Φροντιστήριο #4 Λυμένες Ασκήσεις σε Σχέσεις 30/03/2017

Σχετικά έγγραφα
Φροντιστήριο #4 Λυμένες Ασκήσεις σε Σχέσεις 07/04/2016

Φροντιστήριο #5 Λυμένες Ασκήσεις σε Σχέσεις 22/3/2018

a. a + b = 3. b. a διαιρεί τ ο b. c. a - b = 0. d. ΜΚΔ(a, b) = 1. e. ΕΚΠ(a, b) = 6.

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2016 Λύσεις ασκήσεων προόδου

Υπολογιστικά & Διακριτά Μαθηματικά

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2019 Λύσεις ασκήσεων προόδου

Φροντιστήριο #5 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 23/04/2015

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2018 Λύσεις ασκήσεων προόδου

Πέμπτη 8 εκεμβρίου 2016 Θεόδωρος Τζουραμάνης Επίκουρος Καθηγητής. ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων

LÔseic Ask sewn sta Jemèlia twn Majhmatik n I

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων

Θεωρία Υπολογισμού και Πολυπλοκότητα

Φροντιστήριο #9 Ασκήσεις σε Γράφους 18/5/2018

(ii) X P(X). (iii) X X. (iii) = (i):

Φροντιστήριο #8 Ασκήσεις σε Γράφους 24/5/2016

(β ) ((X c Y ) (X c Y c )) c

Φροντιστήριο #8 Ασκήσεις σε Γράφους 16/5/2017

Τι είναι σύνολο; Ο ορισμός αυτός είναι σύμφωνος με τη διαισθητική μας κατανόηση για το τι είναι σύνολο

Σύνολα, Σχέσεις, Συναρτήσεις

Φροντιστήριο #5 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 14/4/2016

Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος

HY118-Διακριτά Μαθηματικά

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 14 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα.

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2017 Τελική Εξέταση Ιουνίου - Τετάρτη, 14/06/2017 ΛΥΣΕΙΣ

ιµελής σχέση HY118- ιακριτά Μαθηµατικά n-µελείς σχέσεις Σχέσεις 13 - Σχέσεις

( ( )) ( 3 1) 2( 3 1)

Εφαρμοσμένα Μαθηματικά ΙΙ 1ο Σετ Ασκήσεων (Λύσεις) Διανύσματα, Ευθείες Επίπεδα, Επιφάνειες 2ου βαθμού Επιμέλεια: Ι. Λυχναρόπουλος

bca = e. H 1j = G 2 H 5j = {f G j : f(0) = 1}

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 7: Σχέσεις και Συναρτήσεις

HY118- ιακριτά Μαθηµατικά


HY118- ιακριτά Μαθηµατικά

of Mathematics των I.Stewart και D.Tall, Oxford University Press.

of Mathematics των I.Stewart και D.Tall, Oxford University Press.

Α Δ Ι. Παρασκευή 25 Οκτωβρίου Ασκηση 1. Στο σύνολο των πραγματικών αριθμών R ορίζουμε μια σχέση R R R ως εξής:

Φροντιστήριο #9 Λυμένες Ασκήσεις σε Γράφους


Ισοδυναµίες, Μερικές ιατάξεις

Μερικές διατάξεις. HY118- ιακριτά Μαθηµατικά. Μερικές διατάξεις, παράδειγµα. ιαγράµµατα Hasse: Αναπαράσταση σχέσεων µερικής διάταξης

βαθμού 1 με A 2. Υπολογίστε τα χαρακτηριστικά και ελάχιστα πολυώνυμα των

HY118- ιακριτά Μαθηµατικά. Σχέσεις. Σχέσεις ισοδυναµίας. 15 Σχέσεις

Α Δ Ι. Παρασκευή 15 Νοεμβρίου Ασκηση 1. Να ευρεθεί η τάξη τού στοιχείου a τής ομάδας (G, ), όπου. (4) a = ( 1 + i 3)/2, (G, ) = (C, ),

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

Ορισμένες σελίδες του βιβλίου

ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 3/ΣΕΜΦΕ/ y x= ( ) ( ) .( ) , τότε

x y z d e f g h k = 0 a b c d e f g h k

, για κάθε n N. και P είναι αριθμήσιμα.

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

b. Για κάθε θετικό ακέραιο m και για κάθε A. , υπάρχουν άπειρα το πλήθος πολυώνυμα ( x) [ x] m και ( A) 0.

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2018 Τελική Εξέταση Ιουνίου Λύσεις

i) Για να δείξουμε την επιθυμητή ισότητα, δείχνουμε πως A B {A x : x B} και πως {A x : x B} A B. Για τον πρώτο εγκλεισμό, έστω a A B, δηλάδη a A και a

Φροντιστήριο #6 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 4/4/2019

Σύνοψη Προηγούµενου. Ισοδυναµίες, Μερικές ιατάξεις. Σχέσεις Ισοδυναµίας. Σχέσεις, Ιδιότητες, Αναπαράσταση. Ανακλαστικές (a, a) R

x < A y f(x) < B f(y).

Ασκήσεις1 Πολυώνυμα. x x c. με το. b. Να βρεθούν όλες οι τιμές των a, Να βρεθεί ο μκδ και το εκπ τους

Κεφάλαιο 4 Διανυσματικοί Χώροι

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (2) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

2. Να γράψετε έναν αριθμό που είναι μεγαλύτερος από το 3,456 και μικρότερος από το 3,457.

β) 3 n < n!, n > 6 i i! = (n + 1)! 1, n 1 i=1

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

Κεφάλαιο 4 Διανυσματικοί Χώροι

ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο

ΜΑΣ121: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ I Εαρινό εξάμηνο , Διδάσκων: Γιώργος Γεωργίου ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ, Διάρκεια: 2 ώρες 18 Νοεμβρίου, 2017

A, και εξετάστε αν είναι διαγωνίσιμη.

HY118- ιακριτά Μαθηµατικά. Σχέσεις. Την προηγούµενη φορά. Αντισυµµετρικότητα. 13 Σχέσεις

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων


HY118- ιακριτά Μαθηµατικά. Σχέσεις. Κλάσεις ισοδυναµίας. Σχέσεις ισοδυναµίας. 15 -Σχέσεις

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο η Σειρά Ασκήσεων - Λύσεις

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 20 Οκτωβρίου 2008

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης

Επαναληπτικές Ασκήσεις στα Σύνολα

Δύο λόγια από τη συγγραφέα

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο

HY118-Διακριτά Μαθηματικά

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

Κεφάλαιο 2 Πίνακες - Ορίζουσες

, , 2. A a και το στοιχείο της i γραμμής και j

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ

Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 22 Φεβρουαρίου 2014

Εφαρμοσμένα Μαθηματικά ΙΙ 7ο Σετ Ασκήσεων (Λύσεις) Ορίζουσες Επιμέλεια: Ι. Λυχναρόπουλος

Εφαρμοσμένη Κρυπτογραφία Ι

Αλγεβρικές Δομές Ι. 1 Ομάδα I

Περιεχόμενα. Πρόλογος 3

HY118-Διακριτά Μαθηματικά

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3

HY118- ιακριτά Μαθηµατικά

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

Άλγεβρα Α Λυκείου Κεφάλαιο 2ο. οι πράξεις και οι ιδιότητές τους

Transcript:

Φροντιστήριο #4 Λυμένες Ασκήσεις σε Σχέσεις 30/03/2017 Άσκηση Φ4.1: Θεωρείστε τις ακόλουθες σχέσεις επί του συνόλου Α={1, 2, 3} 1. R={(1, 1), (1, 2), (1, 3), (3, 3)} 2. S={(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)} 3. T={(1, 1), (1, 2), (2, 1), (2, 2), (2, 3)} 4. ΑxA Προσδιορίστε το κατά πόσον κάθε μία από τις παραπάνω σχέσεις είναι (α) ανακλαστική, (β) συμμετρική, (γ) μεταβατική και (δ) αντισυμμετρική. 1. Η R δεν είναι ανακλαστική αφού το 2ЄΑ αλλά το (2, 2) δεν ανήκει στη σχέση. Η R δεν είναι συμμετρική γιατί το (1, 2) ανήκει στη σχέση αλλά όχι το (2, 1). Η R είναι και μεταβατική και αντισυμμετρική. 2. Η S είναι ανακλαστική, συμμετρική και μεταβατική. Αντισυμμετρική δεν είναι γιατί ενώ 1 2, το (1, 2) και το (2, 1) ανήκουν στην S. 3. H T δεν είναι ανακλαστική αφού το 3 Є Α αλλά το (3, 3) δεν ανήκει στη σχέση. Η Τ δεν είναι συμμετρική γιατί το (2, 3) ανήκει στη σχέση αλλά το (3, 2) όχι. Η Τ δεν είναι μεταβατική γιατί το (1, 2) και το (2, 3) ανήκουν στη σχέση αλλά το (1, 3) όχι. Αντισυμμετρική δεν είναι γιατί ενώ 1 2, το (1, 2) και το (2, 1) ανήκουν στην S. 4. Το καρτεσιανό γινόμενο έχει όλες τις ιδιότητες, εκτός από την αντισυμμετρική. Άσκηση Φ4.2: Έστω το σύνολο A={1,2,3,4}. Βρείτε παραδείγματα σχέσεων R 1 έως R 8 που να έχουν ιδιότητες όπως αυτές φαίνονται παρακάτω. Σχέση Ανακλαστική Συμμετρική Μεταβατική R 1 NAI NAI NAI R 2 NAI NAI OXI R 3 NAI OXI NAI R 4 NAI OXI OXI R 5 OXI NAI NAI R 6 OXI NAI OXI R 7 OXI OXI NAI R 8 OXI OXI OXI R1 = {(1,2),(2,1),(1,1),(2,2),(3,3), (4,4) } R2 = {(1,2),(2,3),(1,4),(2,1),(3,2),(4,1),(1,1),(2,2),(3,3),(4,4)} H R2 δεν είναι μεταβατική μια και C 3,2C C R2, C 2,1C C R2 C C C C C C C 3,1C C R2

