ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ



Σχετικά έγγραφα
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΘΕΜΑ Α Α1. Έστω t 1,t 2,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν, που έχουν

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

F είναι ίσος µε ν. i ÏÅÖÅ ( ) h 3,f 3.

Α. α) ίνεται η συνάρτηση F(x)=f(x)+g(x). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F (x)=f (x)+g (x).

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2005

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η

Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2011 ΕΚΦΩΝΗΣΕΙΣ

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά και Στοιχεία Στατιστικής Γ λυκείου γ ε ν ι κ ή ς π α ι δ ε ί α ς

, και για h 0, . Άρα. Α2. Μια συνάρτηση f λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε σημεία x.

Μονάδες 10. x. (μονάδες 2) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ 1 Ο Α1. Απάντηση από το Σχολικό βιβλίο σελίδα 28

P A B P(A) P(B) P(A. , όπου l 1

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ

x. Αν ισχύει ( ) ( )

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ

Μονάδες 10 ΦΡΟΝΤΙΣΤΗΡΙΑ ΦΛΩΡΟΠΟΥΛΟΥ Σελίδα 1

Μαθηµατικά & Στοιχεία Στατιστικης Γενικής Παιδείας Γ Λυκείου 2001 ÈÅÌÅËÉÏ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 1 η εκάδα

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001 ΕΚΦΩΝΗΣΕΙΣ

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

P(A ) = 1 P(A). Μονάδες 7

Πανελλαδικες Εξετασεις Γ Λυκειου Μαθηµατικα Γενικης Παιδειας

(f (x) g(x)) = f (x) g(x)+f (x) g (x) (μονάδες 2)

ΑΠΑΝΤΗΣΕΙΣ. ευτέρα, 17 Μα ου 2010 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ. Οµάδα Μαθηµατικών της Ώθησης. Επιµέλεια:

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ

( ) ( ) ( ) ( ) ( ) Γ' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ A ΘΕΜΑ Β

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014

1 και Ρ(Β) = τότε η Ρ (Α Β) είναι ίση µε: 2 δ και Ρ(Α Β) = 4

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΘΕΜΑ Α Α1. Έστω t 1,t 2,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν, που έχουν

A. Να δείξετε ότι για δύο συμπληρωματικά ενδεχόμενα Α και Α ενός δειγματικού χώρου, ισχύει

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΚΕΦΑΛΑΙΟ. 1. α. Tι ονοµάζεται συνάρτηση από το σύνολο Α στο σύνολο Β; β. Tι ονοµάζεται πραγµατική συνάρτηση πραγµατικής µεταβλητής;

Ω ισχύει: P A B P(A) P(B) P(A (Μονάδες 7 ) του πεδίου ορισμού της; (Μονάδες 4 ) ii. Να δώσετε τον ορισμό της μέσης τιμής ενός συνόλου ν παρατηρήσεων.

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

(f(x)+g(x)) =f (x)+g (x), x R

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2004

ΘΕΜΑ Α Α1. Αν και είναι δύο συμπληρωματικά ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι για τις πιθανότητές τους ισχύει: ( ) 1 ( ).

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 20 ΜΑΪΟΥ 2013 ΑΠΑΝΤΗΣΕΙΣ. x x x 4

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Ημερομηνία: Πέμπτη 5 Ιανουαρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2011 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

,,, και τα ενδεχόμενα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 2014

ΘΕΜΑ 1o A. Να αποδείξετε ότι για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ισχύει ότι Ρ(Α»Β)=Ρ(Α)+Ρ(Β) Μονάδες 10

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

Αν Α και Β είναι δύο ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι: Αν Α Β τότε Ρ(Α) Ρ(Β)

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ

x, όπου c σταθερός πραγματικός αριθμός. Μονάδες 10

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ (1η σειρά)

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

ΑΠΑΝΤΗΣΕΙΣ. Επιμέλεια: Ομάδα Μαθηματικών της Ώθησης

ευτέρα, 18 Μα ου 2009 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ

ÈÅÌÁÔÁ 2007 ÏÅÖÅ ( ) Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

2 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ και. Έστω Α, Β ενδεχόµενα ενός δειγµατικού χώρου Ω µε Ρ(Α) = 8

(f(x) + g(x)) = f (x) + g (x).

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η

3 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 21. (1)

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

4 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 31.

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 3 ΣΕΛΙΔΕΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

F x h F x f x h f x g x h g x h h h. lim lim lim f x

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Transcript:

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Έστω t, t,..., t ν οι παρατηρήσεις µιας ποσοτικής µεταβλητής Χ ενός δείγµατος µεγέθους ν, που έχουν µέση τιµή x. Σχηµατίζουµε τις διαφορές t x, t x,..., t v x. Να αποδείξετε ότι ο αριθµητικός µέσος των διαφορών αυτών είναι ίσος µε µηδέν. Μονάδες 7 Α. Αν x, x,, x ν είναι οι παρατηρήσεις µιας ποσοτικής µεταβλητής X ενός δείγµατος µεγέθους ν και w, w,..., w ν είναι οι αντίστοιχοι συντελεστές στάθµισης (βαρύτητας), να ορίσετε το σταθµικό µέσο της µεταβλητής Χ. Μονάδες 4 Α3. Έστω Ω ο δειγµατικός χώρος ενός πειράµατος τύχης. Να δώσετε τους ορισµούς του βέβαιου ενδεχοµένου και του αδύνατου ενδεχοµένου. Μονάδες 4 Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασµένη. α) Αν οι συναρτήσεις f, g έχουν στο x 0 όρια πραγµατικούς αριθµούς, τότε lim( f ( x) g( x)) lim f( x) limg( x) x x0 x x0 x x0 β) Για κάθε x > 0 ισχύει ( x ). x γ) Η ταχύτητα ενός κινητού που κινείται ευθύγραµµα και η θέση του στον άξονα κίνησής του εκφράζεται από τη συνάρτηση x f (t), τη χρονική στιγµή t 0 είναι υ(t 0 ) f (t 0 ). δ) Μια συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστηµα του πεδίου ορισµού της, όταν για οποιαδήποτε σηµεία x, x µε x < x ισχύει f (x ) < f (x ). ε) Η διάµεσος είναι ένα µέτρο θέσης, το οποίο επηρεάζεται από τις ακραίες παρατηρήσεις. Μονάδες 0 Τεχνική Επεξεργασία: Keystone

ΘΕΜΑ Β ίνεται η συνάρτηση f( x) x x+, x f( x) Β. Να υπολογίσετε το lim. x x Μονάδες 0 Β. Να υπολογίσετε το συντελεστή διεύθυνσης της εφαπτοµένης της γραφικής παράστασης της συνάρτησης f στο σηµείο της µε τετµηµένη x 0 0. Μονάδες 0 B3. Να υπολογίσετε τη γωνία που σχηµατίζει η παραπάνω εφαπτοµένη µε τον άξονα x x. Μονάδες ΘΕΜΑ Γ Οι τιµές της απώλειας βάρους, σε κιλά, 60 ατόµων, τα οποία ακολούθησαν ένα πρόγραµµα αδυνατίσµατος, έχουν οµαδοποιηθεί σε κλάσεις ίσου πλάτους, όπως εµφανίζονται στον παρακάτω πίνακα: ΑΠΩΛΕΙΑ ΒΑΡΟΥΣ ΣΕ ΚΙΛΑ ΚΕΝΤΡΟ ΚΛΑΣΗΣ x i ΣΥΧΝΟΤΗΤΑ ν i [0...)... 0 [......) 6 40 [......)... 4 [......)... 30 [......)... ΣΥΝΟΛΟ 60 Γ. Να αποδείξετε ότι το πλάτος c κάθε κλάσης είναι ίσο µε 4. Μονάδες 6 Γ. Αφού µεταφέρετε στο τετράδιό σας τον παραπάνω πίνακα σωστά συµπληρωµένο, να υπολογίσετε τη µέση τιµή x και την τυπική απόκλιση s. Μονάδες 8 Γ3. Να εξετάσετε αν το δείγµα είναι οµοιογενές. Μονάδες Γ4. Αν κάθε άτοµο έχει την ίδια πιθανότητα να επιλεγεί, να υπολογίσετε την πιθανότητα του ενδεχοµένου Α: «η απώλεια βάρους ενός ατόµου που επιλέχθηκε τυχαία να είναι από 7 µέχρι και 4 κιλά». Μονάδες 6 Τεχνική Επεξεργασία: Keystone

ίνεται ο τύπος ν k xi i ν i s k i xiν i ν ΘΕΜΑ Έστω Α, Β δύο ενδεχόµενα ενός δειγµατικού χώρου Ω µε αντίστοιχες πιθανότητες Ρ(Α), Ρ(Β) και η συνάρτηση f( x) ln( x P( A)) ( x P( A)) + P( B), x> P( A). Να µελετήσετε τη συνάρτηση f ως προς τη µονοτονία και τα ακρότατα. Μονάδες 3. Αν η συνάρτηση f παρουσιάζει ακρότατο στο σηµείο x 0 µε τιµή f (x 0 ) 0, να 3 αποδείξετε ότι: PA ( ) και PB ( ) 3 Μονάδες Λαµβάνοντας υπόψη το ερώτηµα και επιπλέον ότι PA ( B), να βρείτε την 6 πιθανότητα: 3. να µην πραγµατοποιηθούν ταυτόχρονα τα ενδεχόµενα Α, Β. Μονάδες 4. να πραγµατοποιηθεί µόνο ένα από τα ενδεχόµενα Α, Β. Μονάδες Τεχνική Επεξεργασία: Keystone 3

