ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

Σχετικά έγγραφα
ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2012

Εαρινό Εξάμηνο Χ. Χαραλάμπους ΑΠΘ. Ιστορία των Μαθηματικών. Χαρά Χαραλάμπους Τμήμα Μαθηματικών, ΑΠΘ

Ιστορία των Μαθηματικών

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2012

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

Ιστορία των Μαθηματικών

Αξιοσημείωτες συνέπειες του Θεμελιώδους Θεωρήματος της Άλγεβρας

Ιστορία των Μαθηματικών

Ιστορία των Μαθηματικών

ΒΑΣΙΚΑ ΘΕΩΡΗΜΑΤΑ ΣΥΝΕΧΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΥ ΟΡΙΖΟΝΤΑΙ ΣΕ ΚΛΕΙΣΤΟ ΔΙΑΣΤΗΜΑ

Ιστορία των Μαθηματικών

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ Οι συντεταγμένες ενός σημείου Απόλυτη τιμή...14

Α. Η γραφική παράσταση της συνάρτησης 2. f(x) = α x 2 + β x + γ, α 0. f (x) x. Παράδειγμα. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε.

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών Αριθμητικά σύνολα Ιδιότητες Περισσότερες ιδιότητες...

ΕΡΩΤΗΣΕΙΣ Σ-Λ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΕΣΠΕΡΙΝΟY. 0, τότε είναι και παραγωγίσιμη στο σημείο αυτό.

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών Αριθμητικά σύνολα Ιδιότητες Περισσότερες ιδιότητες...

β) Αν επιπλέον το υπόλοιπο της διαίρεσης είναι υ(x) = - 3x + 5, τότε να βρείτε το Δ(x). (Απ. α) 5 ος β) Δ(x) = x 5 5x 4 + 6x 3 + 4x 2 11x + 5)

Ιστορία των Μαθηματικών

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

Σ. Ασημέλλης. Μαθημαγικά

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου. Θέματα. A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες)

). Πράγματι, στο διάστημα [ x, x 1 2 ικανοποιεί τις προϋποθέσεις του Θ.Μ.Τ. Επομένως, υπάρχει ξ x 1,

Εαρινό Εξάμηνο Χ. Χαραλάμπους ΑΠΘ

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

ΑΠΑΝΤΗΣΕΙΣ. z x y 2xyi. Re z x y. Θα δείξουμε ότι για τους μιγαδικούς αριθμούς z για τους οποίους ισχύει ότι. z z zz. zz zz z z 1 0 z z 1 (1)

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:

Εαρινό Εξάμηνο Χ. Χαραλάμπους ΑΠΘ

1 Galois Theory, I. Stewart. Galois theory.

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2012

Σχολή Μηχανολόγων Μηχανικών ΕΜΠ 4 ο Εξάμηνο ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ. Πρώτη Ενότητα Αριθμητική Επίλυση Μη-Γραμμικών Εξισώσεων

( ) x 3 + ( λ 3 1) x 2 + λ 1

irr Q,b (x) = x 3 2, irr Q,ω (x) = x 2 + x + 1 irr (Q(ω),b) (x) = irr (Q,b) (x) = x 3 2,

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 28 MAΪΟΥ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο

Αριθμητική Ανάλυση και Εφαρμογές

Προσομοίωση προαγωγικών εξετασεων Άλγεβρας Β Λυκείου Σχ. έτος

Διάλεξη 5: Συνέχεια συναρτήσεων και όρια στο άπειρο

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017

Αριθμητική Ανάλυση και Εφαρμογές

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν α 1 x+α 0 =0,με α 0,α 1,...

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας.

