Λύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου 2013-14 (Ιούνιος 2014)

Σχετικά έγγραφα
Λύσεις θεμάτων Α εξεταστικής περιόδου Χειμερινού εξαμήνου

Λύσεις θεμάτων Α εξεταστικής περιόδου εαρινού εξαμήνου (Ιούνιος 2015)

Λύσεις θεμάτων Εξεταστικής Περιόδου Σεπτεμβρίου 2014

Λύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 2015

Λύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 2015

Λύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου (Ιούνιος 2014)

Λύσεις θεμάτων εξεταστικής περιόδου Ιουνίου v 3 (t) - i 2 (t)

Μετασχηματισμοί Laplace

5. (Λειτουργικά) Δομικά Διαγράμματα

Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης

Μαθηματικά μοντέλα συστημάτων

Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης

Συστήματα Αυτόματου Ελέγχου

Ευστάθεια, Τύποι συστημάτων και Σφάλματα

( t) όπου το * αντιστοιχεί σε συνέλιξη και. (t 2) * x 2

(είσοδος) (έξοδος) καθώς το τείνει στο.

Συστήματα Αυτομάτου Ελέγχου Ι Ασκήσεις Πράξης

Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης

Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα:

Παραρτήματα. Παράρτημα 1 ο : Μιγαδικοί Αριθμοί

Ευστάθεια συστημάτων

Ερωτήσεις 1 ου Θέματος [8 Χ 0.25= 2.0 β.] Οι απαντήσεις πρέπει υποχρεωτικά νε βρίσκονται εντός του περιγεγραμμένου χώρου G()

Παράδειγµα Θεωρείστε το σύστηµα: αυτοκίνητο επάνω σε επίπεδη επιφάνεια κάτω από την επίδραση δύναµης x( t ) : v(t)

Βαθμολογία Προβλημάτων ΘΕΜΑ 1 ΘΕΜΑ 2.1 ΘΕΜΑ 2.2 ΘΕΜΑ 2.3 ΘΕΜΑ 3.1 ΘΕΜΑ 3.2 ΘΕΜΑ 4 ΘΕΜΑ 5.1 ΘΕΜΑ 5.2

Υποθέστε ότι ο ρυθμός ροής από ένα ακροφύσιο είναι γραμμική συνάρτηση της διαφοράς στάθμης στα δύο άκρα του ακροφυσίου.

Κλασσική Θεωρία Ελέγχου

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους

Ψηφιακός Έλεγχος. 10 η διάλεξη Ασκήσεις. Ψηφιακός Έλεγχος 1

ΔΥΝΑΜΙΚΗ & ΕΛΕΓΧΟΣ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ

Συστήματα Αυτομάτου Ελέγχου Ι Ασκήσεις Πράξης - Τεστ

Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης

Ακαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης

Συστήματα Αυτομάτου Ελέγχου ΙΙ

Συστήματα Αυτομάτου Ελέγχου

Συστήματα Αυτομάτου Ελέγχου Ι Ασκήσεις Πράξης

Κλασσική Θεωρία Ελέγχου

Συστήματα Αυτόματου Ελέγχου

ΣΑΕ 1. Σημειώσεις από τις παραδόσεις. Για τον κώδικα σε L A TEX, ενημερώσεις και προτάσεις:

Η Βασική Δομή Συστημάτων Ελέγχου Κίνησης

ΜΟΝΤΕΡΝΑ ΘΕΩΡΙΑ ΕΛΕΓΧΟΥ ΜΑΘΗΜΑΤΙΚΗ ΘΕΩΡΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΙΙ Τμήμα Μαθηματικών - Τομέας Υπολογιστών & Αριθμητικής Ανάλυσης Εξετάσεις Σεπτεμβρίου 2016

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτομάτου Ελέγχου II

ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ - Τελική εξέταση Σεπτεμβρίου 2008 ΕΠΩΝΥΜΟ (εξεταζόμενου/ης)

Έλεγχος Κίνησης

ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ. Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου

Βαθμολογία Προβλημάτων Θέμα (μέγιστος βαθμός) (βαθμός εξέτασης)

ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΝΑΡΤΗΣΕΙ ΤΩΝ ΠΟΛΩΝ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΕΞΟΔΟΥ Y(s) ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΓΝΩΡΙΣΜΑΤΑ ΤΗΣ ΧΡΟΝΙΚΗΣ ΑΠΟΚΡΙΣΗΣ ΣΕ ΕΙΣΟΔΟ ΜΟΝΑΔΙΑΙΑΣ ΒΑΘΜΙΔΑΣ

ΤΕΙ ΠΕΙΡΑΙΑ. Συστήµατα Αυτοµάτου Ελέγχου ΙΙ. Ασκήσεις Πράξης. . Καλλιγερόπουλος Σ. Βασιλειάδου. Χειµερινό εξάµηνο 2008/09

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου

Συστήματα Αυτομάτου Ελέγχου με Ανάδραση - Σερβομηχανισμοί

Συστήματα Αυτομάτου Ελέγχου

Ισοδυναµία τοπολογιών βρόχων.

