΟΜΕΝΑ

Α. Έστω δύο σύνολα Α και Β. Ποιά διαδικασία ονομάζεται συνάρτηση με πεδίο ορισμού το Α και πεδίο τιμών το Β;

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

Δείκτες Κεντρικής Τάσης και Διασποράς. Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Δημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Γιατί μετράμε την διασπορά;

Ενότητα 2: Μέθοδοι δειγματοληψίας & Εισαγωγή στην Περιγραφική Στατιστική

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 4 Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής

Στατιστική Ι-Μέτρα Διασποράς

F(x h) F(x) (f(x h) g(x h)) (f(x) g(x)) F(x h) F(x) f(x h) f(x) g(x h) g(x) h h h. lim lim lim f (x) g (x). h h h

ΘΕΜΑ Α Α1. Αν και είναι δύο συμπληρωματικά ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι για τις πιθανότητές τους ισχύει: ( ) 1 ( ).

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι:

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Παράδειγμα. Χρονολογικά δεδομένα. Οι πωλήσεις μιας εταιρείας ανά έτος για το διάστημα (σε χιλιάδες $)

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΘΕΜΑΤΑ Α : ΕΚΦΩΝΗΣΕΙΣ - ΛΥΣΕΙΣ

Transcript:

6_Στατιστική στη Φυσική Αγωγή 03 _ Παράμετροι θέσης και διασποράς Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Παράμετροι θέσης όταν θέλουμε να εκφράσουμε μια μεταβλητή με έναν αριθμό π.χ. - αριθμητικός μέσος (μέση τιμή, μέσος όρος)

Παράμετροι διασποράς όταν θέλουμε να εκφράσουμε τη συμπεριφορά μιας μεταβλητής με έναν αριθμό δηλ. - πώς κατανέμεται, - πού υπάρχει μεγαλύτερη συγκέντρωση τιμών, - αν διαχέεται ομοιόμορφα - πόσο απλωμένες γύρω από τη μέση τιμή είναι οι τιμές της μεταβλητής π.χ. - διακύμανση - τυπική απόκλιση - συντελεστής μεταβλητότητας - εύρος μεταβολής 3 Παράμετροι θέσης Αριθμητικός μέσος. για μεμονωμένες τιμές (μιας μεταβλητής) όχι ομαδοποιημένες τιμές ούτε κατανομή συχνοτήτων... 3 Χ, Χ, Χ3,..., ΧΝ= μεμονωμένες τιμές Ν= αριθμός μεμονωμένων τιμών 4

π.χ. τιμές μεταβλητής 6,9,0,4, 6, 7... 3 6 9 0 4 6 7 7 6 6 5 Παράμετροι θέσης Αριθμητικός μέσος. για διακριτές μεταβλητές (κατανομή συχνοτήτων) η κάθε τιμή της διακριτής μεταβλητής εμφανίζεται πολλές φορές τιμές μεταβλητής συχνότητα εμφάνισης Χ Χ...... Χ Ν x 6 3

π.χ. α/α τιμή διακριτής μεταβλητής (x ) συχνότητα εμφάνισης ( ) 5 0 50 0 60 3 9 30 70 4 4 45 630 5 6 45 70 6 7 30 50 6 6 =6 0 x 340 x x x 340 3 0 7 Παράμετροι θέσης Αριθμητικός μέσος 3. για συνεχείς μεταβλητές τα δεδομένα εμφανίζονται με τη μορφή κατανομής συχνότητας κατά κλάσεις κλάσεις συχνότητα εμφάνισης α 0 -α α -α α -α 3 3...... x α - -α = εύρος κλάσης a a = κεντρική τιμή της κλάσης α - -α = συχνότητα εμφάνισης της κλάσης = αριθμός κλάσεων 4

π.χ α/α κλάσεις συχνότητες = κεντρική τιμή κλάσης 0-4 50 (4+0)/= 00 4-60 (+4)/=6 560 3-34 30 (34+)/=3 930 4 34-40 0 (40+34)/=37 740 5 40-46 40 (46+40)/=43 70 5 5 = 5 00 6050 x x 6050 00 30. 5 9 Παράμετροι διασποράς Διακύμανση Τυπική απόκλιση πώς κατανέμεται μια μεταβλητή γύρω από το μέσο όρο 0 5

απόκλιση της κάθε τιμής από το μέσο όρο; α/α Χ ι Χ ι -Χ 9 9-6= 3-6= 3-6= 4 7 7-6= 5 5 5-6= - 6 5 5-6= - 7 4 4-6= - -6= -4 Ν= 4 ( ) 0 4 6 Επειδή πάντα ( ) 0 γι αυτό υψώνουμε τις αποκλίσεις στο τετράγωνο και μετά αθροίζουμε Διακύμανση= μέσος όρος των τετραγώνων των αποκλίσεων της κάθε τιμής (Χι) από το μέσο όρο (Χ) 6

Παράμετροι διασποράς Διακύμανση. για μεμονωμένες τιμές (μιας μεταβλητής) όχι ομαδοποιημένες τιμές ούτε κατανομή συχνοτήτων Διακύμανση= ( ) 3 ( ) 4 6 α/α ( ) ( ) 9 9-6= 3 (3) =9-6= () =4 3-6= () =4 4 7 7-6= () = 5 5 5-6= - (-) = 6 5 5-6= - (-) = 7 4 4-6= - (-) =4-6= -4 (-4) =6 Ν= 4 ( ) 0 ( ) 40 Διακύμανση= ( ) 40 5 4 7

τυπική απόκλιση= τετραγωνική ρίζα διακύμανσης ( ) ίδιες μονάδες μέτρησης όπως και οι παρατηρήσεις π.χ. ( ) 40 Διακύμανση= 5 Τυπική απόκλιση= 5 3. 5 Παράμετροι διασποράς Διακύμανση Τυπική απόκλιση. για διακριτές μεταβλητές (κατανομή συχνοτήτων) η κάθε τιμή της διακριτής μεταβλητής εμφανίζεται πολλές φορές Διακύμανση= ( ) = άθροισμα συχνοτήτων εμφάνισης διακριτών τιμών Τυπική απόκλιση= ( ) 6

( ) x x α/α ( ) ( ) ( ) 5 0 50 5-3= - 64 640 0 60-3= -5 5 500 3 9 30 70 9-3= -4 6 40 4 4 45 630 4-3= 45 5 6 45 70 70 6-3= 3 9 405 6 7 30 50 7-3= 4 6 40 0 340 550 340 0 3 ( ) 550 0 4. 7 ( ) 4. 7 3. 76 7 Παράμετροι διασποράς Διακύμανση Τυπική απόκλιση 3. για συνεχείς μεταβλητές τα δεδομένα εμφανίζονται με τη μορφή κατανομής συχνότητας κατά κλάσεις Διακύμανση= Τυπική απόκλιση= ( ) o ( ) o o = κεντρική τιμή της κλάσης α - -α 9

( ) o α/α κλάση o o ( ) ( ) ( ) o o o 0-4 50 00 -,5 6,065 3403,5 4-60 6 560-4,5,065 03,75 3-34 30 3 930 0,75 0,565 6,75 4 34-40 0 37 740 6,75 45,565 9,5 5 40-46 40 43 70,75 6,565 650,5 00 6050 97,5 x o 6050 00 30. 5 Διακύμανση= ( ) o 97. 5 59. 59 00. Τυπική απόκλιση= ( ) o 59. 59 7. 7 9 Διακύμανση και τυπική απόκλιση δείγματος. για μεμονωμένες τιμές (μιας μεταβλητής) s ( ) ( ) s. για συχνότητες s ( ) ( ) s 0 0

Συντελεστής μεταβλητότητας σύγκριση δύο κατανομών (δειγμάτων) ως προς την ομοιογένειά τους ποιο είναι το ποιο ομοιογενές δείγμα; (δηλ. το δείγμα με τη μικρότερη διασπορά) όταν οι τιμές εκφράζονται σε διαφορετικές (ή ίδιες τιμές) CV ( x) σ= τυπική απόκλιση πληθυσμού μ= μέσος όρος πληθυσμού CV ( x) s s= τυπική απόκλιση δείγματος = μέσος όρος δείγματος CV ( x) s μικρός συντελεστής μεταβλητότητας μικρή διασπορά μεγάλη ομοιογένεια

ο δείγμα: 0 s 0 s CV ( x ) 0. 0 066 ο δείγμα: 0 s 0 s CV ( x ) 0. 0 0 03 το ο δέιγμα είναι πιο ομοιογενές (0.03 < 0.66) 3 4