Μαθηματικά. Ενότητα 9: Όριο Συνάρτησης στο Διηνεκές. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 2008

Ανάλυση Γ Λυκείου όριο συνάρτησης στο xο. 0, τότε

Γραμμική Αλγεβρα ΙΙ Διάλεξη 1 Εισαγωγή Χρήστος Κουρουνιώτης Πανεπισ τήμιο Κρήτης 19/2/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 1 19/2/ / 13

ΜΑΘΗΜΑ ΕΥΤΕΡΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ (ΟΡΙΟ ΚΑΙ ΣΥΝΕΧΕΙΑ)

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15

4.3 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

ΓΕΛ. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ

ΘΕΜΑ 1ο Α. α) Να αποδείξετε ότι, αν z 1 =α+βi και. είναι δύο μιγαδικοί αριθμοί, τότε

Απειροστικός Λογισμός Ι Ασκήσεις

Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης ΚΕΦΑΛΑΙΟ. 1 ο :Μιγαδικοί Αριθµοί

Αλγεβρικές Δομές ΙΙ. 1 Ομάδα I. Ά σ κ η σ η 1.1 Έστω R ένας δακτύλιος. Δείξτε ότι το σύνολο

Εαρινό εξάμηνο Χ. Χαραλάμπους ΑΠΘ

Απειροστικός Λογισμός Ι

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1

Επαναληπτικές Ασκήσεις

ΘΕΜΑ Α ΘΕΜΑ B. Β.1. Γνωρίζουμε ότι τα σημεία Α(π,4) και Β(-2π,6) ανήκουν στην ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΗΡΑΚΛΕΙΤΟΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β') ΔΕΥΤΕΡΑ 28 ΜΑΪΟΥ 2012

άλγεβρα και αλγεβρική σκέψη μαρία καλδρυμίδου

Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

όπου είναι γνήσια. ρητή συνάρτηση (δηλαδή ο βαθµός του πολυωνύµου υ ( x)

αβ (, ) τέτοιος ώστε f(x

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά Γ λυκείου Θ ε τ ι κ ών και οικονομικών σπουδών

Εφαρµογή στην αξιολόγηση επενδύσεων

Δώδεκα Αποδείξεις του. Θεμελιώδους Θεωρήματος της Άλγεβρας

ΜΑΘΗΜΑΤΙΚΑ. Γ' Τάξης Γενικού Λυκείου Θετική και Τεχνολογική Κατεύθυνση

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

Θ. Θεοχάρη-Αποστολίδη, Χ. Χαραλάμπους, Θεωρία Galois 2 2

ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ

ΛΧ1004 Μαθηματικά για Οικονομολόγους

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

α) f(x(t), y(t)) = 0,

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ ΑΝΑΛΥΣΗ ΟΛΟΚΛΗΡΩΜΑΤΑ ΜΙΧΑΛΗΣ ΜΑΓΚΟΣ

AΠΑΝΤΗΣΕΙΣ. z z 0 που είναι τριώνυμο με διακρίνουσα. 2 Re z 4Im z R. x 2 y x y 2

ΕΠΑΝΑΛΗΨΗ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ

Για την κατανόηση της ύλης αυτής θα συμβουλευθείτε επίσης το: βοηθητικό υλικό που υπάρχει στη

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

α έχει μοναδική λύση την x α

Απαντήσεις στα Θέματα Πανελλαδικών εξετάσεων Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης 19/05/2010 ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ

Δ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. Πολυώνυµα ΠΟΛΥΩΝΥΜΑ ΑΚΕΡΑΙΑ ΠΟΛΥΩΝΥΜΑ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

Ιστορία των Μαθηματικών

Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ

x R, να δείξετε ότι: i)

Κεφάλαιο 4: Διαφορικός Λογισμός

2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ. β) x 9x. ε) (x 1) 3(x 1) 2(x 1) 0. (2x 1) x 128 0

Εαρινό Εξάμηνο Χ. Χαραλάμπους ΑΠΘ

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο

Transcript:

Εαρινό εξάμηνο 2014 22.05.14 Χ. Χαραλάμπους

Ο Argand (1768-1822) 1822) το 1814 δημοσίευσε μία απόδειξη του ΘΘΑ στην εργασία του Réflexions sur la nouvelle théorie d'analyse. Η απόδειξη του Argand βασιζόταν στην ιδέα του d Alembert. Μιγαδικό επίπεδο και Argand (1813)

Οι μιγαδικοί αριθμοί είναι το απλούστερο σύστημα που περιέχει τους πραγματικούς και μπορεί να κατασκευαστεί από αυτούς με πολύ απλό τρόπο: C= R+R i όπου i i = 1 ( δηλαδή το i είναι αλγεβρικό πάνω από το R) Υπάρχουν άλλα τέτοια συστήματα? ( Ο Gauss φαίνεται να το πίστευε: αποκαλούσε τα άλλα τέτοια συστήματα σκιά της σκιάς ).