. Οι ιδιοτιμές του 3 3 canonical-πίνακα είναι οι ρίζες της. , β) η δεύτερη είσοδος επηρεάζει μόνο το μεσαίο 3 3 πίνακα και

Συστήματα Αυτομάτου Ελέγχου

Βαθµολογία Προβληµάτων ΘΕΜΑ 1 ΘΕΜΑ 2.1 ΘΕΜΑ 2.2 ΘΕΜΑ 2.3 ΘΕΜΑ 3.1 ΘΕΜΑ 3.2 ΘΕΜΑ 4 ΘΕΜΑ 5.1 ΘΕΜΑ 5.2. G(s)

Συστήματα Αυτόματου Ελέγχου

Να σχεδιαστεί ένας ενισχυτής κοινού εκπομπού (σχ.1) με τα εξής χαρακτηριστικά: R 2.3 k,

ΣΦΑΛΜΑΤΑ ΜΟΝΙΜΗΣ ΚΑΤΑΣΤΑΣΗΣ

Ακαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

Μαθηματικά μοντέλα συστημάτων

ΠΡΟΒΛΗΜΑ (Σεπτέμβριος 2008)

Τυπική µορφή συστήµατος 2 ας τάξης

ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΦΟΡΩΝ

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου

Εισαγωγή στην Τεχνολογία Αυτοματισμού

ΤΕΙ ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ & ΘΡΑΚΗΣ

Στα θέματα πολλαπλής επιλογής η λανθασμένη απάντηση βαθμολογείται αρνητικά όσο και η ορθή. Επιτρέπεται η χρήση του βιβλίου των Dorf & Bishop

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο

Ψηφιακός Έλεγχος. 6 η διάλεξη Σχεδίαση στο χώρο κατάστασης. Ψηφιακός Έλεγχος 1

ΚΕΦΑΛΑΙΟ 3 ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΕΛΕΓΧΟΥ. (α) Ο Διαδοχικός Έλεγχος (β) Ο Προσωτροφοδοτικός έλεγχος (γ) Τα Πολυμεταβλητά Συστήματα

Αυτόματος Έλεγχος. Ενότητα 9 η : Σχεδίαση ελεγκτών με το γεωμετρικό τόπο ριζών. Παναγιώτης Σεφερλής

ΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ

ΜΕΛΕΤΗ ΣΥΣΤΗΜΑΤΟΣ ΜΑΖΑΣ-ΕΛΑΤΗΡΙΟΥ-ΑΠΟΣΒΕΣΤΗΡΑ

Συστήματα Αυτομάτου Ελέγχου

6-Μαρτ-2009 ΗΜΥ Μετασχηματισμός z

Εξέταση στο Mάθηµα: "ΘΕΩΡΙΑ ΙΚΤΥΩΝ" (5 ο εξάµηνο)

x x Ax Bu u = 0. Η ιδιοτιμή του κάτω δεξιά πίνακα είναι η -3. = s + = = + = +

Συστήματα Αυτομάτου Ελέγχου ΙΙ

ΕΛΕΓΚΤΕΣ PID. Ελεγκτής τριών όρων Η συνάρτηση μεταφοράς του PID ελεγκτή είναι η ακόλουθη:

ΑΣΚΗΣΕΙΣ ΣΤΑ ΚΥΚΛΩΜΑΤΑ 1 ης ΤΑΞΗΣ (Κεφ. 18)

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές

Συστήματα Αυτομάτου Ελέγχου 2

Μοντέρνα Θεωρία Ελέγχου

10 2a 1 0 x. 1) Να εξεταστεί η ελεγξιμότητα και η παρατηρησιμότητα του συστήματος για τις διάφορες

Εισαγωγή στην Τεχνολογία Αυτοματισμού

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ 06/02/2009 ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ

ΘΕΜΑ 1 ο (3 μονάδες):

ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ

5.2 (α) Να γραφούν οι εξισώσεις βρόχων για το κύκλωμα του σχήματος Π5.2α. (β) Να γραφούν οι εξισώσεις κόμβων για το κύκλωμα του σχήματος Π5.

