Π. Σαπουντζής Μέτρηση της ευαισθησίας φωτεινής αντίθεσης (contrast sensitivity) µε χρήση κάθετων grating. Για τη µελέτη των λειτουργικών χαρακτηριστικών της χωρικής όρασης (spatial vision) είναι απαραίτητη η χρήση κατάλληλων οπτικών ερεθισµάτων. Λόγω της παρατήρησης ότι οι νευρώνες στην οπτική οδό είναι εξειδικευµένοι σε διαφορετικές χωρικές συχνότητες, ο απλούστερος τρόπος για την αξιολόγηση της ευαισθησίας φωτεινής αντίθεσης (contrast sensitivity), είναι η χρησιµοποίηση ερεθισµάτων µε κάποια περιοδική διαµόρφωση, όπως τα gratings τα οποία έχουν το πλεονέκτηµα ότι µπορούν να εκφραστούν µαθηµατικά. Τα gratings αποτελούνται από εναλλασσόµενες φωτεινές και σκοτεινές ράβδους (βλ. Εικ.1). Φωτεινότητα (L) L 1 cycle L max L mean L min Φωτεινότητα (L) 1 cycle L max L mean L min Οριζόντια Θέση (χ) Εικ.1. Gratings µε τετραγωνική (square wave) και ηµιτονοειδή (sine wave) διαµόρφωση. - 1 -
Γενικά Αν πολλαπλασιάσουµε τις συναρτήσεις cosχ ή sinχ εξωτερικά µε έναν αριθµό αυτό θα µεταβάλλει την µέγιστη και την ελάχιστη τιµή της συνάρτησης. Έτσι ενώ η µέγιστη τιµή που µπορούν να πάρουν οι συναρτήσεις cosχ και sinχ είναι 1 και η ελάχιστη -1, η συνάρτηση για παράδειγµα sinχ έχει µέγιστη τιµή και ελάχιστη -. Εικ.. Η συνάρτηση για sinχ έχει µέγιστη τιµή και ελάχιστη - ( ), ενώ η συνάρτηση sinχ έχει µέγιστη τιµή 1 και ελάχιστη -1 ( ). Στην περίπτωση των gratings (εικ. 1) αυτό που διαφοροποιείται µε τις αλλαγές της ελάχιστης και µέγιστης τιµής είναι το contrast. Η φωτεινότητα παραµένει σταθερή. Η απόσταση της µέγιστης τιµής µιας ηµιτονοειδούς συνάρτησης από τον χ άξονα λέγεται πλάτος της συνάρτησης. Έτσι η συνάρτηση sinχ έχει πλάτος (amplitude) 1 ενώ η sinχ έχει πλάτος (βλ. Εικ.). Εικ.3. Η συνάρτηση sinχ ( ) έχει µεγαλύτερη συχνότητα από τη sinχ ( ), ταλαντώνεται δηλαδή πιο γρήγορα. - -
Αν πολλαπλασιάσουµε τις συναρτήσεις cosχ ή sinχ εσωτερικά µε έναν αριθµό αυτό θα µεταβάλλει την συχνότητα (frequency) της συνάρτησης. Όσο µεγαλύτερος είναι ο αριθµός µε τον οποίο πολλαπλασιάζουµε εσωτερικά την συνάρτηση τόσο µεγαλύτερη είναι η συχνότητα της. Έτσι η συνάρτηση sinχ έχει µεγαλύτερη συχνότητα από τη sinχ (βλ. Εικ.3). Σειρές Fourier Ορισµός : Αρµονικό λέγεται ένα κύµα το οποίο έχει ηµιτονοειδή ή συνηµιτονοειδή µορφή. ιαφορετικά λέγεται µη αρµονικό. Παραδείγµατα: (α) (β) Εικ.. Οι αρµονικές συναρτήσεις ηµχ (α), συνχ (β) Το ανάπτυγµα σε σειρά Fourier µας επιτρέπει να αναλύσουµε ένα περιοδικό, µε περίοδο, αλλά µη αρµονικό κύµα (Εικ.5), σε άθροισµα αρµονικών συναρτήσεων (ηµίτονων, συνηµίτονων), που έχουν περίοδο ακέραια X X υποπολλαπλάσια της περιόδου του αρχικού κύµατος, δηλαδή X,, κ.