H πρώτη κατασκευαστική απόδειξη βασισμένη στην απόδειξη (ύπαρξης) του Argand δόθηκε το 1940 από τον Kneser (1898 1973) 1973) (μαθητής του Hilbert).

5 ερωτήματα για πολυωνυμικές (πραγματικές) εξισώσεις. 1. Έχει κάθε πολυώνυμο ρίζα? ΝΑΙ στο C σύμφωνα με ΘΘΑ 2. Πόσες ρίζες έχει ένα πολυώνυμο βαθμού n? 3. Μπορούμε να καθορίσουμε πότε οι ρίζες είναι ρητές, πραγματικές, θετικές, κλπ? 4. Ποια είναι η σχέση ανάμεσα στις ρίζες του πολυωνύμου και στους συντελεστές του? 5. Πως βρίσκουμε τις ρίζες ενός πολυωνύμου?

2. Πόσες ρίζες έχει ένα πολυώνυμο βαθμού n? Ο Descartes έδειξε ότι αν a είναι ρίζα του p(x) τότε p(x)=(x a)q(x) όπου βαθμός q(x) είναι βαθμός p(x) μείον 1. Επαναλαμβάνοντας (και θεωρώντας ότι το ΘΘΑ ισχύει) προκύπτει ότι αν ο βαθμός του p(x) είναι n>0 τότε

3. Μπορούμε να καθορίσουμε πότε οι ρίζες είναι ρητές, πραγματικές, θετικές, κλπ? κάθε πολυώνυμο περιττού βαθμού με πραγματικούς συντελεστές έχει μία πραγματική ρίζα. Παρόλο αποδεκτό τον 17 και 18 αιώνα αποδείχτηκε χη τον 19 ο αιώνα ως συνέπεια του Θεωρήματος Μέσης Τιμής από τον Λογισμό: (Κάθε συνεχής συνάρτηση που είναι θετική για κάποιες τιμές και αρνητική για κάποιες άλλες πρέπει να διασχίζει τον άξονα των x και να έχει μία ρίζα.)

Descartes: κριτήριο για το ποιοί ρητοί a/b μπορούν να είναι ρίζες ενός πολυωνύμου. Descartes: (χωρίς ρ ςαπόδειξη) άνω όριο για τον αριθμό των θετικών ριζών ενός πολυωνύμου όριο: μετράμε τον αριθμό των αλλαγών των προσήμων των συντελεστών από + σε και από σε + (ο αριθμός είναι ίσος με το όριο, ή μειωμένο κατά πολλαπλάσια του δύο) Descartes: (χωρίς απόδειξη) άνω όριο για τον αριθμό των αρνητικών ριζών ενός πολυωνύμου όριο: ο αριθμός θό των θετικών ριζών του f( x)

Ερώτημα 4: Ποια είναι η σχέση ανάμεσα στις ρίζες του πολυωνύμου και στους συντελεστές του? πως προκύπτουν οι συντελεστές από τις ρίζες? σχέση ανάμεσα στις ρίζες ενός δευτεροβάθμιου πολυωνύμου και στους συντελεστές του πολυωνύμου: γνωστή. αντίστοιχη σχέση για τις ρίζες και τους συντελεστές πολυωνύμων βαθμού έως και 5 από τον Viete. Ο Newton εισήγαγε την έννοια των συμμετρικών συναρτήσεων που εκφράζουν αυτές τις σχέσεις ανάμεσα στις ρίζες και τους συντελεστές για πολυώνυμα βαθμού n. (Ρόλος ςσυμμετρικών συναρτήσεων στην επίλυση με ριζικά και Θεωρία Galois).

