ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Σχετικά έγγραφα
Λύσεις των θεμάτων ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Λύσεις των θεμάτων ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 2014

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

μιας παρατήρησης όπου λ. Αν για το πλήθος Ν(Ω) των σφαιρών που υπάρχουν στο κουτί ισχύει 64<Ν(Ω)<72, τότε λ

Λύσεις των θεμάτων ΣΑΒΒΑΤΟ 14 MAΪΟΥ 2011 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

(c f (x)) = c f (x), για κάθε x R

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

, και για h 0, . Άρα. Α2. Μια συνάρτηση f λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε σημεία x.

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 3 ΣΕΛΙΔΕΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2011 ΕΚΦΩΝΗΣΕΙΣ

F(x h) F(x) (f(x h) g(x h)) (f(x) g(x)) F(x h) F(x) f(x h) f(x) g(x h) g(x) h h h. lim lim lim f (x) g (x). h h h

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ Γ ΛΥΚΕΙΟΥ - ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ~ ΣΥΝΔΥΑΣΤΙΚΑ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2011 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

Μαθηματικός Περιηγητής σχ. έτος

P A B P(A) P(B) P(A. , όπου l 1

Θέματα Εξετάσεων Γ Λυκείου Μαθηματικά και Στοιχεία Στατιστικής

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

F είναι ίσος µε ν. i ÏÅÖÅ ( ) h 3,f 3.

Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου

ΑΠΑΝΤΗΣΕΙΣ ΙΟΥΛΙΟΥ Β. α. ΛΑΘΟΣ, β. ΣΩΣΤΟ, γ. ΣΩΣΤΟ, δ. ΛΑΘΟΣ, ε. ΣΩΣΤΟ, στ. ΣΩΣΤΟ. α = 1 δ. im( f (x) x ) = im - 2βx x = - 4β 8 = 4α - 32β =

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

(f (x) g(x)) = f (x) g(x)+f (x) g (x) (μονάδες 2)

ΘΕΜΑ Α Α1. Έστω t 1,t 2,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν, που έχουν

(f(x)+g(x)) =f (x)+g (x), x R

Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η

P(A ) = 1 P(A). Μονάδες 7

Α. α) ίνεται η συνάρτηση F(x)=f(x)+g(x). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F (x)=f (x)+g (x).

ΘΕΜΑ Α Α1. Αν και είναι δύο συμπληρωματικά ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι για τις πιθανότητές τους ισχύει: ( ) 1 ( ).

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10

g( x) ( g( x)) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Δ Ι Α Γ Ω Ν Ι Σ Μ Α Σ Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Γ Ε Ν Ι Κ Η Σ Π Α Ι Δ Ε Ι Α Σ. οι τιμές μιας μεταβλητής Χ ενός δείγματος πλήθους ν με k.

Θέματα Εξετάσεων Γ Λυκείου Μαθηματικά και Στοιχεία Στατιστικής

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2005

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001

δεδομένων με συντελεστές στάθμισης (βαρύτητας)

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Λύσεις των θεμάτων ΤΕΤΑΡΤΗ 23 MAΪΟΥ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2004

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

(t) x (t) t t. t 2 ή t S x( 2) x( 0) S x( 3) x( 2) 10 m

ΑΠΑΝΤΗΣΕΙΣ. ευτέρα, 17 Μα ου 2010 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ. Οµάδα Μαθηµατικών της Ώθησης. Επιµέλεια:

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις

Θέμα Α. Θέμα Β. ~ 1/9 ~ Πέτρος Μάρκου. % σχεδιάζουμε το πολύγωνο αθροιστικών σχετικών συχνοτήτων τοις

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΘΕΜΑ Α Α1. Για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, με απλά ισοπίθανα ενδεχόμενα, να αποδείξετε ότι:

Ω ισχύει: P A B P(A) P(B) P(A (Μονάδες 7 ) του πεδίου ορισμού της; (Μονάδες 4 ) ii. Να δώσετε τον ορισμό της μέσης τιμής ενός συνόλου ν παρατηρήσεων.