τ.λ. 3 Η τεχνική αυτή πήρε το όνοµα της από τον Γάλλο µαθηµατικό Jean Baptiste Joseph, Baron de Fourier (1768-1830). Έτσι µια περιοδική συνάρτηση f (x) µπορεί να παρασταθεί ως µία σειρά Fourier της µορφής, A0 f ( x) = + Am cos mkx + Bm sin mkx m= 1 όπου k = π, η περίοδος του κύµατος. m= 1-3 -
Εικ.5. Η µη αρµονική, αλλά περιοδική, συνάρτηση f ( x) = ηµχ + ηµ χ. Οι συντελεστές A 0, A, B προσδιορίζονται από τις παρακάτω σχέσεις. m m A0 Am = = X 0 0 f ( x) dx, 0 f ( x)cos mkxdx, Bm = f ( x)sin mkxdx X Ο προσδιορισµός των παραπάνω συντελεστών, αναφέρεται ως ανάλυση Fourier. Τυχόν συµµετρίες της συνάρτησης που αναλύεται σε σειρά Fourier, µπορεί να απλοποιήσει σηµαντικά τους υπολογισµούς. Έτσι αν η συνάρτηση f (x) είναι άρτια δηλαδή συµµετρική γύρω από τον άξονα yy τότε η σειρά Fourier θα περιέχει µόνο συνηµίτονα (που είναι άρτιες συναρτήσεις). ηλαδή θα είναι B m = 0 για όλα τα m. Παρόµοια αν η συνάρτηση είναι περιττή δηλαδή είναι συµµετρική ως προς την αρχή των αξόνων τότε η σειρά Fourier θα περιέχει µόνο ηµίτονα. ηλαδή θα είναι A m = 0 για όλα τα m. Για παράδειγµα ας υπολογίσουµε το ανάπτυγµα Fourier ενός τετραγωνικού κύµατος, µε περίοδο, αυτού που οι Campbell και Robson (1967) χρησιµοποίησαν στην εργασία τους. Το κύµα φαίνεται στην Εικ. 6 και περιγράφεται µαθηµατικά από τη σχέση, + 1,0 < x < X / f ( x) = 1, / < x < X - -
Εικ.6. Square wave, µε περίοδο, συµµετρικό ως προς την αρχή των αξόνων. Επειδή η f (x) είναι περιττή θα είναι A m = 0, και δηλαδή, επειδή όµως Bm = B m = X / 0 ( + 1)sin mkxdx + X 1 [ cos mkx] mπ k = π, παίρνουµε 1 mπ X / ( 1)sin mkxdx X / X 0 + [cos mkx] X / B m = (1 cos mπ ),για m = 1,,3, mπ Εποµένως οι συντελεστές Fourier είναι, B = 1 π, B = 0, B 3 =, 3π B = 0, B 5 =,, 5π και η σειρά που προκύπτει είναι, 1 1 f (x) = (sinκχ + sin 3κχ + sin 5κχ +...). π 3 5 Ο όρος της σειράς Fourier µε τη µικρότερη συχνότητα κχ π sin λέγεται θεµελιώδης (fundamental), ενώ οι υπόλοιποι όροι είναι γνωστοί ως αρµονικές (harmonics). Στη σειρά Fourier του παραδείγµατος απουσιάζουν οι άρτιοι όροι και έτσι εµφανίζονται µόνο οι περιττές αρµονικές (3 η, 5 η κ.τ.λ.). Στα παρακάτω σχήµατα βλέπουµε πώς η θεµελιώδης συχνότητα µαζί µε τις αρµονικές προσεγγίζουν το τετράγωνο κύµα. - 5 -
(α) Η θεµελιώδης συχνότητα κχ π sin. (β) Η θεµελιώδης + την 3 η αρµονική sin 3κχ 3π (γ) Η θεµελιώδης + την 3 η + την 5 η αρµονική sin 5κχ 5π - 6 -