Άσκηση 1 η Να εξετάσετε αν τα ακόλουθα σήματα είναι περιοδικά. Στην περίπτωση περιοδικού σήματος, ποια είναι η θεμελιώδης περίοδος; 1 )

Συστήματα Αυτομάτου Ελέγχου

ΜΜ803 ΑΥΤΟΜΑΤΟΣ ΕΛΕΓΧΟΣ

Εισαγωγή στην Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Χρονική Απόκριση και Απόκριση Συχνότητας

5o Εργαστήριο Σ.Α.Ε Ενότητα : Ελεγκτές PID

Συστήματα Αυτομάτου Ελέγχου-Εργαστήριο

Transcript:

Λύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου 201314 (Ιούνιος 2014) ΘΕΜΑ 1 Ο (3,0 μονάδες) Στο παρακάτω σχήμα δίνεται το δομικό λειτουργικό διάγραμμα που περιγράφει ένα αναγνωριστικό αυτοκινούμενο όχημα, όπου η εντολή κατεύθυνσης πορείας και η πραγματική κατεύθυνση πορείας του οχήματος. Δίνονται: G 1 (s) = 10/[s10), G 2 (s) = 1/s 2 και F 1 (s) = ks 1. Να προσδιοριστούν: α. Το απαιτούμενο εύρος τιμών της παραμέτρου k ώστε το σύστημα να είναι ευσταθές (2,0 μον.). β. Η τιμή του k όταν μια ρίζα του χαρακτηριστικού πολυωνύμου ισούται με s = 1 (1,0 μον.). G 1(s) G 2(s) Λύση α. Η συνάρτηση μεταφοράς του συστήματος είναι: Επομένως το χαρακτηριστικό πολυώνυμο του συστήματος είναι: Για να προσδιοριστεί το εύρος τιμών του Κ για τις οποίες το σύστημα είναι ευσταθές θα πρέπει να συμπληρώσουμε τον πίνακα Routh: s 3 1 10k s 2 10 10 s 1 0 s 0 10 0 Για να είναι το σύστημα ευσταθές θα πρέπει όλα τα στοιχεία της πρώτης στήλης του πίνακα να είναι θετικοί αριθμοί, επομένως θα πρέπει: Άρα το εύρος τιμών του k για τις οποίες το σύστημα είναι ευσταθές είναι: K > 0,1

β. Αφού s = 1 είναι ρίζα του χαρακτηριστικού πολυωνύμου, θα έχουμε: ή Επομένως: k = 1,9 ΘΕΜΑ 2 Ο (3,0 μονάδες) Στο παρακάτω σχήμα δίνεται το δομικό (λειτουργικό) διάγραμμα ενός συστήματος ελέγχου κλειστού βρόχου. α. Να προσδιοριστεί η συνάρτηση μεταφοράς / του συστήματος με κατάλληλους μετασχηματισμούς του δομικού διαγράμματος. β. Να σχεδιαστεί το ισοδύναμο διάγραμμα ροής σημάτων του δομικού διαγράμματος του σχήματος και να υπολογιστεί η συνάρτηση μεταφοράς με εφαρμογή του κανόνα του Mason. Λύση α. Υπάρχουν διάφοροι μετασχηματισμοί που μπορούν να χρησιμοποιηθούν. Ενδεικτικά παρουσιάζεται η παρακάτω σειρά: 1/G 3(s)

G 1(s) G 2(s)G 3(s) /G 3(s) G 1(s) G 2(s)G 3(s) / [1 G 2(s)G 3(s)] 1 /G 3(s) G 1(s)G 2(s)G 3(s) / [1 G 2(s)G 3(s)] 1 /G 3(s) Επομένως: ή β. Ορίζουμε τα σήματα στο δομικό διάγραμμα, τα οποία θα αντιστοιχούν στους κόμβους του διαγράμματος ροής σημάτων: E 1(s) E 2(s) E 3(s) E 4(s) E 5(s) R 1(s) Οι εξισώσεις του συστήματος είναι:

= E 5 (s)g 3 (s) E 5 (s) = E 4 (s)g 2 (s) E 4 (s) = E 3 (s) E 3 (s) = E 2 (s)g 1 (s) E 2 (s) = E 1 (s) R 1 (s) = E 1 (s) E 5 (s)f 1 (s) E 1 (s) = Χ(s) Επομένως, το ισοδύναμο ΔΡΣ είναι: 1 1 E 1(s) E 2(s) E 3(s) E 4(s) E 5(s) 1 G 1(s) 1 G 2(s) G 3(s) 1 Υπάρχει μόνο ένας απευθείας δρόμος, ο E 1 (s)e 2 (s)e 3 (s)e 4 (s)e 5 (s), με απολαβή: Q 1 (s) = G 1 (s)g 2 (s)g 3 (s) Υπάρχουν τρεις βρόχοι: Βρόχος 1: E 1 (s)e 2 (s)e 3 (s)e 4 (s)e 5 (s)e 1 (s), Βρόχος 2: E 2 (s)e 3 (s)e 4 (s)e 5 (s)e 2 (s), και Βρόχος 3: E 4 (s)e 5 (s)e 4 (s) με απολαβές αντίστοιχα: B 1 (s) = G 1 (s)g 2 (s)g 3 (s)(1) = G 1 (s)g 2 (s)g 3 (s) B 2 (s) = G 1 (s)g 2 (s)[f 1 (s)] = G 1 (s)g 2 (s)f 1 (s) B 3 (s) = G 2 (s)g 3 (s)(1) = G 2 (s)g 3 (s) Παρατηρούμε ότι, όλοι οι βρόχοι ανά δύο, έχουν κοινούς κόμβους μεταξύ τους. Αυτό φαίνεται από το γεγονός ότι έχουν κοινά γράμματα στην ονομασία τους (τα γράμματα αντιστοιχούν σε κόμβους). Επομένως ΣL 2 = 0 και ΣL 3 = 0. Οπότε έχουμε: Δ(s) = 1 ΣL1 = 1 [B 1 (s) B 2 (s) B 3 (s)] = = 1 [ G 1 (s)g 2 (s)g 3 (s) G 1 (s)g 2 (s)f 1 (s) G 2 (s)g 3 (s)] = = 1 G 1 (s)g 2 (s)g 3 (s) G 1 (s)g 2 (s)f 1 (s) G 2 (s)g 3 (s) Επίσης παρατηρούμε ότι δεν υπάρχουν μη εγγίζοντες βρόχοι, αφού όλοι οι βρόχοι έχουν κοινούς κόμβους με τον απευθείας δρόμο. Επομένως: Δ 1 (s) = 1 Σύμφωνα με τον κανόνα του Mason η ολική συνάρτηση μεταφοράς του συστήματος είναι:

ή ΘΕΜΑ 3 Ο (3,0 μονάδες) Δίνεται σύστημα με συνάρτηση μεταφοράς ανοιχτού βρόχου G(s) = 1/[s 2 4s 3], μοναδιαία αρνητική ανάδραση και ελεγκτή G C (s) = k/s. α. Να σχεδιαστεί το δομικό (λειτουργικό) διάγραμμα του συστήματος, να υπολογιστεί η συνάρτηση μεταφοράς και να γραφεί το χαρακτηριστικό πολυώνυμο του συστήματος κλειστού βρόχου. β. Να υπολογιστούν οι σταθερές σφαλμάτων θέσης, ταχύτητας και επιτάχυνσης, καθώς και τα αντίστοιχα σφάλματα. γ. Το εύρος τιμών της παραμέτρου k για τις οποίες το σύστημα είναι ευσταθές είναι 0<k<12. Εάν η είσοδος του συστήματος είναι μια συνάρτηση ράμπας της μορφής x(t) = Atu(t), να προσδιοριστεί το κατάλληλο εύρος τιμών του Α ώστε το σφάλμα ταχύτητας να είναι μικρότερο του 3%. Λύση: α. Το δομικό (λειτουργικό) διάγραμμα του συστήματος είναι το ακόλουθο: G c (s) G(s) και ισοδύναμα: G c (s)g(s) Επομένως, η συνάρτηση μεταφοράς του συστήματος κλειστού βρόχου θα είναι: Το χαρακτηριστικό πολυώνυμο του συστήματος κλειστού βρόχου είναι: β. Oι ρίζες του τριωνύμου s 2 4s 3 είναι ρ 1 = 1 και ρ 2 = 3. Επομένως: Υπολογισμός σταθερών σφαλμάτων θέσης, ταχύτητας και επιτάχυνσης:

Υπολογισμός σφαλμάτων θέσης, ταχύτητας και επιτάχυνσης: γ. Για να έχουμε e v < 3% θα πρέπει: Δίνεται ότι το σύστημα είναι ευσταθές για 0 < k < 12. Ο υπολογισμός των οριακών τιμών για το A γίνεται με βάση τις οριακές τιμές του k, δηλ. για k=0 (οπότε Α=0) και για k=12 (οπότε A=0,12). Άρα το κατάλληλο εύρος τιμών του Α είναι: 0 < Α < 0,12. ΘΕΜΑ 4 Ο (3,0 μονάδες) Να προσδιοριστεί η βηματική απόκριση συστήματος κλειστού βρόχου με μοναδιαία αρνητική ανάδραση και απολαβή απευθείας κλάδου: G(s) = 100/[s 2 30s 100] Λύση Το δομικό λειτουργικό διάγραμμα του συστήματος κλειστού βρόχου με μοναδιαία αρνητική ανάδραση είναι το ακόλουθο: G(s) Η συνάρτηση μεταφοράς του συστήματος είναι: Επομένως, η βηματική απόκριση του συστήματος θα είναι: αφού οι ρίζες του τριωνύμου s 2 30s 100 είναι ρ 1 = 10 και ρ 2 = 20.

Αναπτύσσοντας σε απλά κλάσματα θα έχουμε: όπου: Επομένως: και εφαρμόζοντας τον αντίστροφο μετασχηματισμό Laplace, η βηματική απόκριση είναι: