Αριθµητική Ανάλυση. ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ. 16 Ιανουαρίου 2015



Σχετικά έγγραφα
ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ. Καθηγητής νάλυση Φ.Τζαφέρης (ΕΚΠΑ) 27 Μαΐου / 20

Αριθµητική Ανάλυση. Ενότητα 6 Αριθµητική Παραγώγιση και Ολοκλήρωση. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,

Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 21 εκεµβρίου 2015 ΕΚΠΑ

Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 25 Μαΐου 2010 ΕΚΠΑ

1 Επίλυση Συνήθων ιαφορικών Εξισώσεων

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί 19Υπολογισµοί)

Αριθµητική Ανάλυση. Ενότητα 5 Προσέγγιση Συναρτήσεων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,

15 εκεµβρίου εκεµβρίου / 64

Αριθµητική Ανάλυση. Ενότητα 6 Αριθµητική Παραγώγιση και Ολοκλήρωση. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί)

Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και2015 Ιδιοδιανυσµάτων 1 / 50

Αριθµητική Ανάλυση 1 εκεµβρίου / 43

Αριθµητικές Μέθοδοι και Προγραµµατισµός Αριθµητική Ανάλυση (ή Επιστηµονικοί Υπολογισµοί)

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1)

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί Υπολογισµοί)

KΕΦΑΛΑΙΟ 8 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΠΙΛΥΣΗΣ ΣΥΝΗΘΩΝ. Το τυπικό πρόβληµα αρχικών τιµών που θα µας απασχολήσει, είναι το ακόλουθο:

ιαφορικές Εξισώσεις 1

Αριθμητική Ανάλυση και Εφαρμογές

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n

y r = y r y r 1. y r+ 1 + y r 1 δy r = y r+ 1 y sinh 1 z = z 1 6 z z z7 +,

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί 21Υπολογισµοί)

Κεφάλαιο 1. Αριθµητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστηµάτων

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί)

Αριθµητική Ολοκλήρωση

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

Πρόλογος Εισαγωγή στη δεύτερη έκδοση Εισαγωγή... 11

Αριθμητικές Μέθοδοι για την επίλυση ΠΑΤ Δ.Ε.

Μέθοδοι μονοδιάστατης ελαχιστοποίησης

Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville

Αριθµητικη Επιλυση Συνηθων ιαϕορικων Εξισωσεων

Γραµµική Άλγεβρα. Εισαγωγικά. Μέθοδος Απαλοιφής του Gauss

Αριθµητική Ανάλυση. Τµήµα Α ( Αρτιοι) : Καθηγητής Ν.Μισυρλής,Τµήµα Β (Περιττοί) : Επίκ. Αριθµητική Καθηγητής Ανάλυση Φ.Τζαφέρης

Αριθµητική Ανάλυση. 14 εκεµβρίου Αριθµητική ΑνάλυσηΚεφάλαιο 6. Παρεµβολή 14 εκεµβρίου / 28

ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ.

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

Απαντήσεις στα Θέµατα Ιουνίου 2012 (3 και 4)

Μέθοδοι μονοδιάστατης ελαχιστοποίησης

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 7

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Αριθµητική Ανάλυση. Ενότητα 4 Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητική Ανάλυση και Εφαρμογές

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8

ΚΕΦΑΛΑΙΟ 2 ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

1η Οµάδα Ασκήσεων. ΑΣΚΗΣΗ 1 (Θεωρία)

10 ΣΥΝΗΘΕΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6)

2.4 ΚΛΑΣΜΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

Αριθµητική επίλυση εξισώσεων και παρεµβολή µέσω υπολογιστή για την εκπαιδευτική διαδικασία

Αριθµητική Ανάλυση. Ενότητα 1 Σφάλµατα στους Αριθµητικούς Υπολογισµούς. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,

1 Πολυωνυµική Παρεµβολή

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 4

ΘΕΜΑ 2ο. Άσκηση εφαρµογής της µεθόδου Newton Raphson

Αριθµητική Ανάλυση. 27 Οκτωβρίου Αριθµητική Ανάλυση 27 Οκτωβρίου / 72

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα.

Ηλεκτρονικοί Υπολογιστές ΙΙ : Εισαγωγή στην Αριθµητική Ανάλυση

Τίτλος Μαθήματος: Συνήθεις Διαφορικές Εξισώσεις Ι

4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΕΞΙΣΩΣΗΣ

Πεπερασμένες Διαφορές.

5.2 ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟ ΟΣ

x(t) 2 = e 2 t = e 2t, t > 0

Αριθµητική Ανάλυση. Ενότητα 2 Αριθµητική Επίλυση µη Γραµµικών Εξισώσεων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,

Αλγόριθµοι και Πολυπλοκότητα

4. Σειρές Τέηλορ και Μακλώριν

Αριθμητική Ανάλυση. Ανοικτά Ακαδημαϊκά Μαθήματα. Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας. Δρ Ι. Φαμέλης

Αριθμητική Ανάλυση & Εφαρμογές

Παρεµβολή και Προσέγγιση Συναρτήσεων

1 η δεκάδα θεµάτων επανάληψης

1η Οµάδα Ασκήσεων. ΑΣΚΗΣΗ 1 (Θεωρία)

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες-Χειµερινό Εξάµηνο ιδάσκων : Π. Τσακαλίδης.

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

2.1 Αριθμητική επίλυση εξισώσεων

ΚΕΦΑΛΑΙΟ 5 ΠΑΡΕΜΒΟΛΗ. Εστω f πραγµατική συνάρτηση, της οποίας είναι γνωστές µόνον οι τιµές f(x i ) σε n+1 σηµεία xi

Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών

ΘΕΜΑΤΑ ΕΞΕΤΑΣΗΣ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ:

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 4)

Κάθε εξίσωση, η οποία περιλαµβάνει παραγώγους, είναι διαφορική εξίσωση. Έτσι οι εξισώσεις

P (Ηρ) = 0.4 P (Αρ) = 0.32 P (Απ) = 0.2

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

0 x < (x + 2) 2 x < 1 f X (x) = 1 x < ( x + 2) 1 x < 2 0 x 2

ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ. 4.1 Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα

z είναι οι τρεις ανεξάρτητες

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #1: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ.

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων

Τίτλος Μαθήματος: Συνήθεις Διαφορικές Εξισώσεις Ι

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Κωνσταντίνος Ξ. Τσιόκας. Αν. Καθηγήτρια Α.Π.Θ.

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012

Μάθηµα 8. , δέχεται εφαπτοµένη στο σηµείο της ( k, f ( k)), k D

Κεφάλαιο 9. Αριθμητική επίλυση Διαφορικών Εξισώσεων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2017 ιδάσκων : Π. Τσακαλίδης

Αριθμητική Ολοκλήρωση της Εξίσωσης Κίνησης

Επιστηµονικός Υπολογισµός Ι

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Σεπτέµβριος 2006

Transcript:

Αριθµητική Ανάλυση ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 16 Ιανουαρίου 2015 ιδάσκοντες:καθηγητής Ν. Μισυρλής,Επίκ. Καθηγητής Φ.Τζαφέρης Αριθµητική (ΕΚΠΑ) Ανάλυση 16 Ιανουαρίου 2015 1 / 20

Αριθµητική Επίλυση Συνήθων ιαφορικών Εξισώσεων Συνήθης διαφορική εξίσωση πρώτης τάξης y = f(x, y) (1) όπου y = y(x) µία άγνωστη συνάρτηση του x, που ικανοποιεί την συνθήκη y(x 0) = y 0 (2) µε x 0, y 0 δεδοµένα και f µία γνωστή συνάρτηση των x και y. Υπαρξη και µονοσήµαντο λύσης Είναι γνωστό από τη ϑεωρία των διαφορικών εξισώσεων ότι αν η f(x, y) είναι συνεχής στον τόπο S µε S {(x, y) x 0 x x n, < y < + } (3) και ικανοποιεί µία συνθήκη Lipshitz στην λωρίδα S µε σταθερά L (> 0), δηλαδή f(x, y 1) f(x, x 2) L y 1 y 2, (4) τότε το πρόβληµα των αρχικών τιµών (1)-(2) έχει ακριβώς µία λύση για κάθε x [x 0, x n]. ιδάσκοντες:καθηγητής Ν. Μισυρλής,Επίκ. Καθηγητής Φ.Τζαφέρης Αριθµητική (ΕΚΠΑ) Ανάλυση 16 Ιανουαρίου 2015 2 / 20

