ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ME ΠΟΛΛΕΣ ΚΑΙ ΕΓΚΑΡΔΙΕΣ ΕΥΧΕΣ ΓΙΑ ΚΑΛΕΣ ΓΙΟΡΤΕΣ, ΥΓΕΙΑ ΚΑΙ ΠΡΟΟΔΟ ΣΕ ΕΣΑΣ ΚΑΙ ΤΙΣ ΟΙΚΟΓΕΝΕΙΕΣ ΣΑΣ Φυλλάδιο 2: Σχεσιακή Λογική ΔΕΚΕΜΒΡΙΟΣ 2006 ΠΑΡΑΔΟΣΗ: 12/11/2006 ΠΡΟΘΕΣΜΙΑ: 10/1/2007 (11 59 ΜΜ) 1. Ικανοποιησιμότητα Αποφασίστε αν οι παρακάτω προτάσεις είναι ταυτολογίες, ικανοποιήσιμες ή μη-ικανοποιήσιμες Εξηγήστε όσο ποιό περιληπτικά μπορείτε. 1. x.p( p( 2. p( x.p( 3. p( x.p( 4. x.p( x.p( 5. x.p( x.p( 6. x.p( x. p( 7. x. (p( q() ) x. (p( ^ q() 8. x. (p( q() ^ x. (p( ^ q() Υπόδειξη: Προσέξτε τις διαφάνειες 149 & 150: Για μια ανοικτή πρόταση αν μια ερμηνεία δεν την ικανοποιεί, δεν σημαίνει ότι η πρόταση είναι ψευδής για όλες τις αναθέσεις τιμών: μπορεί να είναι ψευδής για κάποιες από αυτές. Αντίθετα, για μια ανάθεση στη μεταβλητή Χ που κάνει την p( αληθή, η x.p( συνεχίζει να είναι ψευδής, διότι πρέπει να είναι αληθής για κάθε ανάθση τιμής στη Χ. 1. Ταυτολογία. Είναι στιγμιότυπο του αξιώματος UI 2. Ικανοποιήσιμη. Αυτό ίσως να σας ξαφνιάσει. Θυμηθείτε ότι για να είναι μια πρόταση ταυτολογία θα πρέπει να είναι αληθής υπό οποιαδήποτε ερμηνεία (όλες οι ερμηνείες είναι μοντέλα): Στην περίπτωσή μας μια ερμηνεία καθιστά μια πρόταση αληθή υπό όλες τις δυνατές αναθέσεις τιμών στη μεταβλητή της. Έστω το σύμπαν {0, 1} και μια ερμηνεία για το p τέτοια ώστε μόνο το p(0) να είναι αληθές. Τότε για x = 0 η συνθήκη είναι αληθής αλλά το συμπέρασμα της συνεπαγωγής ψευδές. 3.Ταυτολογία. Όπως και στο 2 παραπάνω, μόνοπου τώρα το p( πρέπει να είναι αληθές για ένα x, που είναι εντάξει αν το p( είναι αληθές για κάποια ανάθεση τιμών. Αν το p( είναι ψευδές για αυτή την ανάθεση, η πρόταση είναι αληθής. 4. Ικανοποιήσιμη. Σίγουρα μπορείτε να βρείτε ερμηνείες που την καθιστούν αληθή για όλες τις αναθέσεις τιμών, και άλλες ερμηνείες που την καθιστούν ψευδή για όλες τις αναθέσεις τιμών επίσης. (Παρατηρήστε ότι δεν μπορεί να υπάρχει ερμηνεία που την καθιστά αληθή για κάπιοιες αναθέσεις τιμών και ψευδή για κάποιες άλλες, διότι δεν υπάρχουν ελέυθερες μεταβλητές) 5. Ταυτολογία. Αυτό είναι ξεκάθαρο!!. Δεν υπάρχουν ελέυθερες μεταβλητές και έτσι δεν ανυσηχούμε για τις αναθέσεις τιμών. Αν το αριστερό μέρος είναι ψευδές, τότε η πρόταση είναι αληθής. Αν το αριστερό μέρος είναι αληθές, τότε το p είναι αληθές για κάθε x στο σύμπαν. Επίσης, επειδή το σύμπαν