ρήση των σειρών Fourier στην ανάλυση των gratings. Η ανάλυση Fourier,όπως είδαµε παραπάνω, δείχνει ότι ένα τετραγωνικό κύµα µπορεί να γραφεί ως άθροισµα ηµίτονων των οποίων οι συχνότητες είναι περιττά πολλαπλάσια της θεµελιώδους (fundamental) συχνότητας. Έτσι ένα τετράγωνο κύµα µε περίοδο και πλάτος 1 µπορεί να θεωρηθεί ως το άθροισµα της άπειρης σειράς, πχ (sin + π 1 sin 3 3 πχ + 1 sin 5 5 πχ +...) 1 1 ή (sinκχ + sin3κχ + sin5κχ +...) π 3 5, όπου κ = π Παρατηρούµε ότι το πλάτος του πρώτου όρου της σειράς (θεµελιώδης) είναι /π ενώ τα πλάτη των υπόλοιπων όρων (3 η, 5 η αρµονική) συνεχώς µειώνονται (/3π για την 3 η αρµονική, /5π για την 5 η αρµονική κ.τ.λ.), ενώ ταυτόχρονα αυξάνονται και οι συχνότητες τους (το χ πολλαπλασιάζεται µε µεγαλύτερο αριθµό). Η τρίτη αρµονική για παράδειγµα έχει τρεις φορές µεγαλύτερη συχνότητα από την θεµελιώδη και τρεις φορές µικρότερο πλάτος. Εικ.7. Επάνω: H καµπύλη ευαισθησίας φωτεινής αντίθεσης (contrast sensitivity function) για τους δύο τύπους grating, sine wave ( ) και square wave ( ). Κάτω: O λόγος των contrast sensitivities για κάθε χωρική συχνότητα. Η συνεχής γραµµή δηλώνει τον λόγο /π. (Campbell and Robson 1967). - 7 -
Από την Εικ.7 βλέπουµε ότι η καµπύλη ευαισθησίας φωτεινής αντίθεσης (contrast sensitivity function) φθίνει για συχνότητες µεγαλύτερες των 3 c/deg και άρα περιµένουµε ότι για ένα square wave µε µεγάλη συχνότητα, οι 3 ες,5 ες, αρµονικές θα είναι δυσδιάκριτες λόγω της µεγάλης τους συχνότητας και του µικρού τους πλάτους. Για αυτό το λόγο η ορατότητα ενός square wave grating καθορίζεται από το πλάτος του 1 ου όρου ( κχ π sin ). Το ερώτηµα είναι εάν το οπτικό µας σύστηµα αναλύει το σήµα που προσλαµβάνει σε σειρά Fourier. Ένα αυτό συµβαίνει τότε θα πρέπει η ευαισθησία µας στο contrast όταν το οπτικό ερέθισµα είναι ένα square wave grating (το οποίο περιγράφεται µαθηµατικά, από τη συνάρτηση κχ π sin, δηλαδή τον θεµελιώδη όρο), να είναι /π φορές µεγαλύτερη από την ευαισθησία σε ένα sine wave grating ίδιας συχνότητας (το οποίο περιγράφεται µαθηµατικά από τη συνάρτηση sin κχ ). Για να εξεταστεί αυτή η υπόθεση υπολογίστηκε από τους Campbell και Robson ο λόγος των contrast sensitivities (square/sine) για κάθε χωρική συχνότητα και τα αποτελέσµατα φαίνονται στην Εικ.7 κάτω. Είναι φανερό ότι ο λόγος δεν παρεκκλίνει σηµαντικά από την τιµή /π για συχνότητες µεγαλύτερες των 0,8 c/deg. Για συχνότητες µικρότερες των 0,8 c/deg η 3 η αρµονική (~, c/deg) συνεισφέρει