Ανάπτυξη αριθµητικών µεθόδων Εύρεση της προσεγγιστικής τιµής της y σε ένα τυχόν σηµείο x x 0. Εκλέγουµε αυθαίρετα ένα ϕυσικό αριθµό n και συµβολίζουµε µε x n την τιµή του x για την οποία µας Ϲητείται η τιµή της y. ιαιρούµε το διάστηµα [x 0, x n] σε n ίσα υποδιαστήµατα µε τα σηµεία x i, i = 1, 2,..., n 1. Είναι ϕανερό ότι τα σηµεία x i, i = 0, 1,..., n ορίζονται από τις σχέσεις x i = x 0 + ih, h = µε i = 0, 1,..., n όπου h είναι το ϐήµα ολοκλήρωσης. xn x0 Ακολούθως εφαρµόζοντας µία από τις αριθµητικές µεθόδους που ϑα αναπτύξουµε στα επόµενα ϐρίσκουµε την y 1 που είναι µία προσεγγιστική τιµή της ακριβούς τιµής y(x 1) µετά, χρησιµοποιώντας την y 1, ϐρίσκουµε την y 2 κ.ο.κ. και τέλος την y n την οποία και δεχόµαστε σαν την αριθµητική λύση του προβλήµατος στο σηµείο x = x n. Στην πράξη λαµβάνουµε n = 1 και ϐρίσκουµε την y n ( y 1). Μετά λαµβάνουµε n = 2 και ϐρίσκουµε την y n ( y 2), n = 4, 8 κ.ο.κ. µέχρις ότου δύο διαδοχικές τιµές για την y n συµφωνούν σε ένα προκαθορισµένο πλήθος δεκαδικών ψηφίων οπότε την τελευταία τιµή y n δεχόµαστε σαν την αριθµητική λύση της διαφορικής εξίσωσης στο σηµείο x = x n. n, ιδάσκοντες:καθηγητής Ν. Μισυρλής,Επίκ. Καθηγητής Φ.Τζαφέρης Αριθµητική (ΕΚΠΑ) Ανάλυση 16 Ιανουαρίου 2015 3 / 20

Η µέθοδος του Euler Η µέθοδος του Euler είναι µία µέθοδος του απλού ϐήµατος όπου η τιµή της παραγώγου της συνάρτησης y(x) σε ένα άγνωστο σηµείο του διαστήµατος [x i, x i+1 ] προσεγγίζεται µε την τιµή της ίδιας της παραγώγου στο σηµείο x i. Ετσι διατηρώντας δύο όρους στο ανάπτυγµα του Taylor έχουµε y(x i+1 ) = y(x i + h) = y(x i ) + hy (x i + θ i h), i = 0, 1,..., n 1 (5) όπου 0 < θ i < 1. ιδάσκοντες:καθηγητής Ν. Μισυρλής,Επίκ. Καθηγητής Φ.Τζαφέρης Αριθµητική (ΕΚΠΑ) Ανάλυση 16 Ιανουαρίου 2015 4 / 20

Αν τώρα προσεγγίσουµε την y (x i + θ i h) µε την y (x) και χρησιµοποιήσουµε τα σύµβολα y i, y i για τις προσεγγιστικές τιµές των y(x i ) και y (x i ), αντίστοιχα, τότε η (5) γίνεται y i+1 = y i + hy i, i = 0, 1,..., n 1. (6) Αλλά άρα η (6) δίνει τελικά y i = f(x i, y i ) (7) y i+1 = y i + hf(x i, y i ), i = 0, 1,..., n 1. (8) ιδάσκοντες:καθηγητής Ν. Μισυρλής,Επίκ. Καθηγητής Φ.Τζαφέρης Αριθµητική (ΕΚΠΑ) Ανάλυση 16 Ιανουαρίου 2015 5 / 20

Η σχέση (8), αν γνωρίζουµε την y(x i ), γίνεται y (x i+1 ) = y(x i ) + hy (x i ), i = 0, 1,..., n 1 όπου ο συµβολίζει την προσεγγιστική τιµή, οπότε το σφάλµα είναι ή p i+1 = y (x i+1 ) y(x i+1 ) = y(x i ) + hy (x i ) y(x i ) hy (x i + θ i h) = hy (x i ) hy (x i ) h2 2! y (x i + θ i h) p i+1 = h2 2 y (x i + θ i h), 0 < θ i < 1, i = 0, 1,..., n 1. Το ανωτέρω σφάλµα καλείται τοπικό σφάλµα αποκοπής και όπως παρατηρούµε είναι ανάλογο του O ( h 2) (δεύτερης τάξης ως προς h). ιδάσκοντες:καθηγητής Ν. Μισυρλής,Επίκ. Καθηγητής Φ.Τζαφέρης Αριθµητική (ΕΚΠΑ) Ανάλυση 16 Ιανουαρίου 2015 6 / 20

Παράδειγµα Εστω το πρόβληµα των αρχικών τιµών y = y + x + 1, 0 x 1 y(0) = 1. Αν n = 10, να υπολογιστεί η y(1.0) µε τη µέθοδο του Euler. Λύση Εχουµε f(x, y) = y + x + 1, x 0 = 0, y 0 = 1, x n = 1.0 h = x n x 0 n = 1.0 0 10 = 0.1 και x i = x 0 + ih = 0.1i οπότε η µέθοδος του Euler είναι η y i+1 = y i + hf(x i, y i ), i = 0, 1,..., n 1 ή y i+1 = y i + h( y i + x i + 1), i = 0, 1,..., 9. ιδάσκοντες:καθηγητής Ν. Μισυρλής,Επίκ. Καθηγητής Φ.Τζαφέρης Αριθµητική (ΕΚΠΑ) Ανάλυση 16 Ιανουαρίου 2015 7 / 20

Εφαρµόζοντας επαναληπτικά τον ανωτέρω τύπο ϐρίσκουµε (i = 0) y 1 = y 0 + h( y 0 + x 0 + 1) = 1 + 0.1( 1 + 0 + 1) = 1.0 (i = 1) y 2 = y 1 + h( y 1 + x 1 + 1) = 1.0 + 0.1( 1 + 0.0 + 1) = 1.01 (i = 2) y 3 = y 2 + h( y 2 + x 2 + 1) = 1.01 + 0.1( 1.01 + 0.2 + 1) = 1.029. (i = 9) y 10 = 1.348678. ιδάσκοντες:καθηγητής Ν. Μισυρλής,Επίκ. Καθηγητής Φ.Τζαφέρης Αριθµητική (ΕΚΠΑ) Ανάλυση 16 Ιανουαρίου 2015 8 / 20

Πίνακας υπολογισµών και σφαλµάτων Η ακριβής λύση είναι η y(x) = x + e x. i x i y i y(x i ) y i y(x i ) 0 0 1.0 1.00 0 1 0.1 1.0 1.004837 0.004837 2 0.2 1.01 1.018731 0.008731 3 0.3 1.029 1.040818 0.011818 4 0.4 1.0561 1.070320 0.014220 5 0.5 1.09049 1.106531 0.016041 6 0.6 1.131441 1.148812 0.017371 7 0.7 1.178297 1.196585 0.018288 8 0.8 1.230467 1.249329 0.018862 9 0.9 1.287420 1306570 0.019150 10 1.0 1.348618 1.361879 0.019201 Παρατηρούµε ότι τα σφάλµατα αυξάνονται όσο αυξάνεται η τιµή των x i. Η ελεγχόµενη αυτή αύξηση του σφάλµατος οφείλεται στην ευστάθεια της µεθόδου του Euler, πράγµα που δηλώνει ότι τα σφάλµατα στρογγύλευσης αναµένονται να αυξηθούν ανάλογα µε το h. ιδάσκοντες:καθηγητής Ν. Μισυρλής,Επίκ. Καθηγητής Φ.Τζαφέρης Αριθµητική (ΕΚΠΑ) Ανάλυση 16 Ιανουαρίου 2015 9 / 20

Η µέθοδος της σειράς Taylor Η µέθοδος της σειράς Taylor είναι η γενίκευση της µεθόδου του Euler και είναι περισσότερο ακριβής. Συνιστάται δε στην περίπτωση όπου οι παράγωγοι ανώτερης τάξης της f(x, y) µπορούν να υπολογιστούν εύκολα. Οπως και στη µέθοδο του Euler αναπτύσσουµε κατά Taylor κρατώντας k + 1 όρους, οπότε y(x i+1 ) = y(x i + h) = y(x i ) + hy (x i ) +... + hk k! y(k) (x i + θ i h) (9) όπου 0 < θ i < 1, i = 0, 1,..., n 1, ή y(x i+1 ) = y(x i )+hy (x i )+...+ hk k! y(k) (x i )+O ( h k+1), i = 0, 1,..., n 1. (10) ιδάσκοντες:καθηγητής Ν. Μισυρλής,Επίκ. Καθηγητής Φ.Τζαφέρης Αριθµητική (ΕΚΠΑ) Ανάλυση 16 Ιανουαρίου 2015 10 / 20

Τοπικό σφάλµα αποκοπής ίνεται τώρα από τον τύπο hk+1 p i+1 = (k + 1)! y(k+1) (x i + θ i h), 0 < θ i < 1, i = 0, 1,..., n 1. Από την (10) έχουµε y i+1 = y i + hy i + h2 2! y i +... + hk k! y(k) i, i = 0, 1,..., n 1 που αποτελεί τη γνωστή σαν µέθοδο της σειράς Taylor. ιδάσκοντες:καθηγητής Ν. Μισυρλής,Επίκ. Καθηγητής Φ.Τζαφέρης Αριθµητική (ΕΚΠΑ) Ανάλυση 16 Ιανουαρίου 2015 11 / 20

Παράδειγµα 1 Να χρησιµοποιηθεί η µέθοδος του Taylor µε τρεις και τέσσερις όρους για το πρόβληµα y = y + x + 1, 0 x 1, y(0) = 1. Λύση Η µέθοδος του Taylor µε τρεις όρους είναι η y i+1 = y i + hy i + h2 2 y i, i = 0, 1,..., n 1 οπότε µας χρειάζονται οι εκφράσεις της πρώτης και δεύτερης παραγώγου της y. Εχουµε y = y + x + 1 y = ( y + x + 1) = y + 1 = y x 1 + 1 = y x. Αρα για n = 10, x 0 = 0, y 0 = 1, x n = 1.0, h = xn x0 = 0.1 έχουµε n y i+1 = y i + h( y i + x i + 1) + h2 2 (y i x i ), i = 0, 1,..., 9. ιδάσκοντες:καθηγητής Ν. Μισυρλής,Επίκ. Καθηγητής Φ.Τζαφέρης Αριθµητική (ΕΚΠΑ) Ανάλυση 16 Ιανουαρίου 2015 12 / 20

Εποµένως (i = 0) y 1 = y 0 + h( y 0 + x 0 1) + h2 2 (y 0 x 0 ) = 1 + 0.1( 1 + 0 1) + (0.1)2 (1 0) 2 = 1 + 0.01 = 1 + 0.005 = 1.005 2 (i = 1) y 2 = y 1 + h( y 1 + x 1 1) + h2 2 (y 1 x 1 ) = 1.005 + 0.1( 1.005 + 0.1 + 1) + (0.1)2 (1.005 0.1) 2 = 1.019025. (i = 9) y 10 = 1.368541. ιδάσκοντες:καθηγητής Ν. Μισυρλής,Επίκ. Καθηγητής Φ.Τζαφέρης Αριθµητική (ΕΚΠΑ) Ανάλυση 16 Ιανουαρίου 2015 13 / 20

Παράδειγµα 2 Να χρησιµοποιηθεί η µέθοδος του Euler στο ακόλουθο πρόβληµα αρχικών τιµών y = y y(0) = 1 του οποίου η λύση είναι η y(x) = e x. Πιο συγκεκριµένα να ϐρεθεί η y(0.4) όταν h = 0.1 και h = 0.2. Λύση Εχουµε f(x, y) = y, x 0 = 0, y 0 = 1, x n = 0.4, h = 0.1 και x i = x 0 + ih, i = 0, 1,..., 4 ή x 0 = 0, x 1 = 0.1, x 2 = 0.2, x 3 = 0.3 και x 4 = 0.4. Η µέθοδος του Euler είναι η ή y i+1 = y i + hf(x i, y i ), i = 0, 1,..., n 1 y i+1 = y i + h( y i ), i = 0, 1,..., 3 ιδάσκοντες:καθηγητής Ν. Μισυρλής,Επίκ. Καθηγητής Φ.Τζαφέρης Αριθµητική (ΕΚΠΑ) Ανάλυση 16 Ιανουαρίου 2015 14 / 20

συνεπώς (i = 0) y 1 = y 0 hy 0 = 1 0.1 1 = 0.9 (i = 1) y 2 = y 1 hy 1 = 0.9 0.1 0.9 = 0.81 (i = 2) y 3 = y 2 hy 2 = 0.81 0.1 0.81 = 0.729 (i = 3) y 4 = y 3 hy 3 = 0.729 0.1 0.729 = 0.6561. ιδάσκοντες:καθηγητής Ν. Μισυρλής,Επίκ. Καθηγητής Φ.Τζαφέρης Αριθµητική (ΕΚΠΑ) Ανάλυση 16 Ιανουαρίου 2015 15 / 20

Πίνακας υπολογισµών και σφαλµάτων Οταν h = 0.2 έχουµε i x i y i e xi e xi y i 0 0 1.000 1.000 0 1 0.1 0.900 0.9048 0.0048 2 0.2 0.8100 0.8187 0.0087 3 0.3 0.7290 0.7408 0.0118 4 0.4 0.6561 0.6703 0.0142 i x i y i e xi e xi y i 0 0 1.000 1.000 0 1 0.2 0.800 0.8187 0.0187 2 0.4 0.6400 0.6703 0.0303 Παρατηρούµε ότι το σφάλµα αυξάνει όσο αυξάνει το x. Επίσης τα σφάλµατα για h = 0.2 είναι περίπου δύο ϕορές µεγαλύτερα από την περίπτωση όπου h = 0.1. Από το αριθµητικό αυτό παράδειγµα παρατηρούµε ότι το σφάλµα είναι ανάλογο του h, πράγµα που αληθεύει σύµφωνα µε τη ϑεωρία. ιδάσκοντες:καθηγητής Ν. Μισυρλής,Επίκ. Καθηγητής Φ.Τζαφέρης Αριθµητική (ΕΚΠΑ) Ανάλυση 16 Ιανουαρίου 2015 16 / 20

Αριθµητική επίλυση συνήθων διαφορικών εξισώσεων µε συνοριακές συνθήκες Συνήθης ιαφορική Εξίσωση 2ης τάξης Εστω η συνήθης διαφορική εξίσωση 2ης τάξης y = f(x) (11) µε y(a) = α, y(b) = β µε a, b (a < b), α, β γνωστά και f γνωστή συνάρτηση του x. Με την προϋπόθεση ότι το παραπάνω πρόβληµα έχει µία λύση ορίζουµε αυθαίρετα ϕυσικό αριθµό n και στη συνέχεια το ϐήµα ολοκλήρωσης. h = b a n ιδάσκοντες:καθηγητής Ν. Μισυρλής,Επίκ. Καθηγητής Φ.Τζαφέρης Αριθµητική (ΕΚΠΑ) Ανάλυση 16 Ιανουαρίου 2015 17 / 20

Ε πίσης ορίζουµε τα σηµεία x i = x 0 + ih, i = 0, 1,..., n µε x 0 = a. Το πρόβληµά µας είναι να ϐρούµε τις προσεγγιστικές τιµές y i των y(x i ), 1 i n 1 που να επαληθεύουν την y = f(x) όταν γνωρίζουµε ότι Αντικαθιστώντας λαµβάνουµε y 0 = α και y n = β. y i y i 1 2y i + y i+1 h 2, i = 1, 2,..., n 1 y i 1 2y i + y i+1 = h 2 f(x i ), i = 1, 2,..., n 1. (12) ιδάσκοντες:καθηγητής Ν. Μισυρλής,Επίκ. Καθηγητής Φ.Τζαφέρης Αριθµητική (ΕΚΠΑ) Ανάλυση 16 Ιανουαρίου 2015 18 / 20

Τριδιαγώνιο Γραµµικό Σύστηµα Οι παραπάνω εξισώσεις αποτελούν ένα σύστηµα n 1 γραµµικών εξισώσεων µε n 1 αγνώστους που λόγω των συνοριακών τιµών λαµβάνει την ακόλουθη µορφή ή 2y 1 y 2 = α h 2 f(x 1 ) y 1 +2y 2 y 3 = h 2 f(x 2 )............ y n 3 +2y n 2 y n 1 = h 2 f(x n 2 ) y n 2 +2y n 1 = β h 2 f(x n 1 ) (13) Ay = k (14) ιδάσκοντες:καθηγητής Ν. Μισυρλής,Επίκ. Καθηγητής Φ.Τζαφέρης Αριθµητική (ΕΚΠΑ) Ανάλυση 16 Ιανουαρίου 2015 19 / 20

όπου και 2 1 0 1 2 1 A =. 1 2........ 1 0 1 2 k = α h 2 f(x 1 ) h 2 f(x 2 ). hf(x n 2 ) β h 2 f(x n 1 ). ιδάσκοντες:καθηγητής Ν. Μισυρλής,Επίκ. Καθηγητής Φ.Τζαφέρης Αριθµητική (ΕΚΠΑ) Ανάλυση 16 Ιανουαρίου 2015 20 / 20