ΑΠΑΝΤΗΣΕΙΣ. 40. Ακόμα είναι. και F1 f και ακόμα Τέλος έχουμε F3 f1 f2 f3 F2 f. N i

Μαθηµατικά & Στοιχεία Στατιστικης Γενικής Παιδείας Γ Λυκείου 2001 ÈÅÌÅËÉÏ

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Αν Α και Β είναι δύο ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι: Αν Α Β τότε Ρ(Α) Ρ(Β)

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ(ΟΜΑΔΑΣ Β )

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν

1% = 100% 25 = 100. v 400. v = 6v v = 6 40 v = 240. = = 360 v v v + v + v + v = v v = 400

ΑΠΑΝΤΗΣΕΙΣ. Επιμέλεια: Ομάδα Μαθηματικών της Ώθησης

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 22 ΙΟΥΝΙΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

( ) ( ) ( ) ( ) Α2. Έστω μια συνάρτηση f με πεδίο ορισμού A. Πότε λέμε ότι η συνάρτηση f παρουσιάζει τοπικό μέγιστο στο x1 Μονάδες 4.

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 20 ΜΑΪΟΥ 2013 ΑΠΑΝΤΗΣΕΙΣ. x x x 4

ΘΕΜΑ 1o A. Να αποδείξετε ότι για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ισχύει ότι Ρ(Α»Β)=Ρ(Α)+Ρ(Β) Μονάδες 10

ΝΟΕΜΒΡΙΟΣ x 2. 6x x. 1B. Α) Να χαρακτηρίσετε ως σωστή (Σ) ή λανθασμένη (Λ) καθεμία από τις παρακάτω προτάσεις:

2 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ και. Έστω Α, Β ενδεχόµενα ενός δειγµατικού χώρου Ω µε Ρ(Α) = 8

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ

ΟΔΗΓΙΕΣ ΑΥΤΟΔΙΟΡΘΩΣΗΣ +ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Transcript:

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α. Αν η συνάρτηση f είναι παραγωγίσιμη στο και c σταθερός πραγματικός αριθμός, να αποδείξετε με τη χρήση του ορισμού της παραγώγου ότι cf x cf x, για κάθε x Μονάδες 7 Α. Πότε μια συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της; Μονάδες Α3. Πότε μια ποσοτική μεταβλητή λέγεται διακριτή και πότε συνεχής; Μονάδες Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη. α) Αν για τη συνάρτηση f ισχύει f x 0, για x α,β 0 0 και η παράγωγός της f διατηρεί πρόσημο εκατέρωθεν του x 0, τότε η f είναι γνησίως μονότονη στο (α, β) και δεν παρουσιάζει ακρότατο στο διάστημα αυτό. β) Για δύο οποιαδήποτε ενδεχόμενα Α, Β ενός δειγματικού χώρου Ω ισχύει: PA B PBPA B (μονάδες ) (μονάδες ) γ) Σε μια κανονική ή περίπου κανονική κατανομή το 95% περίπου των παρατηρήσεων βρίσκονται στο διάστημα x s, x s, όπου x η μέση τιμή και s η τυπική απόκλιση των παρατηρήσεων. δ) Αν x είναι τιμή μιας ποσοτικής μεταβλητής X, τότε η αθροιστική συχνότητα πλήθος των παρατηρήσεων που είναι μεγαλύτερες της τιμής x (μονάδες ) N εκφράζει το (μονάδες ) ε) Το κυκλικό διάγραμμα είναι ένας κυκλικός δίσκος χωρισμένος σε κυκλικούς τομείς, τα εμβαδά ή, ισοδύναμα, τα τόξα των οποίων είναι ανάλογα προς τις αντίστοιχες συχνότητες ν ή τις σχετικές συχνότητες f των τιμών x της μεταβλητής. (μονάδες ) Μονάδες 0

ΑΠΑΝΤΗΣΕΙΣ Α. Θεώρημα, σχολικό βιβλίο σελίδα 30. Α. Ορισμός, σχολικό βιβλίο σελίδα 3. Α3. Ορισμός, σχολικό βιβλίο σελίδα 59. Α. α) Σ, προκύπτει από τη σελίδα 0 β) Λ, σελίδα 5 γ) Λ, σελίδα 95 δ) Λ, σελίδα 66 ε) Σ, σελίδα 70 ΘΕΜΑ Β Στο παρακάτω σχήμα φαίνεται το ιστόγραμμα συχνοτήτων, το οποίο παριστάνει τις πωλήσεις σε χιλιάδες ευρώ που έγιναν από τους πωλητές μιας εταιρείας κατά τη διάρκεια ενός έτους. Β. Να βρείτε το πλήθος των πωλητών της εταιρείας. Μονάδες 5 Β. Να μεταφέρετε στο τετράδιό σας τον παρακάτω πίνακα συχνοτήτων της κατανομής των πωλήσεων κατάλληλα συμπληρωμένο, δικαιολογώντας τη στήλη με τις σχετικές συχνότητες f,,, 3, Β3. α) Να υπολογίσετε τη μέση τιμή των πωλήσεων του έτους. Μονάδες 8

(μονάδες 6) β) Να βρείτε το πλήθος των πωλητών που έκαναν πωλήσεις τουλάχιστον,5 χιλιάδων ευρώ (θεωρούμε ότι οι παρατηρήσεις κάθε κλάσης είναι ομοιόμορφα κατανεμημένες). (μονάδες 6) Μονάδες ΛΥΣΗ Β. Από το ιστόγραμμα συχνοτήτων αν ν, ν, ν 3, ν είναι οι συχνότητες της κατανομής των πωλήσεων Β. και ν το πλήθος των πωλητών της εταιρείας τότε ν ν ν ν3 ν 8 6 0 κλάσεις x v f [, ) 3 0,30 [, 6) 5 8 0,0 [6, 8) 7 0,35 [8, 0) 9 6 0,5 Σύνολο 0,00 ν f = 0,3 ν 0 ν 8, f = 0, ν 0 ν3, f 3 = 0,35 ν 0 ν 6, f = 0,5 ν 0 B3. α) κλάσεις x v f x v [, ) 3 0,30 36 [, 6) 5 8 0,0 0 [6, 8) 7 0,35 98 [8, 0) 9 6 0,5 5 Σύνολο 0,00 8 x v 36 0 98 5 8 v 0 0 x 5,7 χιλιάδες ευρώ. β) Το πλήθος των πωλητών που έκαναν πωλήσεις τουλάχιστον,5 χιλιάδων ευρώ είναι ίσος με το άθροισμα των συχνοτήτων των κλάσεων [,5, 6), [6, 8), [8, 0) και αφού οι παρατηρήσεις κάθε κλάσης είναι ομοιόμορφα κατανεμημένες, το ζητούμενο πλήθος πωλητών είναι ίσο με 3 ν ν ν 6 6 6 3

ΘΕΜΑ Γ Ένα δοχείο περιέχει κόκκινες (Κ), άσπρες (Α) και πράσινες (Π) μπάλες. Επιλέγουμε τυχαία μία μπάλα. Η πιθανότητα να προκύψει κόκκινη μπάλα είναι ΡΚ x μπάλα είναι ΡA x, ενώ η πιθανότητα να προκύψει άσπρη, όπου x, x είναι οι θέσεις των τοπικών ακροτάτων της συνάρτησης 3 7 fx x x x, xir με x x Γ. Να βρείτε τις πιθανότητες P(Κ), P(A) και P(Π), όπου P(Π) η πιθανότητα να προκύψει πράσινη μπάλα. Μονάδες 0, να βρείτε τις πιθανότητες των παρακάτω ενδεχομένων: 3 Γ: «η μπάλα που επιλέγεται τυχαία να είναι κόκκινη ή άσπρη» Γ. Αν PK και ΡΑ Δ: «η μπάλα που επιλέγεται τυχαία να είναι ούτε κόκκινη ούτε άσπρη» Ε: «η μπάλα που επιλέγεται τυχαία να είναι άσπρη ή να μην είναι πράσινη». Μονάδες 9 Γ3. Αν οι άσπρες μπάλες είναι κατά τέσσερις () λιγότερες από τις πράσινες μπάλες, να βρείτε πόσες μπάλες έχει το δοχείο. Μονάδες 6 ΛΥΣΗ Γ. Η συνάρτηση f είναι παραγωγίσιμη στο ως πολυωνυμική με Είναι f (x) 0 x 7x 0 x ή x 3 f (x) x 7x Είναι f (x) 0 x,, 3 δηλαδή η f είναι γνησίως αύξουσα σε κάθε ένα από τα διαστήματα, και, 3. Είναι f (x) 0 x, 3 δηλαδή η f είναι γνησίως φθίνουσα στο διάστημα, 3.