περισσότερο από την θεµελιώδη στην οπτική αντίληψη του αµφιβληστροειδικού ειδώλου µια και ο οφθαλµός παρουσιάζει µεγαλύτερη contrast sensitivity για αυτή την συχνότητα. Ως αποτέλεσµα, όταν η χωρική συχνότητα ενός square wave, του οποίου το contrast βρίσκεται κοντά στο threshold, είναι µεγαλύτερη από 0,8 c/deg το square wave προσλαµβάνεται ως sine wave (µε πλάτος /π), παρουσιάζει δηλαδή την ίδια συνάρτηση (function). Για χωρικές συχνότητες όµως µικρότερες των 0,8 c/deg το threshold που καταγράφεται είναι πολύ µικρότερο (η ευαισθησία εποµένως µεγαλύτερη) όταν η εξέταση γίνεται µε square wave grating. Εξαιτίας των ατελειών που κάθε οπτικό σύστηµα παρουσιάζει το contrast του αµφιβληστροειδικού ειδώλου ενός grating θα είναι µικρότερο από αυτό του προβαλλόµενου grating. Ακόµα και αν υποθέσουµε πως ο οφθαλµός δεν παρουσιάζει εκτροπές χαµηλής και υψηλής τάξης, ο σχηµατισµός ευκρινούς αµφιβληστροειδικού ειδώλου θα περιορίζεται από τα όρια ευκρίνειας των φωτοϋποδοχέων και την περίθλαση. Έτσι για διάµετρο κόρης,5 mm, οι Fourier συνιστώσες ενός αντικειµένου µε χωρικές συχνότητες µεγαλύτερες από 78 c/deg (λ=560 nm) δεν απεικονίζονται ευκρινώς στον αµφιβληστροειδή, ενώ προκαλείται και aliasing λόγω της υπο-δειγµατοληψίας (under-sampling) των φωτοϋποδοχέων. Εποµένως ένα square wave grating µε θεµελιώδη συχνότητα µεγαλύτερη των 6 c/deg θα απεικονιστεί στον αµφιβληστροειδή ως είδωλο του οποίου οι υψηλότερες αρµονικές (78 c/deg και πάνω) θα απουσιάζουν. (ένα square wave grating µε θεµελιώδη συχνότητα 6 c/deg παρουσιάζει 3 η αρµονική συχνότητα 3 x 6 = 78 c/deg). Με άλλα λόγια το είδωλο ενός square wave θα είναι ένα sine wave grating µε την ίδια χωρική συχνότητα. Εποµένως, λόγω του γεγονότος ότι το κύµα µε ηµιτονοειδή διαµόρφωση (sine wave) περιέχει µία µόνο χωρική συχνότητα αποτελεί το πιο κατάλληλο για την αξιολόγηση της χωρικής όρασης. Μετασχηµατισµός Fourier (Fourier Transform) Ο µετασχηµατισµός Fourier αποτελεί µία γενίκευση του αναπτύγµατος σε σειρά Fourier, µόνο που ο µετασχηµατισµός Fourier µπορεί να εφαρµοστεί και σε µη περιοδικές συναρτήσεις. - 8 -
Έτσι αν µία συνάρτηση εξαρτάται από µία χωρική µεταβλητή χ, ο µετασχηµατισµός Fourier την µετατρέπει σε συνάρτηση (χωρικής) συχνότητας f = χ 1. Αν η µεταβλητή της µετασχηµατιζόµενης συνάρτησης είναι χρονική (t), o µετασχηµατισµός Fourier την µετατρέπει σε συνάρτηση χρονικής συχνότητας ω = t 1. Με απλά λόγια θα µπορούσαµε να πούµε ότι ο µετασχηµατισµός Fourier µας δείχνει από ποιες