είναι εξ ορισμού διάφορο του κενού, το p( είναι αληθές για κάποιο x, καθιστόντας έτσι και το δεξί μέρος αληθές.. 6. Ικανοποιήσιμη. Σημειώστε ότι το x.p( είναι ισοδύναμο με x. p(. Συνεπώς η πρόταση είναι της μρφής φ φ, που είναι ισοδύναμη με την πρόταση φ. Συνεπώς μας ενδιαφέρει η πρόταση x. p(. Αυτή η πρ ταση μπορεί να είναι είτε αληθής είτε ψευδής 7.Ικανοποιήσιμη. Σκεφτείτε α) i = {0}, pi = qi = {0}. Υπό αυτή την ερμηνεία η πρόταση είναι πάντοτε αληθής. b) i = {0}, pi = qi = {} Υπό αυτή την ερμηνεία η πρόταση είναι πάντοτε ψευδής. 8. Μη ικανοποιήσιμη. Σημειώστε ότι η πρόταση είναι της μορφής φ ^ φ. 2. Μετάφραση Χρησιμοποιήστε το ακόλουθο λεξικό (σχεσιακών και συναρτησιακών σταθερών): ai( όπου x είναι κάποιος που ασχολείται με τεχνητή νοημοσύνη. coffee(όπου x είναι κάποιος που πίνει καφέ. works( όπου x είναι κάποιος που δουλεύει σκληρά. theorems( όπου x είναι κάποιος που παράγει θεωρήματα. friend( είναι συνάρτηση που επιστρέφει το φίλο του x (υποθέτουμε ότι ο καθένας/μια έχει ακριβώς ένα φίλο/η) = είναι σχέση με δύο ορίσματα, που αληθεύει όταν και τα δύο ορίσματα είναι το ίδιο αντικείμενο. Να μεταφραστούν οι ακόλουθες προτάσεις σε σχεσιακή λογική 1.Όποιος ασχολείται με τεχνητή νοημοσύνη πίνει καφέ. 2. Όποιος ασχολείται με τεχνητή νοημοσύνη είναι φίλος/η κάποιου. 3.Όσοι παράγουν θεωρήματα έχουν ένα φίλοπου πίνει καφέ. 4. Κανένας με φίλο που δουλεύει σκληρά δεν ασχολείται με τεχνητή νοημοσύνη ή πίνει καφέ. 5. Υπάρχει φίλος που δεν ασχολείται με τεχνητή νοημοσύνη. 1. x. (ai( coffee() 2. x. (ai( y friend(=y) 3. x. (theorems( coffee(friend() 4. x.(works(friend() (coffee( \/ ai()) 5. ai(friend() 3. Απόδειξη με αξιωματικά σχήματα Από τις υποθέσεις: 1. όσοι σχολούνται με τεχνητή νοημοσύνη πίνουν καφέ. x. (ai( coffee() 2. Όποιος δεν παράγει θεωρήματα δεν πίνει καφέ. x. ( theorems( coffee() 3. Υπάρχει κάποιος ο φίλος του οποίου ασχολείται με τεχνητή νοημοσύνη. x. (ai(friend()) Αποδείξτε με τη σειρά που αναφέρονται ότι: A..Υπάρχει κάποιος ο φίλος του οποίου πίνει καφέ. B. Υπάρχει κάποιος ο φίλος του οποίου παράγει θεωρήματα. Χρησιμοποιείστε EI (ΥΑ), EG [f(a) x.f(], UI, MP, MT, DN. Παρατήρηση: Το DN μπορεί να το δείτε ως εξής: φ φ (δηλαδή παράγει και το ευθύ και το αντίστροφο)
A. 1. x. (ai( coffee() Υπόθεση 2. x. ( theorems( coffee() Υπόθεση 3. x. (ai(friend()) Υπόθεση 4. ai(friend(mike)) EI: 3 5. ai(friend(mike)) ) coffee(friend(mike)) UI: 1 6. coffee((friend(mike)) MP: 4,5 B. 7. coffee((friend(mike)) DN: 6 8. theorems(friend(mike)) ) coffee(friend(mike)) UI: 2 9. theorems(friend(mike)) MT: 7, 8 10. theorems(friend(mike)) DN: 9 4.Μέθοδος Herbrand A. Από τις υποθέσεις: p(x) q(x) q(x) r(x) Να δείξετε με τη μέθοδο του Herbrand ότι p(x) r(x) Σύνολο Ικανοποίησης: p( X ) q( X ) q( X ) r( X ) ( p( X ) r( X )) {a} Herbrand Universe {p(a), q(a), r(a)} Ηerbrand Βάση p(x) q(x) q(x) r(x) (p(x) r(x)) {} x x p(a) x x q(a) x x x r(a) x x p(a), q(a) x x p(a), r(a) x x x q(a), r(a) x x p(a), q(a), r(a) x x B. Από τις υποθέσεις: p(a) p( p(f() Να αποφασίσετε αν με βάση τη σημασιολογία του Herbrand ισχύει το x. p( Το σύνολο ικανοποίησης είναι p(a) p( p(f()