R3 = {(1,2),(3,4),(1,1),(2,2),(3,3),(4,4)} H R3 δεν είναι συμμετρική μια και C 1,2C C R3 C C C C C C 2,1C C R3 R4 = {(1,2),(2,3),(3,4),(1,1),(2,2),(3,3),(4,4)} H R4 δεν είναι συμμετρική: C 1,2C C R4 C C C C C 2,1C C R4 ούτε μεταβατική: C 1,2C C R4 C C C C C 2,3C C R4 C C C C C C 1,3C C R4 R5 = {(1,2),(2,3),(2,1),(3,2),(1,1),(2,2),(1,3),(3,1),(3,3)} Η R5 δεν είναι ανακλαστική : C 4,4C C R5 R6 = {(1,2),(2,3),(3,4),(2,1),(3,2),(4,3)} Δεν είναι ανακλαστική μια και C C 1,1C C R6, ούτε μεταβατική: C 1,2C C R6 C C C C C 2,3C C R6 C C C C C C 1,3C C R6 R7 = {(1,2),(2,3),(1,4),(1,3)} Δεν είναι ανακλαστική: C 1,1C C R7 ούτε συμμετρική: C 1,2C C R7 C C C C C C 2,1C C R7 R8 = {(1,2),(2,3),(1,4)} Δεν είναι ανακλαστική: C C 1,1C C R8 Δεν είναι συμμετρική: C 1,2C C R8 C C C C C C 2,1C C R8, Ούτε μεταβατική: C 1,2C C R8 C C C C C C 2,3C C R8 αλλά C 1,3C C R8 Άσκηση Φ4.3 Για καθεμία από τις παρακάτω σχέσεις επί του συνόλου {1,2,3,4} να αποφασίσετε αν είναι ανακλαστικές, συμμετρικές, αντισυμμετρικές και μεταβατικές. a. {(2,2),(2,3),(2,4),(3,2),(3,3),(3,4)} b. {(1,1),(1,2),(2,1),(2,2),(3,3),(4,4)} c. {(2,4),(4,2)} d. {(1,2),(2,3),(3,4)} e. {(1,1),(2,2),(3,3),(4,4)} f. {(1,3),(1,4),(2,3),(2,4),(3,1),(3,4)} Παρατήρηση: Σε όλες τις παρακάτω αρνητικές απαντήσεις, αναφέρεται ένας μόνο λόγος για τον οποίο η σχέση δεν έχει την αντίστοιχη ιδιότητα. Προσέξτε ότι μπορεί να υπάρχουν και άλλοι λόγοι ωστόσο ένας φτάνει! a. Ανακλαστική: Όχι -λείπει (1,1) Συμμετρική: Όχι -λείπει (4,2) Αντισυμμετρική: Όχι - έχει (2,3) και (3,2) αλλά το 2 δεν είναι ίσο με το 3. Μεταβατική: Ναι b. Ανακλαστική: Ναι Συμμετρική: Ναι Αντισυμμετρική: Όχι - έχει (1,2) και (2,1) αλλά το 1 δεν είναι ίσο με το 2. Μεταβατική: Ναι c. Ανακλαστική: Όχι λείπει (1,1)... Συμμετρική: Ναι Αντισυμμετρική: Όχι -έχει (2,4) και (4,2) αλλά το 2 δεν είναι ίσο με το 4. Μεταβατική: Όχι λείπει (2,2)

d. Ανακλαστική: Όχι -λείπει (1,1) Συμμετρική: Όχι -λείπει (4,1) Αντισυμμετρική: Ναι Μεταβατική: Όχι λείπει (1,4) e. Ανακλαστική: Ναι Συμμετρική: Ναι Αντισυμμετρική: Ναι Μεταβατική: Ναι f. Ανακλαστική: Όχι λείπει (1,1)... Συμμετρική: Όχι -λείπει (4,1) Αντισυμμετρική: Όχι -έχει (1,3) και (3,1) αλλά το 1 δεν είναι ίσο με το 3. Μεταβατική: Όχι λείπει (2,1)... Άσκηση Φ4.4: Έστω μία σχέση R που ορίζεται στο σύνολο των ακεραίων ως εξής: xry = {(x-y) mod 5 = 0}. Απαντήστε τις παρακάτω ερωτήσεις δικαιολογώντας την απάντησή σας. (1) Είναι η R ανακλαστική; (2) Είναι η R μη-ανακλαστική; (3) Είναι η R συμμετρική; (4) Είναι η R ασύμμετρη; (5) Είναι η R αντισυμμετρική; (6) Είναι η R μεταβατική; (7) Είναι η R σχέση ισοδυναμίας; (8) Είναι η R σχέση μερικής διάταξης; (1) Είναι ανακλαστική, γιατί για κάθε ακέραιο, x-x=0 το οποίο διαιρείται χωρίς υπόλοιπο από το 5. (2) Δεν είναι μη-ανακλαστική εφόσον είναι ανακλαστική. (3) Είναι συμμετρική, γιατί xry => x-y mod 5 = 0 => -(x-y) mod 5 = 0 => y-x mod 5 = 0 => yrx (4) Δεν είναι ασύμμετρη, εφόσον είναι συμμετρική. (5) Δεν είναι αντισυμμετρική εφόσον πχ 10 R 5 και 5 R 10 αλλά 10 5. (6) Είναι μεταβατική, γιατί xry => x-y mod 5 = 0 => x-y = 5k για κάποιο ακέραιο k (a) yrz => y-z mod 5 = 0 => y-z = 5l για κάποιο ακέραιο l (b) Με πρόσθεση κατά μέλη των (a) και (b) έχουμε ότι x-z = 5(k+l) πράγμα που σημαίνει ότι xrz. (7) Είναι σχέση ισοδυναμίας αφού είναι ανακλαστική, συμμετρική, μεταβατική. (8) Δεν είναι σχέση μερικής διάταξης αφού δεν έχει την αντισυμμετρική ιδιότητα.

Άσκηση Φ4.5: Αναφέρετε κατά πόσον η σχέση καθετότητας ευθειών στο επίπεδο (δύο ευθείες λ 1 και λ 2 σχετίζονται με τη σχέση καθετότητας εάν η λ 1 είναι κάθετη στη λ 2) είναι (i) ανακλαστική, (ii) συμμετρική, (iii) μεταβατική και (iv) αντισυμμετρική. Δικαιολογείστε τις απαντήσεις σας. (i) Δεν είναι ανακλαστική: Μία ευθεία δεν είναι κάθετη στον εαυτό της. (ii) Eίναι συμμετρική: Aν μία ευθεία λ 1 είναι κάθετη σε μία ευθεία λ 2 τότε και η λ 2 είναι κάθετη στη λ 1. (iii) Δεν είναι αντισυμμετρική: Αν λ 1 λ 2 και λ 2 λ 1, ασφαλώς οι λ 1 και λ 2 δεν ταυτίζονται. (iv) Δεν είναι μεταβατική: Αν λ 1 λ 2 και λ 2 λ 3, τότε δεν ισχύει ότι λ 1 λ 3. Άσκηση Φ4.6: Έστω η διμελής σχέση Ɍ που ορίζεται επί του συνόλου των σημείων του επιπέδου ως εξής: Δύο σημεία p 1 και p 2 σχετίζονται μέσω της σχέσης Ɍ αν και μόνο αν η ευθεία που τα ενώνει περνάει από την αρχή των αξόνων (το σημείο (0,0)). Είναι η σχέση Ɍ σχέση ισοδυναμίας; Δικαιολογείστε την απάντησή σας. Η R είναι ανακλαστική γιατί υπάρχει ευθεία που περνάει από το ζεύγος σημείων p1 και Ο(0,0) Η R είναι συμμετρική γιατί αν το ζεύγος σημείων (p1,p2) είναι σημεία μιας ευθείας που περνά από το Ο, τότε το ζεύγος σημείων (p2,p1) είναι σημεία της ίδιας ευθείας που περνά από το Ο Η R είναι μεταβατική γιατί αν το ζεύγος σημείων (p1,p2) ορίζει μία ευθεία που περνάει από το (0,0) και το ζεύγος σημείων (p2,p3) ορίζει μία ευθεία που περνάει από το (0,0), οι ευθείες αυτές ταυτίζονται άρα και τα σημεία (p1,p3) βρίσκονται σε μία ευθεία που περνά από το (0,0). Άρα η R είναι σχέση ισοδυναμίας. Άσκηση Φ4.7: Έστω Α το σύνολο των ακεραίων εκτός του μηδενός, και έστω η σχέση στο AxA που ορίζεται ως: (a, b) (c, d) αν και μόνο αν ad=bc. Αποδείξτε ότι η σχέση είναι σχέση ισοδυναμίας. Πρέπει να δείξουμε ότι η σχέση είναι ανακλαστική, συμμετρική και μεταβατική. Ι) Ανακλαστική: (a, b) (a, b) αφού ab=ba. Άρα η είναι ανακλαστική. ΙΙ) Συμμετρική: Έστω ότι (a, b) (c, d). Τότε ad=bc, από όπου προκύπτει ότι cb=da και επομένως (c, d) (a, b). Επομένως η είναι συμμετρική. ΙΙΙ) Μεταβατική: Έστω ότι (a, b) (c, d) και (c, d) (e, f). Τότε ad=bc και cf=de. Πολλαπλασιάζοντας κατά μέλη τις ισότητες, adcf=bcde. Απλοποιώντας τα c, d (αφού είναι 0) προκύπτει af=be, δηλαδή (a, b) (e, f). Άρα η είναι και μεταβατική. Άρα η είναι σχέση ισοδυναμίας. Άσκηση Φ4.8: Υποθέστε ότι C1 και C2 είναι δύο σχέσεις σε ένα σύνολο Α, και Τ η τομή των C1 και C2. Αποδείξτε ότι:

(α) Εάν οι C1 και C2 είναι συμμετρικές, τότε και η T είναι συμμετρική. (β) Εάν οι C1 και C2 είναι μεταβατικές, τότε και η T είναι μεταβατική. (α) Υποθέστε ότι (α, β)є Τ. Τότε (α, β) Є C1 και (α, β) Є C2. Αφού η C1 είναι συμμετρική, (β, α) Є C1. Αφού η C1 είναι συμμετρική, (β, α) Є C2. Άρα (β, α) Є Τ. Άρα η Τ είναι συμμετρική. (β) Υποθέστε ότι (α, β) Є Τ και (β, γ) Τ. Τότε (α, β) Є C1 και (β, γ) Є C1. Αφού η C1 είναι μεταβατική, (α, γ) Є C1. Επίσης, (α, β) Є C2 και (β, γ) Є C2. Αφού η C2 είναι μεταβατική, (α, γ) Є C2. Άρα (α, γ) Є Τ. Άρα η Τ είναι μεταβατική. Άσκηση Φ4.9: Έστω R και S σχέσεις σε ένα σύνολο Α. Υποθέτοντας ότι το Α έχει τουλάχιστον τρία στοιχεία, αναφέρετε κατά πόσον καθεμία από τις ακόλουθες προτάσεις είναι αληθής ή ψευδής. Εάν είναι ψευδής, δώστε ένα αντιπαράδειγμα στο σύνολο Α={1, 2, 3}. 1. Εάν η R και η S είναι συμμετρικές, τότε η R S είναι συμμετρική. 2. Εάν η R και η S είναι ανακλαστικές, τότε η R S είναι ανακλαστική. 3. Εάν η R και η S είναι ανακλαστικές, τότε η R S είναι ανακλαστική. 4. Εάν η R και η S είναι μεταβατικές, τότε η R S είναι μεταβατική. 5. Εάν η R και η S είναι αντισυμμετρικές, τότε η R S είναι αντισυμμετρική. 6. Εάν η R είναι ανακλαστική, τότε η R R -1 είναι μη-κενή. 1, 2, 3, 6 - αληθείς. 4 ψευδής: R={(1, 2)}, S={(2, 3)} μεταβατικές. Η ένωσή τους όμως όχι. 5 = ψευδής: R={(1, 2)}, S={(2, 1)} αντισυμμετρικές. Η ένωσή τους όμως όχι. Άσκηση Φ4.10: Έστω R η ακόλουθη σχέση ισοδυναμίας στο σύνολο Α={1, 2, 3, 4, 5, 6}: R={(1,1), (1,5), (2,2), (2,3), (2,6), (3,2), (3,3), (3,6), (4,4), (5,1), (5,5), (6,2), (6,3), (6,6)} Να βρεθούν οι κλάσεις ισοδυναμίας που συνεπάγεται η R. Οι κλάσεις ισοδυναμίας είναι οι {1, 5}, {2, 3, 6} και {4}. Άσκηση Φ4.11: Κάποιος χρησιμοποιεί το παρακάτω σκεπτικό για να ισχυριστεί ότι η απαίτηση της ανακλαστικότητας για μια σχέση ισοδυναμίας είναι περιττή. Πιο συγκεκριμένα, ισχυρίζεται πως αν μια σχέση είναι συμμετρική και μεταβατική, πρέπει υποχρεωτικά να είναι και ανακλαστική. Συμφωνείτε; Απόδειξη: Έστω R σχέση ορισμένη στο Α για την οποία υποθέτουμε πως είναι συμμετρική και μεταβατική. Για τυχαία x, y στο Α, αν xry τότε yrx λόγω της συμμετρικότητας της R. Αλλά τότε λόγω της μεταβατικότητας, ισχύει επίσης ότι xrx. Επομένως η R είναι ανακλαστική.

Η παραπάνω απόδειξη μας λέει ότι όντως, αν κάποιο στοιχείο σχετίζεται με κάποιο άλλο, τότε αναγκαστικά (λόγω συμμετρικότητας και μεταβατικότητας) θα σχετίζεται με τον εαυτό του. Ωστόσο, δεν εξασφαλίζει ότι κάθε στοιχείο του Α επί του οποίου είναι ορισμένη η σχέση σχετίζεται με τον εαυτό του (πχ τα στοιχεία που δεν σχετίζονται με άλλα). Επομένως, δεν εξασφαλίζει ότι η ισχύς της συμμετρικής και της μεταβατικής ιδιότητας οδηγούν στην ισχύ της ανακλαστικής ιδιότητας. Άσκηση Φ4.12: Έστω R μία σχέση επί του συνόλου Α={a, b, c, d} τέτοια ώστε R={(a,a), (a,c), (a,d), (b,a), (b,b), (b,c), (b,d), (c,b), (c,c), (d,b), (d,d)}. Απαντήστε τα παρακάτω ερωτήματα δικαιολογώντας την απάντησή σας. 1. Είναι η R μη-ανακλαστική; 2. Είναι η R συμμετρική; 3. Είναι η R ασύμμετρη; 4. Είναι η R αντισυμμετρική; 5. Είναι η R μεταβατική; 1. ΌΧΙ, γιατί τα (a,a), (b,b), (c,c), (d,d) ανήκουν στη σχέση 2. ΌΧΙ, γιατι δεν ανήκουν στη σχέση τα (c,a), (d,a), (a,b) που χρειάζονται για να θεωρηθεί συμμετρική 3. ΌΧΙ, γιατί τα (b,c), (c,b) και τα (b,d), (d,b) ανήκουν στη σχέση 4. ΌΧΙ, γιατί ενώ b c, τα (b,c), (c,b) ανήκουν στη σχέση 5. ΌΧΙ, γιατί τα (a,c), (c,b) ανήκουν στη σχέση ενώ το (a,b) δεν ανήκει Άσκηση Φ4.13: Έστω R μία σχέση επί του συνόλου Α={1,2,3,4} τέτοια ώστε R={(1,1), (1,4), (2,3), (3,1), (3,3), (4,4)}. Βρέστε 1. Τη συμμετρική κλειστότητα της R. 2. Τη μεταβατική κλειστότητα της R. 1. Για να αποκτήσει η σχέση R τη συμμετρική ιδιότητα πρέπει να προσθέσω τα στοιχεία (4,1), (3,2), (1,3). Επομένως η συμμετρική κλειστότητα της R είναι: R = {(1,1), (1,3), (1,4), (2,3), (3,1), (3,2), (3,3), (4,1), (4,4)} 2. Για να αποκτήσει η σχέση R τη μεταβατική ιδιότητα πρέπει να προσθέσω τα στοιχεία (2,1), (3,4), (2,4). Επομένως η μεταβατική κλειστότητα της R είναι: R = {(1,1), (1,4), (2,1), (2,3), (3,1), (3,3), (2,4), (3,4), (4,4)} Άσκηση Φ4.14: Πόσες συμμετρικές σχέσεις μπορούν να οριστούν επί ενός συνόλου Α αν Α =n; Η αναπαράσταση μίας συμμετρικής σχέσης μέσω πίνακα έχει τα εξής χαρακτηριστικά: Τα n στοιχεία της διαγωνίου μπορεί να έχουν οποιαδήποτε τιμή (0 ή 1) Τα ( )/2=( 1)/2 στοιχεία κάτω από τη διαγώνιο μπορεί να είναι οτιδήποτε. Τα ( )/2=( 1)/2 στοιχεία πάνω από τη διαγώνιο πρέπει να είναι ότι και τα

συμμετρικά τους στον πίνακα ως προς τη διαγώνιο. Επομένως, το πλήθος των συμμετρικών σχέσεων είναι 2 () =2 () Άσκηση Φ4.15: Έστω ένα σύνολο A={1,2,3,4,5}, οι σχέσεις Ɍ={(1,2),(2,3)} και S={(1,2),(2,3),(3,4),(4,1)} Υπολογίστε: (α) Tις R -1 και S -1 (β) Την ανακλαστική, συμμετρική και μεταβατική κλειστότητα της Ɍ (γ) Την ανακλαστική, συμμετρική και μεταβατική κλειστότητα της S R -1 = {(2,1),(3,2)} S -1 = {(2,1),(3,2),(4,3),(1,4)} Ανακλαστική κλειστότητα της R = {(1,2),(2,3),(1,1),(2,2),(3,3),(4,4),(5,5)} Συμμετρική κλειστότητα της R = {(1,2),(2,3),(2,1),(3,2)} Μεταβατική κλειστότητα της R = {(1,2),(2,3),(1,3)} Ανακλαστική κλειστότητα της S = {(1,2),(2,3),(3,4),(4,1),(1,1),(2,2),(3,3),(4,4),(5,5)} Συμμετρική κλειστότητα της S = {(1,2),(2,3),(3,4),(4,1),(2,1),(3,2),(4,3),(1,4)} Μεταβατική κλειστότητα της S = {(1,2),(2,3),(3,4),(4,1),(1,3),(2,4),(3,1),(1,4),(2,1),(4,2),(4,3),(3,2),(1,1),(2,2),(3,3),(4,4)} Άσκηση Φ4.16: Έστω ένα σύνολο Α. Πόσες διαφορετικές ανακλαστικές σχέσεις μπορούμε να ορίσουμε επί του συνόλου Α; Έστω η αναπαράσταση της σχέσης μέσω πίνακα. Τα n= A στοιχεία της διαγωνίου πρέπει να είναι 1. Τα υπόλοιπα (nxn-n) στοιχεία μπορεί να είναι είτε 1 είτε 0. Επομένως μπορούμε να έχουμε 2 n(n-1) ανακλαστικές σχέσεις. Άσκηση Φ4.17: Ας συμφωνήσουμε ότι «δύο πραγματικοί αριθμοί x,y είναι περίπου ίσοι αν η απόλυτη τιμή της διαφοράς τους είμαι μικρότερη ή ίση του 0.5». Για παράδειγμα, 3.14. Πιο τυπικά, ορίζουμε την σχέση " επί του συνόλου R των πραγματικών αριθμών ως εξής:, R,[( ) ( 0.5)]. Απαντήστε στα παρακάτω ερωτήματα δικαιολογώντας την απάντησή σας. A. Είναι η σχέση ", σχέση ισοδυναμίας;