συχνότητες αποτελείται η συνάρτηση µας και πόσο ισχυρές είναι αυτές. Παραδείγµατα: 1 1 Ι) Έστω η συνάρτηση, f (x) = (sin χ + sin 3χ + sin 5χ) π 3 5 που όπως είδαµε προηγουµένως οι όροι της αποτελούν τις τρεις πρώτες αρµονικές του τετραγωνικού κύµατος του παραπάνω παραδείγµατος ( για κ = 1 ). Κάθε όρος της παραπάνω συνάρτησης έχει διαφορετική συχνότητα, µε τον πρώτο όρο να περιέχει την µικρότερη συχνότητα (θεµελιώδη) και το µεγαλύτερο πλάτος (amplitude). Αυτό καθιστά τον πρώτο όρο τον πιο ισχυρό από τους τρεις, που όπως είδαµε παίζει τον σηµαντικότερο ρόλο στην προσέγγιση του τετραγωνικού κύµατος, µε αποτέλεσµα αυτή η συχνότητα να αντικατοπτρίζεται περισσότερο στο µτεασχηµατισµό Fourier. Η συνάρτηση f και ο µετασχηµατισµός της φαίνονται παρακάτω: Στα αριστερά ( ) είναι σχεδιασµένη η συνάρτηση f (χ) η οποία αποτελείται από τρεις διαφορετικές συχνότητες. εξιά ( ) φαίνεται ο Fourier µετασχηµατισµός F (u) όπου u = χ 1 η χωρική συχνότητα. Ο µετασχηµατισµός φανερώνει ότι η f (χ ) αποτελείται από τρεις διαφορετικές συχνότητες ισχυρότερη εκ των οποίων είναι η πρώτη (στον άξονα ψ προβάλλεται η «ενέργεια» της συνάρτησης, η οποία εκφράζεται σε πλάτος/amplitude ή σε ισχύ/power = (amplitude) ). ΙΙ) Αν θεωρήσουµε τώρα τη συνάρτηση f ( χ ) = cos(6πχ) η οποία περιέχει µόνο µία συχνότητα (που είναι 3), o µετασχηµατισµός Fourier είναι : - 9 -
Πέρα από το Συνεχή Μετασχηµατισµό Fourier που ορίζεται για συνεχείς και ολοκληρώσιµες συναρτήσεις, ορίζεται και ο ιακριτός Μετασχηµατισµός Fourier (Discrete Fourier Transform) για ένα σύνολο από διακριτά σηµεία. Στα περισσότερα υπολογιστικά πακέτα ο µετασχηµατισµός Fourier υλοποιείται µε έναν αλγόριθµο ο οποίος εκτελεί τον µετασχηµατισµό Fourier περίπου 600 φορές γρηγορότερα. Ο αλγόριθµος αυτός είναι γνωστός ως Ταχύς Μετασχηµατισµός Fourier (Fast Fourier Transform FFT). O µετασχηµατισµός Fourier µιας πραγµατικής συνάρτησης φ (χ), είναι συνήθως µιγαδική συνάρτηση (της συχνότητας f ), έχει δηλαδή τη µορφή, F ( f ) = R( f ) + ii( f ) όπου R ( f ) και I ( f ) είναι το πραγµατικό και το φανταστικό µέρος της F ( f ) αντίστοιχα. Μπορούµε να εκφράσουµε την F( f ) σε εκθετική µορφή δηλαδή, iphase( f ) F ( f ) = Amplitude( f ) e όπου, 1 I( f ) Amplitude ( f ) = F ( f ) = R ( f ) + I ( f ) και Phase ( f ) = tan. R( f ) Το µέτρο F ( f ) ονοµάζεται Fourier spectrum ή Fourier amplitude, η φάση Phase ( f ) phase spectrum, ενώ η ποσότητα F ( f ) power spectrum. Natural Scenes (Εικόνες που συναντώνται στην φύση) Η δηµιουργία και η εξέλιξη ενός νευρωνικού συστήµατος κατευθύνεται από τρεις βασικούς παράγοντες. (α) Τις λειτουργίες που ένας οργανισµός πρέπει να επιτελέσει, (β) τις υπολογιστικές ικανότητες και περιορισµούς των νευρώνων και (γ) το περιβάλλον στο οποίο ο οργανισµός ζει. Θεωρητικές µελέτες και µοντέλα νευρωνικής επεξεργασίας έχουν επηρεαστεί περισσότερο από τα δύο πρώτα. Πρόσφατες εξελίξεις σε στατιστικά µοντέλα, σε συνδυασµό µε ισχυρά υπολογιστικά εργαλεία, έχουν αυξήσει το ενδιαφέρον για το ρόλο που παίζει το περιβάλλον στο καθορισµό της δοµής και της λειτουργίας των νευρώνων και γενικότερα του οπτικού µας συστήµατος. - 10 -
Κωδικοποιώντας, κατά τα στάδια της εξέλιξης, τα σηµαντικότερα ερεθίσµατα (τροφή, εχθρούς, συντρόφους) το καταλληλότερο οπτικό σύστηµα θα έπρεπε να επιβιώσει. Με βάση αυτή τη θεώρηση, τα στατιστικά χωροχρωµατικά χαρακτηριστικά των φυσικών σκηνών θα πρέπει να έχουν καθορίσει τα χαρακτηριστικά των πρωίµων οπτικών οδών, έτσι ώστε να περιοριστεί κατά το δυνατόν η διαβίβασή περιττών σηµάτων και να διαχωριστεί το χρήσιµο σήµα από το θόρυβο. Για τον έλεγχο αυτής της υπόθεσης υπάρχουν δύο βασικές µέθοδοι. Η πιο άµεση προσέγγιση είναι η εξέταση των νευρωνικών αποκρίσεων, όταν το ερέθισµα είναι κάποια φυσική σκηνή. Μια δεύτερη προσέγγιση αποτελεί η µελέτη των στατιστικών χαρακτηριστικών των φυσικών εικόνων και η συσχέτιση τους µε τις αποκρίσεις των νευρώνων. Για αυτό το λόγο είναι απαραίτητη η συλλογή εικόνων, µε χρήση κατάλληλα βαθµονοµηµένων φωτογραφικών µηχανών, οι οποίες να απεικονίζουν, όσο αυτό είναι δυνατό, το φυσικό περιβάλλον µέσα στο οποίο εξελίχθηκε το οπτικό µας σύστηµα και στη συνέχεια η στατιστική µελέτη (κυρίως µε χρήση µετασχηµατισµού Fourier) αυτών των εικόνων. Μια βασική παρατήρηση που προήλθε από την ανάλυση φυσικών εικόνων είναι ότι αυτές περιέχουν παρόµοια στατιστικά χαρακτηριστικά. Έτσι έχει αποδειχθεί (Field, 1987, Burton and Moorhead, 1987, Parraga et al., 1998) ότι η ενέργεια (amplitude) των φυσικών εικόνων µετά από µετασχηµατισµό Fourier ακολουθεί τον παρακάτω νόµο, a Ampliude( f ) = f ηλαδή όταν παρασταθεί γραφικά, σε λογαριθµικούς άξονες, το amplitude µειώνεται σχεδόν γραµµικά µε κλίση α καθώς αυξάνεται η χωρική συχνότητα f. Οι φυσικές εικόνες αποτελούνται περισσότερο από χαµηλές χωρικές συχνότητες. Έχει αποδειχθεί ότι το α παίρνει τιµές από 0,8 µέχρι 1,5 µε µέση τιµή 1, (SD = 0,13), ανάλογα µε το «περιεχόµενο» της εικόνας (βλέπε Εικ.8, Tolhurst et. al 199)) - 11 -
Εικ.8. Τρεις φυσικές αχρωµατικές σκηνές και το Fourier amplitude, συναρτήσει της χωρικής συχνότητας, για κάθε µία από αυτές, σχεδιασµένο σε λογαριθµικούς άξονες. Παρατηρούµε πως και για τις τρεις το amplitude µειώνεται γραµµικά. Oι κλίσεις των τριών ευθειών (το α δηλαδή) είναι 1.8,1.,1.00 αντίστοιχα. (Tolhurst et. al 1991). H ίδια σχέση ισχύει και για χρωµατικές εικόνες (Parraga et. al 00). Η µορφή της εξάρτησης που έχει το amplitude από τη χωρική συχνότητα f δηλώνει πως οι χαµηλές και οι µεσαίες χωρικές συχνότητες παίζουν σηµαντικότερο ρόλο στη δηµιουργία µιας φυσικής σκηνής από ότι οι υψηλές και πως η σχέση αυτή είναι γραµµική. Θυµίζουµε πως οι υψηλές χωρικές συχνότητες σε µία εικόνα, καθορίζουν τα άκρα και τις λεπτοµέρειες αυτής της εικόνας (βλ. Εικ. 9). Αρχική εικόνα αµηλές και µεσαίες χωρικές συχνότητες Υψηλές χωρικές συχνότητες Εικ. 9. Πως οι χαµηλές, οι µεσαίες και οι υψηλές χωρικές συχνότητες καθορίζουν τη µορφή µιας εικόνας. Έτσι µία φυσική σκηνή η οποία περιέχει αρκετές λεπτοµέρειες, η εξάρτηση της δηλαδή από τις υψηλές χωρικές συχνότητες είναι µεγάλη, η κλίση της ευθείας περιµένουµε πως θα είναι µικρότερη, θα έχει δηλαδή µικρότερο α. - 1 -
Σ. ΠΛΑΪΝΗΣ Εφαρµογές µετασχηµατισµού Fourier στις Επιστήµες της Όρασης Ο µετασχηµατισµός Fourier έχει πολλές εφαρµογές κυρίως στην επεξεργασία και ανάλυση δεδοµένων που παρουσιάζουν χρονική διαµόρφωση. Σε αυτές τις περιπτώσεις σηµαντική παράµετρο αποτελεί η συχνότητα ανάλυσης (frequency analysis) η οποία πρέπει να είναι τουλάχιστον µισή (αξίωµα Nyquist) της συχνότητας δειγµατοληψίας (sampling frequency). Επίσης όσος µεγαλύτερος είναι ο χρόνος δειγµατοληψίας (sampling time) τόσο µικρότερη (και εποµένως πιο ακριβής) είναι το διακριτό όριο (bin size) της συχνότητας ανάλυσης (frequency resolution): frequency resolution = 1 / sampling time. Για παράδειγµα, ένα σήµα που καταγράφεται για συνολικό χρόνο 0 sec (βλ. Εικόνα 1α) µε ένα όργανο που παρουσιάζει 6Hz ανάλυση, µας δίνει 0*6 σηµεία και µας επιτρέπει να εφαρµόσουµε ένα µετασχηµατισµό Fourier µε ανάλυση συχνότητας 13 Hz µε διακριτό όριο ανάλυσης 1/0 = 0.05 Hz (βλ. Εικόνα 1β). Εικόνα 1: (επάνω) Καταγραφή της σταθερότητας (και εποµένως των διακυµάνσεων) της προσαρµοστικής ικανότητας για ένα ερέθισµα µε vergence 1.5D. Οι βλεφαρισµοί (blinks) έχουν φιλτραρηθεί από το επεξεργαζόµενο σήµα. (κάτω) Μετασχηµατισµός Fourier της σταθερότητας προσαρµογής (ισχύς του σήµατος σε σχέση µε την συχνότητα του). Είναι εµφανές ότι εκτός από τις χαµηλές χωρικές συχνότητες που παρουσιάζουν έντονη ισχύ, σηµαντική συµµετοχή παρουσιάζουν και συχνότητες 1.5-1.50Hz. Αυτές έχουν συσχετισθέι µε το αρτηριακό παλµό. - 1 -
Σ. ΠΛΑΪΝΗΣ Εικόνα : Μετασχηµατισµός Fourier των διακυµάνσεων των εκτροπών χαµηλής και υψηλής τάξης του οφθαλµού µετά από: (αριστερά) κυκλοπληγία - έχει εξουδετερωθεί η προσαρµογή, (κέντρο) κοντινή προσαρµογή, (δεξιά) µακρυνή εστίαση. Η συνεχόµενη γραµµή αποτελεί το defocus, ενώ οι υπόλοιπες εκτροπές υψηλής τάξης. Είναι εµφανές ότι (ι) η ισχύς µειώνεται γρανµµικά µε την αυξανόµενη συχνότητα, (ιι) η διακυµάνσεις της προσαρµογής επηρεάζουν κυρίως το defocus (σφαίρωµα) και πολύ λιγότερο τις άλλες εκτροπές. Το επόµενο παράδειγµα (εικόνα 3 και ), αφορά ηλεκτροµυογραφικές µετρήσεις του µυ που περικλείει τον οφθαλµό και είναι υπεύθυνος για το κλείσιµο των βλεφάρων, τον orbicularis occuli. Η εικόνα 3 (πάνω) παρουσιάζει το σήµα απουσία φωτεινού ερεθίσµατος (noise) για χρονικό διάστηµα sec. Στην κάτω εικόνα παρουσιάζοναι αποκρίσεις παρουσία φωτεινού ερεθίσµατος για τα πρώτα δευτερόλεπτα και απουσίας για τα επόµενα. Είναι εµφανές ότι παρουσία ερεθίσµατος οι αποκρίσεις αυξάνονται σηµαντικά. Εικόνα 3: Καταγραφή των ηλεκτρικών αποκρίσεων του µυ orbicularis occuli: (επάνω) απουσία φωτεινού ερεθίµσµατος, (κάτω) παρουσία φωτεινού ερεθίσµατος (φωτεινότητα 75 lux) για τα δύο πρώτα δευτερόλεπτα. Στην εικόνα γίνεται σύγκριση του Μετασχηµατισµού Fourier του θορύβου και παρουσία ερεθίσµατος. Από την σύγκριση µπορούµε να υπολογίσουµε το πηλίκο - -
Σ. ΠΛΑΪΝΗΣ signal/noise. Αυτό στην προκειµένη περίπτωση µας βοήθησε να συµπεράνουµε ότι παρόλο που το σήµα παρουσιάζει την µεγαλύτερη ενέργεια σε συχνότητες 75-100Hz, οι ιδανικότερες συχνότητες γα καταγαφή είναι αυτές µεταξύ 175-5Hz (όπου signal/noise είναι µεγαλύτερο). Ως αποτέλεσµα καταλήξαµε στην χρήση ενός φίλτρου για που «έκοβε» συχνότητες εκτός του παραπάνω φάσµατος κατά την επεξεργασία του σήµατος. Αυτό µας οδήγησε σε ακριβέστερη ανάλυση και ποσοτικοποίηση των δεδοµένων. Εικόνα : Μετασχηµατισµός Fourier για τις ηλεκτοµυογραφικές αποκρίσεις της εικόνας 3. Οι λευκές και µαύρες στήλες αντιστοιχούν σε σήµα και σε θόρυβο. Εικόνα 5: (αριστερά) Το φίλτρο που χρησιµοποιήθηκε για την ανάλυση και επεξεργασία του ηλεκτροµυογραφικού σήµατος, (δεξιά) µετασχηµατισµός Fourier του σήµατος µετά την επεξεργασία, η οποία συνέβαλε στην ακριβέστερη ποσοτικοποίηση των αποκρίσεων (στην προκειµένη περίπτωση υπολογίστηκε το ολοκλήρωµα του σήµατος για όλες τις συχνότητες). - 3 -