5. Πως βρίσκουμε τις ρίζες ενός πολυωνύμου? Το επιθυμητό είναι να δοθεί η λύση με ριζικά όπως για πολυώνυμα βαθμού 2,3,4. Προσπάθεια: εύρεση τέτοιας λύσης (ακριβής λύση) για πολυώνυμα βαθμού μεγαλύτερου του 4. Παράλληλα: όταν δεν υπάρχει ακριβής λύση γίνεται ανάπτυξη μεθόδων για την εύρεση προσεγγιστικών λύσεων π.χ. Newton (17 ος αιώνας), Horner (19 ος αιώνας)

Μελέτη των λύσεων οδηγεί στην μελέτη των ιδιοτήτων διάφορων συστημάτων αριθμών (πχ σύστημα των φυσικών αριθμών, των ρητών, των μιγαδικών, κλπ) ) Newton: αρνητικοί αριθμοί «ποσότητες μικρότερες του τίποτα» Leibniz: μιγαδικοί αριθμοί «αμφίβια ανάμεσα στα όντα και μη όντα» Κανόνες όπως ( 1)( 1)=1 γνωστοί από την αρχαιότητα. Όμως χωρίς δικαιολόγηση. Από πότε γίνονται δεκτοί για σύμβολα (δηλ. ( a) ( a)=a)?

(1791-1858) 1858) Peacock: «Treatise on Algebra»(1830) και αργότερα μετά το 1839 την «αριθμητική άλγεβρα» και στην «συμβολική άλγεβρα». «αριθμητική άλγεβρα»: αφορά τις πράξεις σε σύμβολα που αντιπροσωπεύουν θετικούς αριθμούς και οι κανόνες τους γίνονται αυτόματα αποδεκτές, π.χ. a-(b-c)=a-b+c όταν b > c και a > b-c «συμβολική άλγεβρα»: πράξεις σε σύμβολα που δεν αντιπροσωπεύουν κάποιες θετικές ποσότητες, π.χ. a-(b-c)=a-b+c

Euler 1707-1783 Ελβετία, Ρωσία, Γερμανία, Ρωσία 886 βιβλία και εργασίες

«Introduction in analysin infinitorum» 1748 O Euler πήρε τον διαφορικό λογισμό του Leibniz και τη μέθοδο ρυθμών μεταβολής (fluxions) του Newton και τα έκανε μέρος ενός γενικότερου κλάδου των μαθηματικών : της «Ανάλυσης» που ασχολείται με τη μελέτη άπειρων διαδικασιών. Σύγκριση της σημασίας της «Εισαγωγής στην ανάλυση» του Euler με 1. τα «Στοιχεία» του Ευκλείδη: ( συνδυασμός της γεωμετρικής δουλειάς του Ευδόξου και Θεαίτητου) 2. την «Εισαγωγή» του Viete: (συνδυασμός της αλγεβρικής δουλειάς των al Qwarismi και Cardano)

Συμβολισμοί που εισήγαγε ο Euler f(x) (1734) e (1727) π (1737) i (1777) Σ (1755) και άλλα πολλά (1748) φ(m) ( ) : αριθμός φυσικών αριθμών μικρότεροι του m που είναι πρώτοι προς το m

Θεωρία Αριθμών και Euler Απόδειξη (Euler) (Πότε καθιερώθηκε η χρήση της μαθηματικής επαγωγής? ποια είναι η σχέση της με το σύστημα των φυσικών αριθμών?)

Πρόβλημα: να σχεδιάσουμε έναν περίπατο που θα περνάει από όλες τις γέφυρες μία και μόνο μία φορά

οι κορυφές του γραφήματος είναι τα κομμάτια της γης οι ακμές του είναι οιγέφυρες Απάντηση του Euler: δεν μπορεί να σχεδιαστεί τέτοιος περίπατος. V-E+F=2 Η τοπολογία?? (θέμα παρουσίασης)