B. Είναι η σχέση ", σχέση μερικής διάταξης; Α. OXI. Για να είναι σχέση ισοδυναμίας πρέπει να έχει την ανακλαστική, συμμετρική και μεταβατική ιδιότητα. Είναι ανακλαστική γιατί ισχύει Είναι συμμετρική γιατί x 0.5 0.5 Δεν είναι μεταβατική γιατί αν x '() * δεν συνεπάγεται απαραίτητα ότι *. π.χ. 2.5 3 '() 3 3.5 (++ά ό.) '() 2.5 3.5 Β. ΌΧΙ. Για να είναι σχέση μερικής διάταξης πρέπει να έχει την ανακλαστική, αντισυμμετρική, μεταβατική ιδιότητα. Όμως δεν έχει ούτε τη μεταβατική (βλ. ερώτημα Α) ούτε την αντισυμμετρική ιδιότητα (εφόσον 3 2.5 και 2.5 3 χωρίς να ισχύει ότι 2.5=3) Άσκηση Φ4.18: Μπορεί μία σχέση να είναι ταυτόχρονα σχέση ισοδυναμίας και σχέση μερικής διάταξης; Έστω Α = {a,b,c} και η σχέση επί του A, R = {(a,a),(b,b),(c,c)}. H R είναι σχέση ισοδυναμίας γιατί είναι ανακλαστική, συμμετρική και μεταβατική. Επίσης, η R είναι σχέση μερικής διάταξης, διότι είναι ανακλαστική, αντισυμμετρική και μεταβατική. Γενικά, η R μπορεί να είναι σχέση ισοδυναμίας και σχέση μερικής διάταξης, μόνο αν είναι της μορφής: R = {(a,a),(b,b),(c,c), a,b,c, A} Σε κάθε άλλη περίπτωση, αν η R είναι συμμετρική, τότε δε μπορεί να είναι αντισυμμετρική. Για παράδειγμα η σχέση R = {(a,b),(b,a) ab} είναι συμμετρική αλλά δεν είναι αντισυμμετρική. Άσκηση Φ4.19 Βρείτε τις μεταβατικές κλειστότητες των παρακάτω σχέσεων που ορίζονται στο σύνολο {a,b,c,d,e}. (a) R1 = {(a,c), (b,d), (c,a), (d,b), (e,d)} (b) R2 = {(b,c), (b,e), (c,e), (d,a), (e,b), (e,c)} (c) R3 = {(a,b), (a,c), (a,e), (b,a), (b,c), (c,a), (c,b), (d,a), (e,d)} (d) R 4 = {(a,e), (b,a), (b,d), (c,d), (d,a), (d,c), (e,a), (e,b), (e,c), (e,e)} R1 = { (a,c), (b,d), (c,a), (d,b), (e,d), (e,b), (a,a), (d,d), (b,b), (c,c)} Για να καλύπτεται η ιδιότητα της μεταβατικότητας από την R1 δεδομένου των (d,b), (e,d) προσθέτουμε στη σχέση το ζεύγος (e,b). Αντίστοιχα, προσθέτουμε το (a,a) (λόγω των (α,c), (c,a)), και το (d,d) (λόγω των (d,b), (b,d)) κλπ. Ομοίως βρίσκεται η μεταβατική κλειστότητα για τις παρακάτω σχέσεις. R2 = {(b,c), (b,e), (c,e), (d,a), (e,b), (e,c), (c,b), (c,c), (e,e), (b,b)} R3 = {(a,b), (a,c), (a,e), (b,a), (b,c), (c,a), (c,b), (d,a), (e,d), (a,a), (b,b), (c,c), (d,d), (e,e), (b,e), (e,a), (a,d), (d,e), (d,c), (d,b), (e,c), (e,b), (b,d), (c,d), (c,e)} R4 = {(a,b), (a,c), (a,e), (b,a), (b,c), (c,a), (c,b), (d,a), (e,d), (a,a), (b,b), (c,c), (d,d), (e,e), (b,e), (e,a), (a,d), (d,e), (d,c), (d,b), (e,c), (e,b), (b,d), (c,d), (c,e)}

Άσκηση Φ4.20 Ποιες από τις παρακάτω σχέσεις που αναπαριστώνται με μορφή πίνακα είναι σχέσεις ισοδυναμίας; 1 1 1 0 1 1 1 1 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 0 0 0 1 Ra Rb Rc Για να είναι μία σχέση, σχέση ισοδυναμίας θα πρέπει απαραιτήτως να ικανοποιεί τις τρεις παρακάτω ιδιότητες: Ανακλαστική Συμμετρική Μεταβατική Η σχέση που αναπαριστάται από τον πίνακα (α) είναι η: R a = { (1,1), (2,2), (3,3), (1,2), (1,3), (2,3), (3,1), (3,2) } Η R a δεν είναι σχέση ισοδυναμίας καθώς δεν έχει η συμμετρική ιδιότητα. Π.χ., το (2,1) δεν ανήκει στη σχέση ενώ το (1,2) ανήκει σε αυτή. Ομοίως, R b = { (1,1), (2,2), (3,3), (4,4), (1,3), (2,4), (3,1), (4,2)} Η R b είναι σχέση ισοδυναμίας γιατί έχει και τις τρεις ιδιότητες. R c = { (1,1), (2,2), (3,3), (4,4), (1,2), (1,3), (2,1), (2,3), (3,1), (3,2) } Η R c είναι σχέση ισοδυναμίας γιατί έχει και τις τρεις ιδιότητες. Άσκηση Φ4.21 Ποιες από τις παρακάτω σχέσεις που αναπαριστώνται με τη μορφή πίνακα είναι σχέσεις μερικής διάταξης; Δικαιολογείστε την απάντησή σας. 1 0 1 1 1 0 0 0 1 1 0 0 0 1 0 1 0 1 1 0 1 0 0 1 1 0 0 0 1 1 1 1 0 1 Ra Rb Rc Για να είναι μία σχέση, σχέση μερικής διάταξης θα πρέπει απαραιτήτως να έχει τις τρεις παρακάτω ιδιότητες:

Ανακλαστική Αντισυμμετρική Μεταβατική Ra = { (1,1), (2,2), (3,3), (1,3), (2,1)} Η Ra είναι σχέση μερικής διάταξης. Rb = { (1,1), (2,2), (3,3), (3,1) } Η R b είναι σχέση μερικής διάταξης. R c = { (1,1), (2,2), (3,3), (4,4), (1,3), (2,3), (3,4), (4,1), (4,2) } Η R c δεν είναι σχέση μερικής διάταξης καθώς δεν καλύπτεται η ιδιότητα της μεταβατικότητας. Απουσιάζουν μεταξύ άλλων τα στοιχεία (1,4), (2,4). Άσκηση Φ4.22 Έστω το σύνολο Α={1, 2, 3, 4}. Θεωρείστε την ακόλουθη σχέση στο Α: R={(1,1), (2,2), (2,3), (3,2), (4,2), (4,4)}. (α) Σχεδιάστε τον κατευθυνόμενο γράφο που περιγράφει την R. (β) Αναφέρετε κατά πόσον η R είναι: (i) ανακλαστική, (ii) συμμετρική, (iii) μεταβατική και (iv) αντισυμμετρική. Δικαιολογείστε τις απαντήσεις σας. (α) (β) (i) H R δεν είναι ανακλαστική γιατί 3ЄΑ, αλλά (3,3) R. (ii) H R δεν είναι συμμετρική γιατί (4,2) ЄR αλλά (2,4) R. (iii) H R δεν είναι μεταβατική γιατί (4,2) ЄR και (2,3) ЄR αλλά (4,3) R (iv) H R δεν είναι αντισυμμετρική γιατί (2,3) ЄR και (3,2) ЄR αλλά 2 3. Άσκηση Φ4.23 Η παρακάτω σχέση που αναπαρίσταται με τη μορφή κατευθυνόμενου γράφου είναι σχέση μερικής διάταξης;

Ενώ στη σχέση υπάρχουν τα στοιχεία (c,d) και (d,b) δεν υπάρχει το (c,b) άρα δεν ισχύει η μεταβατική ιδιότητα και επομένως η σχέση δεν μπορεί να είναι σχέση μερικής διάταξης. Άσκηση Φ4.24 Ποια σχέση περιγράφεται από το παρακάτω διάγραμμα Hasse; R={(a,a), (b,b), (c,c), (d,d), (e,e), (a,b), (b,e), (a,e), (a,c), (c,d), (a,d), (b,d)} Άσκηση Φ4.25 Μπορεί η σχέση R = A x A ορισμένη επί ενός συνόλου Α να είναι σχέση μερικής διάταξης; Η σχέση R = A x A ορισμένη επί ενός συνόλου Α δεν μπορεί να είναι μερικής διάταξης. Αυτό είναι αρκετά διαισθητικό δεδομένου ότι το καρτεσιανό γινόμενο παράγει όλα τα πιθανά ζευγάρια/ακμές μεταξύ των στοιχείων ενός συνόλου αναιρώντας οποιαδήποτε αντισυμμετρική ιδιότητα. Μοναδική εξαίρεση αποτελούν σχέσεις που βασίζονται σε σύνολα που περιέχουν μόνο ένα στοιχείο. Άσκηση Φ4.26 a. Δείξτε ότι η σχέση R = {(0,0), (0, 4), (1,1), (1,3), (2, 2), (3,1), (3,3), (4,0), (4, 4)} που ορίζεται επί του συνόλου A = {0, 1, 2, 3, 4} είναι σχέση ισοδυναμίας και βρείτε όλες τις κλάσεις ισοδυναμίας που ο- ρίζονται από αυτήν. b. Αν η ίδια σχέση R οριζόταν επί του συνόλου Β = {0,1,2,3, 4,5}, θα εξακολουθούσε να είναι σχέση ισοδυναμίας; Δικαιολογείστε την απάντησή σας.

a) Αφού η σχέση έχει τα (0,0) (1,1) (2,2) (3,3) (4,4) είναι ανακλαστική. Παρατηρούμε ότι για κάθε στοιχείο (x,y) στη σχέση, το (y,x) ανήκει επίσης στη σχέση. Επομένως, η σχέση είναι συμμετρική. Παρατηρούμε ότι για κάθε ζευγάρι στοιχείων της μορφής (x,y) και (y,z) στη σχέση, το (x,z) ανήκει επίσης στη σχέση. Επομένως, η σχέση είναι μεταβατική. Αφού η σχέση έχει την ανακλαστική, συμμετρική και μεταβατική ιδιότητα, είναι σχέση ισοδυναμίας. Οι κλάσεις ισοδυναμίας της είναι οι {0,4}, {1,3} και {2}. b) Δεν θα ήταν πλέον σχέση ισοδυναμίας γιατί το γεγονός ότι λείπει το στοιχείο (5,5) θα έκανε τη σχέση να μην έχει την ανακλαστική ιδιότητα. Άσκηση Φ4.27 Σε καθεμία από τις παρακάτω περιπτώσεις ξεχωριστά, βρέστε ένα παράδειγμα σχέσης R και ενός συνόλου Χ επί του οποίου είναι ορισμένη η R, έτσι ώστε να πληρούνται οι αντίστοιχες απαιτήσεις: (a) X και R τέτοια ώστε η R να είναι μεταβατική αλλά να μην είναι ούτε συμμετρική, ούτε αντισυμμετρική, ούτε ανακλαστική. (b) X και R τέτοια ώστε η R να είναι ανακλαστική, συμμετρική και μεταβατική, αλλά όχι αντισυμμετρική. (c) X και R τέτοια ώστε η R να είναι ανακλαστική, αντισυμμετρική και μεταβατική, αλλά όχι συμμετρική. (d) X και R τέτοια ώστε η R να είναι ανακλαστική, συμμετρική, αντισυμμετρική και μεταβατική. a) Χ=(1,2,3,4,5) και R={(1,2),(2,1),(1,1),(2,2),(3,4)} b) Χ=(1,2) και R={(1,1),(2,2),(1,2),(2,1)} c) X=(1,2,3) και R={(1,1),(2,2),(3,3),(1,2),(2,3),(1,3)} d) X= (1, 2, 3) και R={(1, 1), (2, 2), (3, 3)} Άσκηση Φ4.28 Ένα περιοδικό σχετικό με αυτοκίνητα, συγκρίνει τα καινούργια μοντέλα με βάση δύο κριτήρια: (α) την κατανάλωση Κ λίτρων βενζίνης ανά εκατό χιλιόμετρα και (β) την επιτάχυνσή τους Ε. Έτσι, ένα αυτοκίνητο, αναπαρίσταται με το διατεταγμένο ζεύγος (Κ, Ε). Επίσης, στο περιοδικό θεωρούν ότι ένα αυτοκίνητο (Κ, Ε) είναι τουλάχιστον τόσο καλό όσο ένα αυτοκίνητο (Κ, Ε ), αν Κ Κ και Ε Ε. Σε αυτή την περίπτωση, γράφουν ότι (Κ, Ε) (Κ, Ε ). Αποδείξτε ότι η σχέση είναι σχέση μερικής διάταξης. Παρατηρούμε ότι για οποιοδήποτε αυτοκίνητο (Κ, Ε), ισχύει ότι (Κ, Ε) (Κ, Ε) (κάθε αυτοκίνητο είναι τουλάχιστον τόσο καλό όσο ο εαυτός του). Επομένως η σχέση είναι ανακλαστική. Εάν (Κ,Ε) (Κ,Ε ) και (Κ,Ε ) (Κ,Ε), τότε θα πρέπει Κ Κ και Κ Κ και επίσης Ε Ε και Ε Ε δηλαδή Κ=Κ και Ε=Ε, πράγμα που σημαίνει ότι (Κ,Ε) = (Κ,Ε ). Άρα η σχέση είναι αντισυμμετρική. Εάν Ε α Ε β και Ε β Ε γ τότε Ε α Ε γ Επίσης εάν Κ α Κ β Κ β Κ γ Κ α Κ γ Άρα η σχέση είναι μεταβατική Εφόσον η σχέση είναι ανακλαστική αντισυμμετρική και μεταβατική, η σχέση είναι σχέση μερικής

διάταξης. Άσκηση Φ4.29 (a) Σχεδιάστε το διάγραμμα Hasse για την παρακάτω μερική διάταξη: ({{a},{a,b},{a,b,c},{a,b,c,d},{a.c},{c,d}}, ) (b) Ποια είναι η μέγιστη αλυσίδα; Ποια είναι η μέγιστη αντι-αλυσίδα; Oι μεγαλύτερες αλυσίδες είναι οι: ({a}, {a,b}, {a,b,c}, {a,b,c,d}) ({a}, {a,c}, {a,b,c}, {a,b,c,d}) Η μεγαλύτερη αντί αλυσίδα είναι η : {{a,b},{a,c},{c,d}} Άσκηση Φ4.30 Ορίζουμε την εξής ιδιότητα P μίας σχέσης R: Μία σχέση R έχει την ιδιότητα P αν για κάθε x, y, z στο σύνολο επί του οποίου είναι ορισμένη η σχέση ισχύει ότι: (x R y) Λ (x R z) y R z. Ισχύει ότι η σχέση R είναι συμμετρική και μεταβατική αν και μόνο αν η R έχει την ιδιότητα P; Ευθύ: Αν η σχέση R είναι συμμετρική και μεταβατική τότε έχει την ιδιότητα P. Από τη μεταβατική ιδιότητα προκύπτει ότι για κάθε x, y, z, ((x R y) ^ (y R z)) -> x R z (1) Από τη συμμετρική ιδιότητα προκύπτει ότι για κάθε x, y, x R y -> y R x (2) Επομένως, αντικαθιστώντας τη (2) στην (1) προκύπτει ότι (y R x) ^ (y R z) -> x R z Αφού η παραπάνω σχέση ισχύει για κάθε x,y, z μπορώ να αντικαταστήσω το y με το x κι το x με το y. Προκύπτει ότι ισχύει (x R y) Λ (x R z) C y R z Δηλαδή η ιδιότητα P. Αντίστροφο: Αν η σχέση R έχει την ιδιότητα P τότε είναι συμμετρική και μεταβατική. Δεν ισχύει! Αντιπαράδειγμα: H R={{1,3), (1,5), (3,5), (5,3), (3,3), (5,5)} ορισμένη στο Α={1,2,3,4,5}. Η R έχει την ιδιότητα P αλλά δεν είναι συμμετρική.

Άρα, ισχύει μόνον το ευθύ, όχι το αντίστροφο της πρότασης! Άσκηση Φ4.31 Να βρεθεί το πλήθος των σχέσεων που μπορεί να οριστεί από το σύνολο Α={α, β, γ} στο σύνολο {1, 2}. Δικαιολογείστε την απάντησή σας. Υπάρχουν 3*2=6 στοιχεία στο ΑxB δηλαδή 2 6 υποσύνολα του ΑxB. Επομένως, δεδομένου ότι μία σχέση μπορεί να είναι οποιοδήποτε υποσύνολο του καρτεσιανού, υπάρχουν 64 σχέσεις που μπορούμε να ορίσουμε. Άσκηση Φ4.32 Πόσες είναι όλες οι δυνατές διμελείς σχέσεις που μπορούν να οριστούν επί ενός συνόλου Α με Α =5; 2 5x5 = 2 25 (δες την προηγούμενη άσκηση) Άσκηση Φ4.33 Έστω Α το σύνολο των άσθενών ενός νοσοκομείου και Β το σύνολο των διαγνωστικών εξετάσεων που παρέχει το νοσοκομείο. Εστω R 1 και R 2 οι σχέσεις που αποτελούνται από όλα τα διατεταγμένα ζεύγη (a,b) όπου «ο ασθενής a πρέπει να κάνει την εξέταση b» και «o ασθενής a έχει κάνει την εξέταση b αντίστοιχα. Να περιγράψετε τα διατεταγμένα ζεύγη για κάθε μία από τις παρακάτω σχέσεις: a. R 1 R 2 b. R 1 R 2 c. R 1 R 2 d. R 1 - R 2 e. R 2 R 1 a. R 1 R 2 ={(a,b) Ο ασθενής a πρέπει να κάνει ή έχει κάνει την εξέταση b} b. R 1 R 2={(a,b) Ο ασθενής a πρέπει να κάνει την εξέταση b και την έκανε} c. R 1 R 2={(a,b) Ο ασθενής a είτε πρέπει να κάνει την εξέταση b αλλά δεν την έχει κάνει, είτε την έχει ήδη κάνει χωρίς να πρέπει} d. R1 - R2={(a,b) Ο ασθενής πρέπει να κάνει την εξέταση b αλλά δεν την έχει κάνει} e. R 2 -R 1 ={(a,b) Ο ασθενής έχει κάνει την εξέταση b χωρίς να πρέπει} Άσκηση Φ4.34 Ποια από τις παρακάτω συλλογές συνόλων αποτελούν διαμέριση του συνόλου R των πραγματικών αριθμών; Δικαιολογείστε την απάντησή σας. (a) {6 : 8} όπου :: ={ ;: +1} (b) {= : 8} όπου := ={ ;:< +1} (c) {? : 8} όπου :? ={ ;:<<+1}

Στην συλλογή συνόλων του ερωτήματος (a), κάθε ακέραιος υπάρχει σε δυο σύνολα. Πχ, το 3 υπάρχει στην σχέση και για n=3 και για n=4. Επομένως η τομή των συνόλων δεν είναι κενή και έτσι δεν αποτελούν διαμέριση του R. Στην συλλογή συνόλων του ερωτήματος (b) όλοι οι ακέραιοι αριθμοί ανήκουν ακριβώς σε ένα σύνολο και όλοι οι υπόλοιποι πραγματικοί επίσης. Αφού όλοι οι πραγματικοί ανήκουν σε κάποιο σύνολο η ένωση των συνόλων δίνει το R. Αφού κανένας πραγματικός δεν υπάρχει σε δυο σύνολα η τομή τους είναι το κενό σύνολο. Άρα αποτελούν διαμέριση του R. Στη συλλογή συνόλων του ερωτήματος (c) οι ακέραιοι δεν βρίσκονται σε κανένα σύνολο. Επομένως η ένωση των συνόλων δεν μας δίνει το R και άρα δεν είναι διαμέριση του R. Άσκηση Φ4.35 Έστω οι παρακάτω σχέσεις που είναι ορισμένες επί του συνόλου των πραγματικών αριθμών. Δείξτε κατά πόσον έχουν την ανακλαστική, συμμετρική, αντισυμμετρική και μεταβατική ιδιότητα. Αν κάποια σχέση έχει μία ιδιότητα, αποδείξτε το. Αν δεν την έχει, δώστε ένα αντιπαράδειγμα. 1. Σχέση S όπου (x,y) S αν και μόνο αν x 2 = y 2 2. Σχέση T όπου (x,y) T αν και μόνο αν x-y 3 1. (x,x) Sx 2 =x 2 Άρα έχει την ανακλαστική ιδιότητα (x,y) S x 2 = y 2 y 2 =x 2 (y,x) S, x 2 Άρα έχει τη συμμετρική ιδιότητα 2. (-2,2) S, (2,-2) S και 2-2. Άρα δεν έχει την αντισυμμετρική ιδιότητα Έστω ότι (x,y) S x 2 = y 2 και (y,z) S y 2 = z 2 Τότε και x 2 = z 2 (x,z) S. Άρα έχει τη μεταβατική ιδιότητα (x,x) T x-x=0 3 Άρα έχει την ανακλαστική ιδιότητα Έστω x=-6 και y=1. -6-1=-7 3 Άρα (-6,1) T Όμως (1,-6) Τ διότι 1-(-6)=7>3. Δεν έχει τη συμμετρική ιδιότητα Έστω x=1, y=-1. x-y=2 3 (x,y) T. Αλλά και y-x=0 3 (y,x) T, ενώ x y. Δεν έχει την αντισυμμετρική ιδιότητα Έστω x=9, y=7, z=5. (x,y) T, (y,z) T αλλά (x,z) Τ Δεν έχει ούτε τη μεταβατική ιδιότητα Άσκηση Φ4.36 Έστω Z το σύνολο των ακεραίων, και έστω η σχέση S επί του Z που ορίζεται ως: a S b αν και μόνο αν ο 3a+b είναι ακέραιο πολλαπλάσιο του 4. (α) Αποδείξτε ότι η σχέση S είναι σχέση ισοδυναμίας. (b) Βρείτε την κλάση ισοδυναμίας του 0. (a) Για να είναι σχέση ισοδυναμίας πρέπει να έχει την ανακλαστική, τη συμμετρική και τη μεταβατική ιδιότητα (a,b) S4 (3a+b) 1. 3a+a=4a (a,a) S (Έχει την ανακλαστική ιδιότητα)

2. Αν (a,b) S 3a+b=4kb=4k-3a3b=12k-9a3b+a=12k-8a=4(3k-2a) (b,a) S (Έχει την συμμετρική ιδιότητα) 3. Έστω (a,b) S και (b,c) S (a,b) S 3a+b=4k 3a=4k-b (1) (b,c) S 3b+c=4lc=4l-3b (2) Από (1) και (2) προσθέτοντας κατά μέλη 3a+c=4k-b+4l-3b=4k+4l-4b=4(k+l-b) (πολλαπλάσιο το 4) Άρα και (a,c) S (Έχει την μεταβατική ιδιότητα) (b) Η κλάση ισοδυναμίας είναι εξ ορισμού το σύνολο [0] S ={x 0Sx}άρα είναι εκείνα τα x για τα οποία 3*0+x=4nx=4n για κάποιο ακέραιο n Είναι το σύνολο των ακέραιων πολλαπλάσιων του 4 Άσκηση Φ4.37 Έστω σχέση B R R, με R R {0}, τέτοια ώστε ( x, y) S xy> 0. Αποδείξτε ότι η S είναι σχέση ισοδυναμίας επί του R. Επίσης, να προσδιοριστούν οι κλάσεις ισοδυναμίας της. Για να είναι σχέση ισοδυναμίας πρέπει να έχει την ανακλαστική, τη συμμετρική και τη μεταβατική ιδιότητα 1. x R *, x 2 >0 (x,x) S ( Έχει την ανακλαστική ιδιότητα) 2. Αν (x,y) Sxy>0yx>0(y,x) S (Έχει την συμμετρική ιδιότητα) 3. Έστω (x,y) και (y,z) S Τότε xy>0, δηλαδή x,y ομόσημα και yz>0 δηλαδή y και z ομόσημα. Άρα και x,z ομόσημα, οπότε xz>0 (x,z) S (Έχει τη μεταβατική ιδιότητα) Έστω a R *. [a] S={ x R * ax>0} Άρα x ομόσημο του a Οι δύο κλάσεις ισοδυναμίας της S είναι (i) το σύνολο των θετικών πραγματικών και (ii) το σύνολο των αρνητικών πραγματικών αριθμών Άσκηση Φ4.38 Έστω η σχέση S που ορίζεται επί του συνόλου Z των ακεραίων αριθμών ως εξής: 2 2 ( x, y) S x y = 3k, με k Z. Δείξτε ότι η S είναι σχέση ισοδυναμίας. Για να είναι σχέση ισοδυναμίας πρέπει να έχει την ανακλαστική, τη συμμετρική και τη μεταβατική ιδιότητα 1. x Z, (x,x) Sx 2 -x 2 =0=3*0 ( Έχει την ανακλαστική ιδιότητα) 2. Αν (x,y) Sx 2 -y 2 =3ky 2 -x 2 =-( x 2 -y 2 )= -3k (Έχει την συμμετρική ιδιότητα) 3. Έστω (x,y) και (y,z) S Τότε x 2 -y 2 =3k και y 2 -z 2 =3m. Προσθέτοντας κατά μέλη προκύπτει ότι x 2 -z 2 =3k-3m=3(k-m) (x,z) S (Έχει τη μεταβατική ιδιότητα) Άσκηση Φ4.39 Για κάθε μία από τις παρακάτω σχέσεις επί του συνόλου {1,2,3,4}

- Να τις αναπαραστήσετε με πίνακα (τα στοιχεία του συνόλου να παρατίθενται σε αύξουσα σειρά) - Να τις αναπαραστήσετε με γράφο - Να ελέγξετε αν έχουν την ανακλαστική, συμμετρική, μεταβατική και αντισυμμετρική ιδιότητα. a. {(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)} b. {(1,1),(1,4),(2,2),(3,3),(4,1)} c. {(1,2), (1,3), (1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)} d. {(2,4),(3,1),(3,2),(3,4)} a.1 1 2 3 4 1 0 1 1 1 2 0 0 1 1 3 0 0 0 1 4 0 0 0 0 a.2 a.3 Ανακλαστική: Όχι λείπει (1,1)... Συμμετρική: Όχι -λείπει (2,1) Μεταβατική: Όχι λείπει (2,4).. Αντισυμμετρική: Ναι b.1 1 2 3 4 1 1 0 0 1 2 0 1 0 0 3 0 0 1 0 4 1 0 0 0 b.2

b.3 Ανακλαστική: Όχι λείπει (4,4) Συμμετρική: Ναι Μεταβατική: Ναι Αντισυμμετρική: Όχι έχει (1,4) και (4,1) c.1 1 2 3 4 1 0 1 1 1 2 1 0 1 1 3 1 1 0 1 4 1 1 1 0 c.2 c.3 Ανακλαστική: Όχι λείπει (1,1) Συμμετρική: Ναι Μεταβατική: Όχι λείπει (1,1) Αντισυμμετρική: Όχι έχει (1,4) και (4,1) κλπ d.1 1 2 3 4

1 0 0 0 0 2 0 0 0 1 3 1 1 0 1 4 0 0 0 0 d.2 d.3 Ανακλαστική: Όχι λείπει (1,1) Συμμετρική: Όχι λείπει (1,3) Μεταβατική: Όχι λείπει (4,3) Αντισυμμετρική: Ναι Άσκηση Φ4.40 Να βρείτε τις ανακλαστικές, συμμετρικές και μεταβατικές, κλειστότητες των παρακάτω σχέσεων επί του {1,2,3,4}: a. {(1,2),(2,1),(2,3),(3,4),(4,1)} b. {(2,1),(2,3),(3,1),(3,4),(4,1),(4,3)} c. {(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)} d. {(1,1),(1,4),(2,1),(2,3),(3,1),(3,2),(3,4),(4,2)} α. Ανακλαστική κλειστότητα {(1,2),(2,1),(2,3),(3,4),(4,1),(1,1),(2,2),(3,3),(4,4)} Συμμετρική κλειστότητα {(1,2),(2,1),(2,3),(3,4),(4,1),(3,2),(1,4),(4,3)} Μεταβατική κλειστότητα {(1,2),(2,1),(2,3),(3,4),(4,1),(1,1),(2,4),(4,2),(1,3),(1,4),(3,2),(4,4),(3,3),(2,2),(4,3),(3,1)} b. Ανακλαστική κλειστότητα {(2,1),(2,3),(3,1),(3,4),(4,1),(4,3),(1,1),(2,2),(3,3),(4,4)}

Συμμετρική κλειστότητα {(2,1),(2,3),(3,1),(3,4),(4,1),(4,3),(1,2),(3,2),(1,3),(4,3)} Μεταβατική κλειστότητα {(2,1),(2,3),(3,1),(3,4),(4,1),(4,3),(2,4),(3,3),(4,4)} c. Ανακλαστική κλειστότητα {(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),(1,1),(2,2),(3,3),(4,4)} Συμμετρική κλειστότητα {(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),(2,1),(3,1),(4,1),(3,2),(4,2),(4,3)} Μεταβατική κλειστότητα {(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)} (η σχέση είναι μεταβατική) d. Ανακλαστική κλειστότητα {(1,1),(1,4),(2,1),(2,3),(3,1),(3,2),(3,4),(4,2),(2,2),(3,3),(4,4)} Συμμετρική κλειστότητα {(1,1),(1,4),(2,1),(2,3),(3,1),(3,2),(3,4),(4,2),(4,1),(1,2),(1,3),(4,3)} Μεταβατική κλειστότητα {(1,1),(1,4),(2,1),(2,3),(3,1),(3,2),(3,4),(4,2),(2,2),(3,3),(1,2),(1,3),(4,3),(4,4),(2,4),(4,1)} Άσκηση Φ4.41 Να βρείτε τη μικρότερη σχέση που περιέχει τη σχέση {(a,b),(a,d),(c,c),(d,a),(c,a)}, που είναι ορισμένη επί του συνόλου Α={a,b,c,d} 1. Ανακλαστική και μεταβατική 2. Συμμετρική και μεταβατική 3. Ανακλαστική, συμμετρική και μεταβατική Σημείωση: Το κάθε υποερώτημα είναι ανεξάρτητο από τα υπόλοιπα. 1. {(a,b),(a,d),(c,c),(d,a),(c,a),(a,a),(b,b),(d,d),(c,b),(d,b),(c,d)} 2. {(a,b),(a,d),(c,c),(d,a),(c,a),(b,a),(a,c),(a,a),(c,b),(c,d),(b,b),(d,d),(d,c),(d,b)(b,d),(b,c)} 3. Ίδια με παραπάνω Άσκηση Φ4.42 Να σχεδιάσετε το διάγραμμα Hasse για τη διαιρετότητα επί του συνόλου a. {3,5,7,11,13,16,17} b. {2,3,5,10,11,15,25} a. Οι αριθμοί είναι πρώτοι μεταξύ τους άρα η σχέση που περιγράφεται είναι η {(3,3),(5,5),(7,7),(11,11),(13,13),(16,16),(17,17)} Είναι σχέση μερικής διάταξης (έχει την ανακλαστική αντισυμμετρική και μεταβατική ιδιότητα) άρα μπορεί να παρασταθεί με διάγραμμα Hasse

b. Η σχέση που περιγράφεται είναι η {(2,2),(3,3),(5,5),(10,10),(11,11),(15,15),(25,25),(2,10),(3,15),(5,10),(5,15),(5,25)} Είναι σχέση μερικής διάταξης (έχει την ανακλαστική αντισυμμετρική και μεταβατική ιδιότητα) άρα μπορεί να παρασταθεί με διάγραμμα Hasse Άσκηση Φ4.43 Έστω a, b Z και η σχέση R = {(a, b) a+b = 2k, k Z}. a. Αποδείξτε ότι η R είναι σχέση ισοδυναμίας. b. Βρείτε την κλάση ισοδυναμίας του 3. a. H R είναι: - Ανακλαστική (a+a=2a ara a Z) - Συμμετρική (arb bra λόγω της αντιμεταθετικής ιδιότητας της πρόσθεσης) -Μεταβατική (Αν a+b=2k και b+c=2m τότε προσθέτοντας κατά μέλη a+2b+c=2m+2k a+c=2m+2k- 2b=2(m+k-b) arc) Άρα είναι σχέση ισοδυναμίας b. [3] R={x 3+x=2k}={x R x περιττός} Άσκηση Φ4.44 Έστω το σύνολο των ακεραίων A={2, 3, 4, 6, 8, 12} επί του οποίου ορίζουμε τη σχέση R = {(a,b) :a b}. a. Δώστε την αναπαράσταση πίνακα της σχέσης και την αναπαράσταση γράφου της σχέσης. b. Αποδείξτε ότι είναι σχέση μερικής διάταξης και σχεδιάστε το διάγραμμα Hasse της. c. Δώστε ένα παράδειγμα μέγιστης αλυσίδας και ένα παράδειγμα μέγιστης αντιαλυσίδας. a. 2 3 4 6 8 12 2 1 0 1 1 1 1 3 0 1 0 1 0 1 4 0 0 1 0 1 1 6 0 0 0 1 0 1

8 0 0 0 0 1 0 12 0 0 0 0 0 1 b. H σχέση είναι ανακλαστική, αντισυμμετρική και μεταβατική άρα είναι σχέση μερικής διάταξης c. Μια αλυσίδα με μέγιστο μήκος είναι η {2,4,8} και μια αντιαλυσίδα με μέγιστο μήκος είναι η {2,3} Άσκηση Φ4.45 Έστω η σχέση S L L, με L= { A, B, C, D} που αναπαρίσταται με μορφή πίνακα παρακάτω. Είναι η σχέση αυτή (a) ανακλαστική; (b) συμμετρική; (c) μεταβατική; Βρείτε (d) την ανακλαστική κλειστότητα (e) τη συμμετρική κλειστότητα και (f) τη μεταβατική κλειστότητα της σχέσης S. A B C D Α 1 1 1 0 Β 1 0 0 0 C 0 0 1 1 D 1 0 0 1 (a) Δεν είναι ανακλαστική γιατί δεν περιλαμβάνει το (Β,Β) (b) Δεν είναι συμμετρική γιατί ενώ περιλαμβάνει το (Α,C), δεν περιλαμβάνει το (C,A).

(c) Δεν είναι μεταβατική γιατί ενώ περιλαμβάνει το (Α,C), και το (C,D), δεν περιλαμβάνει το (A,D). (d) {(A,A), (B,B), (C,C), (D,D), (A,B), (A,C), (B,A), (C,D), (D,A)} (e) {(A,A), (C,C), (D,D), (A,B), (A,C), (C,A), (B,A), (C,D), (D,C), (D,A), (A,D)} (f) {(A,A), (C,C), (D,D), (A,B), (A,C), (B,A), (C,D), (D,A), (A,D), (B,B), (B,C), (B,D), (C,A), (D,C),(C,B)} Άσκηση Φ4.46 Στο παρακάτω σχήμα δίνεται το διάγραμμα Hasse μιας σχέσης μερικής διάταξης. (α) Περιγράψτε τη σχέση ως σύνολο διατεταγμένων ζευγών. (β) Πόσες μέγιστες αλυσίδες έχει αυτή η σχέση μερικής διάταξης και ποιες είναι; Η σχέση μερικής διάταξης είναι η {(1,1), (2,2), (3,3), (4,4), (6,6), (12,12), (1,2), (1,3), (1,4), (1.6), (1, 12), (2, 4), (2,6), (2, 12), (3, 6), (3, 12), (6, 12)}. Εναλλακτικά, μπορεί κανείς να την περιγράψει ως τη σχέση ακέραιας διαιρετότητας στο σύνολο {1, 2, 3, 4, 6, 12}. Άσκηση Φ4.47 Αποδείξτε ότι η σχέση λογικής ισοδυναμίας στον προτασιακό λογισμό είναι σχέση ισοδυναμίας. Η σχέση λογικής ισοδυναμίας προτάσεων στον προτασιακό λογισμό είναι σχέση ισοδυναμίας γιατί έχει την ανακλαστική ιδιότητα (κάθε λογική πρόταση είναι λογικά ισοδύναμη με τον εαυτό της), τη συμμετρική ιδιότητα (αν μια λογική πρόταση p είναι λογικά ισοδύναμη με την πρόταση q, τότε και η q είναι λογικά ισοδύναμη με την p) και τη μεταβατική ιδιότητα (αν η p είναι ισοδύναμη με την q και η q με την r, τότε και η p είναι ισοδύναμη με την r). Άσκηση Φ4.48 Βρείτε όλα τα διατεταγμένα ζεύγη στη σχέση R από το Α={0,1,2,3} στο Β={0,1,2,3,4} όπου (a,b) R αν και μόνο αν: a. a + b = 3. b. a διαιρεί τ ο b. c. a - b = 0. d. ΜΚΔ(a, b) = 1. e. ΕΚΠ(a, b) = 6. a. {(0, 3), (1, 2), (2, 1), (3, 0)}

b. {(1, 0), (1, 1), (1, 2), (1, 3), (1, 4), (2, 0), (2, 2), (2, 4), (3, 0), (3, 3)} c. {(0, 0), (1, 1), (2, 2), (3, 3)} d. {(0, 1), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (3, 1), (3, 2), (3, 4)} e. {(2, 3), (3, 2)} Άσκηση Φ4.49 Δίνονται οι παρακάτω σχέσεις επι του συνόλου των ακεραίων: (x,y) R αν και μόνο αν: 1. Το x διαιρεί ακέραια το y 2. x y 3. y=x+1 ή y=x-1 4. x=y 2 5. xy 1 Έχουν οι παραπάνω σχέσεις την ανακλαστική, συμμετρική, αντισυμμετρική ή μεταβατική ιδιότητα; Δικαιολογείστε τις απαντήσεις σας 1. Είναι ανακλαστική (κάθε αριθμός διαιρεί τον εαυτό του) Δεν είναι συμμετρική (2 6 αλλά 6 2) Δεν είναι αντισυμμετρική (1-1 και -1 1 αλλά 1-1) Είναι μεταβατική (αν x y και y z εύκολα αποδεικνύεται ότι x z) 2. Δεν είναι ανακλαστική. (1,1) R Είναι συμμετρική μια και αν x y τότε και y x Δεν είναι αντισυμμετρική ((2,3) και (3,2) R αλλά δεν ισχύει ότι 2=3) Δεν είναι μεταβατική μια και 1 2 και 2 1 αλλά δεν ισχύει ότι 1 1 3. Δεν είναι ανακλαστική. (1,1) R 4. Είναι συμμετρική μια και οι x = y + 1 και y = x 1 είναι ισοδύναμες εξισώσεις Δεν είναι αντισυμμετρική ((2,3) και (3,2) R αλλά δεν ισχύει ότι 2=3) Δεν είναι μεταβατική μια και (1,2) R και (2,1) R αλλά (1,1) R Δεν είναι ανακλαστική: (2,2 ) R Δεν είναι συμμετρική (9, 3) R αλλά (3,9) R Είναι αντισυμμετρική ((x,y) R και (y,x) R αν και μόνο αν x=y=0 ή x=y=1 Δεν είναι μεταβατική μια και (16, 4) R and (4, 2) R αλλά (16,2) R 5. Δεν είναι ανακλαστική (0,0) R Είναι συμμετρική μια και xy = yx. Δεν είναι αντισυμμετρική ((2,3) και (3,2) R αλλά δεν ισχύει ότι 2=3)

Είναι μεταβατική γιατί αν (a, b) R και (b, c) R, τότε και (a, c) R (παρατηρείστε ότι αν xry τότε x,y ομόσημα) Άσκηση Φ4.50 1. Έστω R η σχέση του «διαιρεί» επί του συνόλου των θετικών ακεραίων (a,b) R a b. Βρείτε a. την R 1 (Την αντίστροφη σχέση της R) και b. ;H (Το συμπλήρωμα της R) 2. Έστω η σχέση ισοδυναμίας R επί του συνόλου των πραγματικών αριθμών R={(x,y) ο x-y είναι ακέραιος} Ποια είναι η κλάση ισοδυναμίας του 1 για την R 1.a. R 1 = {(b, a) a b} = {(a, b) b a} 1.b ;H ={(a,b) a b}. 2. Το σύνολο των ακεραίων Z Άσκηση Φ4.51 1. Σχεδιάστε τα διαγράμματα Hasse για τη σχέση διαιρετότητας στα παρακάτω σύνολα a. {1,2,3,6,12,24} b. {2,4,6,12,24,36} 2. Σχεδιάστε το διάγραμμα Hasse της σχέσης που αναπαριστά ο παρακάτω πίνακας 3. Σχεδιάστε τον κατευθυνόμενο γράφο της σχέσης που αναπαριστά το παρακάτω διάγραμμα Hasse 1.a.

1.b 2. 3.

Άσκηση Φ4.52 Δίνεται η σχέση R ={(1, 1),(1, 2),(2, 1),(2, 2),(3, 4),(4, 1),(4, 4)} επί του {1,2,3,4} a. Βρείτε τη μεταβατική κλειστότητα R * της R. b. Σχεδιάστε τον κατευθυνόμενο γράφο για την R και την R * a. R * ={(1, 1),(1, 2),(2, 1),(2, 2),(3, 4),(4, 1),(4, 4),(3,1),(3,2),(4,2)} b. Άσκηση Φ4.53 Έστω R={(1,1),(1,3),(2,1),(3,2)} επί του {1,2,3} Δώστε την αναπαράσταση πίνακα a. για την R b. την ανακλαστική κλειστότητα της R και c. τη συμμετρική κλειστότητα της R a. b. c. Άσκηση Φ4.54 Έστω σχέση R από το Α στο Β. Αποδείξτε ότι (I) HHHHJK =I JK, όπου IL το συμπλήρωμα της R Έστω (b,a) (;) HHHJM (a,b) (;) HHH (από τον ορισμό της αντίστροφης σχέσης) (a,b) R (από τον ορισμό του συμπληρώματος) (b,a) R -1 (από τον ορισμό της αντίστροφης σχέσης) (b,a) ; JM ( από τον ορισμό του συμπληρώματος) Άσκηση Φ4.55

Έστω S σύνολο και για Α,Β (S) ορίζουμε Α Β να σημαίνει Α Β. Είναι η σχέση αυτή σχέση μερικής διάταξης στο (S); Εξηγείστε το. Υπόδειξη: Θεωρείστε περιπτώσεις, το S να είναι κενό, να έχει ένα στοιχείο ή να έχει περισσότερα του ενός στοιχεία. Περίπτωση 1. S=. Τότε το (S) περιέχει μόνο ένα στοιχείο, το. Σ αυτή την περίπτωση η σχέση είναι μερική διάταξη μια και: Προφανώς Α Α για όλα τα Α (S) μια και 0= (Ανακλαστική) Αν Α Β και Β Ατότε Α=Β μια και το (S) περιέχει μόνο ένα στοιχείο (Αντισυμμετρική) Αν Α Β και Β C, τότε Α C μια και αναγκαστικά A=B=C και όπως είπαμε προηγουμένως Α Α (Μεταβατική) Περίπτωση 2. S =1. Σ αυτή την περίπτωση το (S) = {,S} περιέχει 2 στοιχεία. Και πάλι η σχέση είναι μερική διάταξη μια και: Α Α για όλα τα Α (S) επειδή Α Α (Ανακλαστική) Αν Α Β και Β Α τότε Α Β και Β Α, άρα Α = Β. Μια και το (S) δεν περιλαμβάνει διαφορετικά σύνολα ίδιου πληθικού αριθμού, συνεπάγεται ότι Α=Β (Αντισυμμετρική) Έστω ότι Α Β και Β C. Αν Α=, τότε Α =0 C, οπότε Α C. Αν Α=S, τότε Α Β σημαίνει ότι Β=S και Β C σημαίνει ότι C=S, άρα A=B=C=S και Α C (Μεταβατική) Περίπτωση 3. S 2 Σ αυτή την περίπτωση η δεν είναι σχέση μερικής διάταξης γιατί δεν είναι αντισυμμετρική Αν θεωρήσουμε a,b S με a b, τότε {α} {b} επειδή {a} {b}. Για τον ίδιο λόγο {b} {a}. Ωστόσο {a} {b} Άσκηση Φ4.56 Έστω η σχέση R={(m,n): m,n Z, m n (mod 3)} (Υπενθύμιση: m n (mod 3) 3 (m-n)) 1. Αποδείξτε ότι είναι σχέση ισοδυναμίας 2. Βρείτε τις κλάσεις ισοδυναμίας για την R 3. Βρείτε τη διαμέριση του Z που προκύπτει από αυτές τις κλάσεις ισοδυναμίας 1. Η σχέση είναι ανακλαστική ((a,a) R α Z Είναι συμμετρική (αν m n (mod 3) (m-n)=3k (n-m)=-3k 3 (n-m) n m (mod 3) Είναι μεταβατική: (αν a b (mod 3) και b c (mod 3) τότε (a-b)=3k, b-c=3m άρα προσθέτοντας κατά μέλη- a-c=3(k+m) a c(mod3) Άρα είναι σχέση ισοδυναμίας 2. Διαλέγουμε ένα τυχαίο στοιχείο του Z, έστω το 0. [0] R={,-6,-3,0,3,6, } Διαλέγουμε ένα τυχαίο στοιχείο του Z -[0] R, έστω το 1 [1] R={,-5,-2,1,4,7 } Διαλέγουμε ένα τυχαίο στοιχείο του Z - ([0] R [1] R), έστω το 5 [5] R={..., -4, -1, 2, 5, 8,... } Z -([0] R [1] R [5] R)= άρα δεν υπάρχουν άλλες κλάσεις ισοδυναμίας 3. Τα [0] R, [1] R, [5] R αποτελούν μια διαμέριση του Z Άσκηση Φ4.57 Για δύο οποιαδήποτε σημεία ( a, b ) και (c,d) R 2 ορίζουμε ως εξής: (a,b) (c,d) a 2 +b 2= c 2 +d 2. 1.

1. Αποδείξτε ότι η σχέση είναι σχέση ισοδυναμίας επί του R 2 2. Βρείτε όλα τα στοιχεία του συνόλου {(x,y) R 2 :(x,y) (0,0)} 3. Δώστε μια γεωμετρική ερμηνεία της κλάσης ισοδυναμίας του σημείου (3, 4). 1. (a,b) (a,b) μια και προφανώς a 2 +b 2 = a 2 +b 2. Άρα ισχύει η ανακλαστική ιδιότητα. (a,b) (b,a) μια και λόγω της αντιμεταθετικότητας της πρόσθεσης a 2 +b 2 = b 2 +a 2.Άρα ισχύει η συμμετρική ιδιότητα. Αν (a,b) (c,d) και (c,d) (e,f) τότε a 2 +b 2 = c 2 +d 2 = e 2 +f 2 οπότε (a,b) (e,f). Άρα ισχύει και η μεταβατική ιδιότητα. Επομένως η είναι σχέση ισοδυναμίας. 2. (x,y) (0,0) x 2 +y 2 =0 x=0 και y=0. Το ζητούμενο σύνολο είναι το {(0,0)} 3. [(3,4)] = {(x,y) R 2 x 2 +y 2 = 3 2 +4 2 =25} Τα ζητούμενα σημεία είναι εκείνα για τα οποία ισχύει x 2 +y 2 =25 και γεωμετρικά ανήκουν σε ένα κύκλο με κέντρο το (0,0) και ακτίνα 5. Άσκηση Φ4.58 Πόσες είναι όλες οι σχέσεις ισοδυναμίας που μπορούμε να ορίσουμε επί του συνόλου Α = {1, 2, 3}; Μια σχέση ισοδυναμίας διαμερίζει το σύνολο επί του οποίου είναι ορισμένη σε κλάσεις ισοδυναμίας. Πιο συγκεκριμένα, γνωρίζουμε ότι υπάρχει μια αμφιμονοσήμαντη συνάρτηση μεταξύ κλάσεων ισοδυναμίας και διαμερίσεων του συνόλου στο οποίο είναι ορισμένη η σχέση ισοδυναμίας. Επομένως, για να μετρήσουμε όλες τις δυνατές σχέσεις ισοδυναμίας, αρκεί να μετρήσουμε όλες τις δυνατές διαμερίσεις. Όλες οι δυνατές διαμερίσεις του Α είναι οι παρακάτω: {{1}, {2}, {3}} {{1,2}, {3}} {{1}, {2,3}} {{1,3}, {2}} {{1,2,3}} Επομένως, δεδομένου ότι υπάρχουν 5 δυνατές διαμερίσεις, υπάρχουν και 5 δυνατές σχέσεις ισοδυναμίας. Άσκηση Φ4.59 Έστω το σύνολο A = {a, b, c, d, e, f} επί του οποίου ορίζουμε τη σχέση R = {(a, a), (b, b), (c, c), (d, d), (e, e), (f, f), (a, b), (a, c), (a, d), (d, e), (e, f), (a, e), (a, f), (d, f)}. a. [5] Αποδείξτε ότι η R είναι σχέση μερικής διάταξης b. [5] Σχεδιάστε το διάγραμμα Hasse της R. c. [5] Βρέστε μια μέγιστη αλυσίδα και μια μέγιστη αντιαλυσίδα της R. a. H σχέση έχει την ανακλαστική ιδιότητα (όλα τα ζεύγη της μορφής (x,x) x A, ανήκουν στην R, την αντισυμμετρική (η μόνη περίπτωση που ζεύγη tης μορφής (x,y) και (y,x) ανήκουν στην R είναι για x=y και τη μεταβατική ιδιότητα (για όλα τα (x,y) και (y,z) που ανήκουν στην R παρατηρώ ότι και το (x,z) ανήκει στην R). Άρα είναι σχέση μερικής διάταξης b.

c. Μια μέγιστη αλυσίδα είναι το σύνολο {a,d,e,f } Μια μέγιστη αντιαλυσίδα είναι το { b,c,f} Άσκηση Φ4.60 Έστω οι σχέσεις που φαίνονται στο παρακάτω σχήμα. 1. Για κάθε μία από αυτές αναφέρετε κατά πόσον έχει την ανακλαστική, συμμετρική, αντισυμμετρική, μεταβατική ιδιότητα. 2. Για κάθε σχέση από αυτές που είναι σχέση ισοδυναμίας, δώστε τις κλάσεις ισοδυναμίας και για κάθε σχέση που είναι σχέση μερικής διάταξης, βρείτε μια μέγιστη αντιαλυσίδα. 1. Ανακλαστική Συμμετρική Αντισυμμετρική Μεταβατική Σχέση (a) NAI NAI NAI NAI Σχέση (b) NAI NAI OXI NAI Σχέση (c) OXI OXI OXI NAI Σχέση (d) OXI OXI OXI OXI Σχέση (e) OXI OXI NAI NAI 2. Mόνο η σχέση (α) είναι σχέση ισοδυναμίας. Οι κλάσεις ισοδυναμίας είναι οι [a], [b]. Mόνο η σχέση (b) είναι σχέση μερικής διάταξης. Η μέγιστη αντιαλυσίδα είναι η {a, b}.