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. Ο ζητούµενος αριθµητικός µέσος είναι: ( t x) + ( t x) +... ( t ) (... ) ν x t+ t + + tv ( vx) t + t +... t v ν v v Α. Θεωρία σελίδα 86, 87, σχολικό βιβλίο. x x x 0. Α3. Θεωρία σελ. 40, σχολικό βιβλίο. Βέβαιο είναι το ενδεχόµενο που πραγµατοποιείται πάντα και τέτοιο είναι το σύνολο Ω. Αδύνατο ενδεχόµενο είναι το ενδεχόµενο που δεν πραγµατοποιείται ποτέ και τέτοιο είναι το κενό σύνολο. Α4. α β γ δ ε Σ Λ Σ Λ Λ ΘΕΜΑ Β Β. Για x είναι: f x x x+ x x+ x x+ x x x x ( x x+ )( x x+ + ) ( x x+ ) ( x )( x x+ + ) ( x )( x x+ + ) ( x x) x( x ) x ( x )( x x+ + ) ( x )( x x+ + ) x x+ + f( x) x Άρα lim lim. x x x x x+ + ( ) ( ) B. Είναι x f ( x) ( x x+ ) ( x x+ ) (x ) x x+ x x+ x x+ Ο συντελεστής διεύθυνσης της εφαπτοµένης της γραφικής παράστασης της συνάρτησης f στο σηµείο µε τετµηµένη x 0 0 είναι: 0 f (0). 0 0+ Β3. Αν ω είναι η γωνία που σχηµατίζει η παραπάνω εφαπτοµένη µε τον άξονα x x τότε 3π είναι: εφω f (0), και επειδή 0 ω < π, προκύπτει ω. 4 Τεχνική Επεξεργασία: Keystone 4

ΘΕΜΑ Γ Γ. Αν το πλάτος κάθε κλάσης είναι c, τότε οι δύο πρώτες κλάσεις είναι [0, c) και [c, c). Αφού το κέντρο της ης c+ c κλάσης δίνεται ότι είναι 6, προκύπτει 6 c 4. Γ. ΑΠΩΛΕΙΑ ΒΑΡΟΥΣ ΣΕ ΚΙΛΑ ΚΕΝΤΡΟ ΚΛΑΣΗΣ ΣΥΧΝΟΤΗΤΑ Χ i ν i [0, 4) 0 [4, 8) 6 40 [8, ) 0 4 [, 6) 4 30 [6, 0) 8 ΣΥΝΟΛΟ 60 ν ixi 600 ι x ( 0+ 6 40+ 0 4+ 4 30+ 8 ) 0 κιλά. 60 60 60 s x x ν i( i ) 0( 0) + 40(6 0) + 4(0 0) + 30(4 0) + (8 0) 60 i 60 4000. Άρα s κιλά. 60 Γ3. Είναι s CV 0% >0%. Άρα το δείγµα δεν είναι οµοιογενές. x 0 Γ4. N( A) ν + ν3 + ν4 40 + 4 + 30 4 4 70 7 PA ( ). N( Ω) 60 60 60 6 Παρατήρηση: Για τον υπολογισµό της τυπικής απόκλισης s στο Γ ερώτηµα θα µπορούσε εναλλακτικά να χρησιµοποιηθεί και ο τύπος που δίνεται ως εξής: xv s x v ( ) (0000) ( x) 00. Άρα s κιλά. i i i i i 60 i 60 60 Τεχνική Επεξεργασία: Keystone

ΘΕΜΑ. ( x P A ) ( ) f ( x) ( x P( A) x P( A) x P( A) ( x+ P( A)) ( + x P( A)). x P( A) Είναι f ( x) 0 x P( A) + ή x P( A). Είναι x > P(A) διότι Ρ(Α) + > Ρ(Α) > 0 που ισχύει, ενώ x < P(A) διότι Ρ(Α) < Ρ(Α) < 0, άρα η x απορρίπτεται. Για το πρόσηµο της f ( x) έχουµε: α) x > P(A) άρα x P(A) > 0 β) x > P(A) άρα x P(A) > 0 και x P(A) + > > 0. γ) Έτσι f ( x) > 0 x+ P( A) > 0 x< + P( A) και f ( x) < 0 x + PA ( ) < 0 x> + PA ( ). Έτσι ο πίνακας µεταβολών για την f είναι: x f(x) f(x) P( Α) + +P( Α) - + Εποµένως η f είναι γνησίως αύξουσα στο (Ρ(Α), + Ρ(Α)] και γνησίως φθίνουσα στο [ + P(A), + ). Η f παρουσιάζει µέγιστο στο x + Ρ(Α) το f ( + P( A) ) ln( + P( A) P( A) ) ( + P( A) P( A) ) + P( B) ln + PB ( ) PB ( ).. Αφού η f παρουσιάζει ακρότατο στο σηµείο x 0 /3, από θα είναι: + Ρ(Α) /3 Ρ(Α) /3 Ρ(Α) /3. Επίσης αφού f (x 0 ) 0 είναι λόγω του f( + P( A)) 0 P( B) 0 P( B). 3. Η ζητούµενη πιθανότητα είναι: PA ( B ) PA ( B). Όµως PA ( B) PA ( ) + PB ( ) PA ( B) άρα PA ( B) PA ( ) + PB ( ) PA ( B) +. 3 6 3 Άρα PA ( B ). 3 3 4. Η ζητούµενη πιθανότητα είναι: [ ] Άρα P[ A B B A ] P ( A B) ( B A) P( A) + P( B) P( A B). ( ) ( ) + +. 3 3 3 3 Τεχνική Επεξεργασία: Keystone 6