Συνεπώς η f παρουσιάζει τοπικό μέγιστο στο x και τοπικό ελάχιστο στο x. 3 Άρα αφού x x θα είναι x και x, 3 συνεπώς P(K) και P(A). 3 Δ. Να αποδείξετε ότι η συνολική επιφάνεια του κουτιού ως συνάρτηx f (x) f(x) - / /3 + + 0 - + 0 T.M. T.E. Αν Ω είναι ο δειγματικός χώρος τότε ΩKA Π. Άρα ΠA K και επειδή τα ενδεχόμενα K,A,Π είναι ασυμβίβαστα ανά δύο, είναι 5 P(Π) P A K P(A K) P(A) P(K) 3 7 Γ. Είναι Γ A K άρα από τον απλό προσθετικό νόμο έχουμε P(A K) P(A) P(K) 3 Εάν η μπάλα που επιλέγεται δεν είναι ούτε κόκκινη ούτε άσπρη, είναι υποχρεωτικά πράσινη 5 συνεπώς Δ Π οπότε P(Δ) P(Π). Τέλος, ισχύει E A Π A A K και επειδή A A K άρα A (A K) AK Γ 7 άρα E Γ οπότε P(E) P(Γ). Γ3. Αν N(A),N(Π),N(Ω) είναι το πλήθος των στοιχείων των ενδεχομένων A,Π και του δειγματικού χώρου Ω αντίστοιχα τότε σύμφωνα με την εκφώνηση έχουμε N(A) N(Π). Διαιρώντας την τελευταία με N(Ω) 0 παίρνουμε τελικά 5 P(A) P(Π) N(Ω) 8 N(Ω) 3 N(Ω) N(Ω) Άρα το δοχείο περιέχει 8 μπάλες. ΘΕΜΑ Δ Θεωρούμε ένα κουτί σχήματος ορθογωνίου παραλληλεπιπέδου με βάση ορθογώνιο και ανοικτό από πάνω. Το ύψος του κουτιού είναι 5 dm. Η βάση του κουτιού έχει σταθερή περίμετρο 0 dm και μία πλευρά της είναι x dm με 0 < x < 0.

ση του x είναι E(x) x 0x 00, x 0, 0 και να βρείτε για ποια τιμή του x το κουτί έχει μέγιστη επιφάνεια. Μονάδες 8 Στη συνέχεια, θεωρούμε τα σημεία A (x, y ), όπου y = E (x ), =,,...,5 με 5 = x < x <... < x < x 5 = 9. Δ. Αν το δείγμα των τετμημένων x, =,,...,5 των παραπάνω σημείων A (x, y ), δεν είναι ομοιογενές έχει μέση τιμή x = 8 και τυπική απόκλιση s τέτοια, ώστε τότε: α) να αποδείξετε ότι s = β) να βρείτε τη μέση τιμή των Δίνεται ότι: s v t v s 5s 0 x, με =,,...,5 t v v Δ3. Επιλέγουμε τυχαία ένα από τα παραπάνω σημεία A (x, y ), =,,...,5. Να βρείτε την πιθανότητα του ενδεχομένου: B A ( x,y ),,,...,5 τέτοιαώστε y x 9R, όπου R είναι το εύρος των y = E (x ), =,,...,5 (μονάδες ) (μονάδες ) Μονάδες 8 Μονάδες 9 ΛΥΣΗ Δ. Αφού η περίμετρος Π του ορθογωνίου της βάσης είναι 0 dm άρα, αν y είναι η άλλη πλευρά του ορθογωνίου της βάσης έχουμε x y 0 δηλαδή y 0 x με y 0 x 0 και φανερά x 0 Συνεπώς επειδή έχουμε ένα ορθογώνιο με διαστάσεις x, y, αφού το κουτί είναι ανοιχτό από πάνω, δύο ορθογώνια διαστάσεων 5 και x και δύο ορθογώνια διαστάσεων 5 και y, άρα η συνολική επιφάνεια του κουτιού ως συνάρτηση του x είναι

E(x) x(0 x) 5x 5x 5(0 x) 5(0 x) 0x x 5x 5x 50 5x 50 5x x 0x 00, x (0,0) Η συνάρτηση E(x) είναι παραγωγίσιμη στο (0,0) ως πολυωνυμική με E (x) x 0 και ισχύει E (x) 0 x 5. E (x) 0 x 0 0 x 5 συνεπώς η συνάρτηση E(x) είναι γνησίως φθίνουσα στο διάστημα [5,0). Επίσης E (x) 0 x 0 0 x 5 συνεπώς η συνάρτηση E(x) είναι γνησίως αύξουσα στο διάστημα (0,5]. Άρα η συνάρτηση E(x) παρουσιάζει μέγιστο για x 5. Δ. α) Είναι s 5s 0 s ή s. s CV 0, άρα το δείγμα είναι ομοιογενές οπότε η τιμή s απορρίπτε- x 6 Αν s τότε ται. Αν s τότε s CV 0. άρα το δείγμα δεν είναι ομοιογενές οπότε η τιμή s είναι δε- x κτή. Άρα s. β) Αν συμβολίσουμε με x τη μέση τιμή των x,,,...,5 τότε από το δοσμένο τύπο έχουμε ν 5 5 x ν x x ν ν 5 5 s x x x x 68. Άρα η ζητούμενη μέση τιμή των x,,,...,5 είναι x f (x) f(x) x 68 0 5 + 0-5 0 Δ3. Η συνάρτηση E(x) είναι γνησίως φθίνουσα στο [5,0) άρα αφού 5 x x x5 9 προκύπτει 5 E(5) E(x ) E(x ) E(x 5) E(9) 09 συνεπώς το εύρος των τιμών R είναι R 5 09 δηλαδή R 6 Όμως άρα τα μόνα σημεία Συνεπώς B A,A,,A E(x ) y x 9R x 0x 00 x 5 x x 5 0 x (5,9) A που εξαιρούμε από το δειγματικό χώρο των 5 σημείων είναι τα A και Α 5. οπότε αν N(B),N(Ω) είναι το πλήθος των στοιχείων του B και το πλήθος 3 των στοιχείων του δειγματικού χώρου Ω τότε N(B) 3 και N(Ω) 5 άρα τελικά 3 P(B). 5

ΣΧΟΛΙΑ: Εναλλακτικές αποδείξεις Γ. Για το P(A Π) μπορούμε να παρατηρήσουμε ότι A Π κι άρα AΠ Π, συνεπώς 5 7 P(E) P(A Π ) P(Π ) P(Π). Εναλλακτικά κάποια ερωτήματα του Γ: 7 5 P(Δ) P KA P KA / / P(E) P A Π P A P Π P A Π P A P Π P A Π P A P Π P A P A Π 5 7 PΠ Γ3. Έστω ν N(Ω). Τότε ν ν 5ν N(A) νp(a) και N(Π) νp(π). 3 Αφού N(Π) N(A), είναι 5ν ν ν. Λύνοντας ως προς ν παίρνουμε ν 8. Δ. Η συνάρτηση E(x) είναι τριώνυμο δευτέρου βαθμού με α 0 άρα ως γνωστόν από τη θεωρία β 0 του τριωνύμου παρουσιάζει μέγιστο στη θέση x 5. α ( ) Δ. Για την απόρριψη της τιμής s μπορούμε να εργαστούμε ως εξής: Είναι s x x x x... x x 58 x x... 9 8 5 5 5 x x x x... x x 3 s 3 5 Σχόλιο: Δεν χρησιμοποιήθηκε ότι το δείγμα είναι ανομοιογενές. Μάλιστα το δείγμα προκύπτει ανο- μοιογενές αφού από τα παραπάνω έχουμε s 6 s s 3 5 5 x 0.