( x. p() Δηλαδή το p(a) p( p(f() p(b) Επαγωγικά: Ως Herbrand Universe στην περίπτωσή μας μπορείτε να θεωρείσετε αρχικά το{α,β} Μπορείτε να δείτε ότι για κανένα υποσύνολο των {p(a), p(b)} δεν ικανοποιούνται και οι τρείς προτάσεις. Κατόπιν, θεωρείστε ως Herbrand Universe to {a,b,f(a),f(b)}: Πάλι δεν ικανοποιούνται και οι τρείς προτάσεις. Δείξτε ότι με οποιοδήποτε Herbrand Universe με ν εμφωλιασμένες επεναλήψεις της f (π.χ. για ν=2, {a,b,f(a),f(b), f(f(a)), f(f(b))}) δεν ικαοποιούνται και οι τρείς προτάσεις. Γ. Από τις υποθέσεις: p(a,b) p(x, p(x,y) => p(y, Να δείξετε με τη μέθοδο του Herbrand ότι (p(a,b) => p(b,a)) Σύνολο Ικανοποίησης: p( a, b) p( x, p ( x, y) p( y, ( ( p( a, b) p( b, a))) {a, b} Herbrand Universe {p(a,a),p(a,b),p(b,a),p(b,b)} Ηerbrand Βάση p(a,b) p(x, p(x,y) => p(y, (p(a,b) => p(b,a)) {} x x p(a,b) x x p(b,a) x x p(a,a) x x x x p(b,b) x x x x p(a,b), p(a,a) x x x x p(a,b), p(b,a) x x p(a,b), p(b,b) x x X x p(a,a), p(b,b) x x x x p(a,a), p(b,a) x x x x p(b,a), p(b,b) x x x x p(a,b), p(a,a), p(b,b) x x x x
p(a,a), p(b,b), p(b,a) p(a,b), p(a,a), p(b,a) p(a,b), p(b,a), p(b,b) p(a,b), p(a,a), p(b,b), p(b,a) x x x x x x x x x x x x x Δ. Από τις υποθέσεις: p(a,b) p(x, p(x,y) & p(x,a) => p(y, Να δείξετε με τη μέθοδο του Herbrand ότι p(b,a) Σύνολο Ικανοποίησης p ( a, b) p( x, p( x, y) & p( x, a) p( y, p( b, a) {a, b} Herbrand Universe {p(a,a),p(a,b),p(b,a),p(b,b)} Ηerbrand Βάση p(a,b) p(x, p(x,y) & p(x,a) p(b,a) => p(y, {} x x p(a,b) x x p(b,a) x x x p(a,a) x x x p(b,b) x x x p(a,b), p(a,a) x x p(a,b), p(b,a) x x p(a,b), p(b,b) x x x p(a,a), p(b,b) x x x p(a,a), p(b,a) x x X x p(b,a), p(b,b) x x X x p(a,b), p(a,a), p(b,b) x x p(a,a), p(b,b), p(b,a) x x X x p(a,b), p(a,a), p(b,a) x X x p(a,b), p(b,a), p(b,b) x X x p(a,b), p(a,a), p(b,b), p(b,a) x X x 5. Ερμηνείες
Α. Αποφασίστε ποιες από τις παρακάτω προτάσεις ικανοποιούνται υπό την ερμηνεία:. i = {1, 2, 3} a^i = 1 b^i = 2 c^i = 3 f^i = {1->3, 2->1, 3->1} p^i = {<1,2>, <3,1>, <2,2>, <2,3>, <3,2>} a) p(c, f(c)) => p(f(b), b) p(f(a), a) b) x. y.(p(f(,y) <= p(f(y), ) c) x. y.(p(f(, f(y)) p(x, f(f(f(y))))) a) Ικανοποιείται b) Ικανοποιείται (δοκιμάστε για x=1) c) Δεν ικανοποιείται (π.χ για x=2) Β. Δώστε μια ερμηνεία των f και p που να ικανοποιεί όλες τις παρακάτω προτάσεις δηλαδή ένα μοντέλο (το σύμπαν και οι σταθερές οντοτήτων είναι όπως παραπάνω): x.p(x, x. y.(p(x, y) => p(f(, f(y))) x. y.(p(x, y) p(y, p(f(, y)) x. y.( p(x, y)) x. y.(p(x, y) p(y, ) f^i = {1->3, 2->1, 3->2} p^i = {<1,1>, <2,2>, <3,3>, <1,2>, <2,3>, <3,1>} ή f^i = {1->2, 2->3, 3->1} p^i = {<1,1>, <2,2>, <3,3>, <1,3>, <2,1>, <3,2>}