Κυβική (Τριτοβάθµια) Πολυωνυµική Εξίσωση

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κυβική (Τριτοβάθµια) Πολυωνυµική Εξίσωση"

Transcript

1 Κυβική (Τριτοβάθµια) Πολυωνυµική Εξίσωση Εισαγωγή Υπάρχουν αρκετά προβλήµατα τα οποία οδηγούν σε µία τριτοβάθµια πολυωνυµική εξίσωση (πχ η µικρότερη απόσταση από µία παραβολή, ο διπλασιασµός ενός κύβου, η τριχοτόµηση µίας γωνίας κα) Προσωπικά ήλθα για πρώτη φορά πριν µερικά χρόνια, σε επαφή µαζί της, µελετώντας τα κύµατα Rayleigh σε έναν οµογενή και ισότροπο ελαστικό ηµι-χώρο Μεσαγήνευσε πλήρως! Η παρούσα εργασία σκοπό έχει να παρουσιάσει κάποια εισαγωγικά στοιχεία για την κυβική εξίσωση Σύµφωνα µε το θεώρηµα Abel-Ruffini δεν υπάρχει γενική λύση πολυωνυµικών εξισώσεων βαθµού µεγαλύτερου από τέσσερα που να περιέχει µόνο ριζικά (radicals) Γενικότερα το πότε µία πολυωνυµική εξίσωση είναι επιλύσιµη µε ριζικά απαντήθηκε από τον Galois Εδώ θα παρουσιάσουµε την λύση της κυβικής εξίσωσης Αλλού θα ασχοληθούµε µε την τεταρτοβάθµια εξίσωση Πριν από αυτό κρίναµε όµως σκόπιµο να παρουσιάσουµε µία σύντοµη ιστορική αναδροµή Το 494 ένας Ιταλός Μαθηµατικός εν ονόµατι Luca Pacioli (445-59) εξετάζοντας την κυβική εξίσωση κατέληξε στο συµπέρασµα ότι η ακριβής λύση αυτής είναι αδύνατη Αυτό το συµπέρασµα δεν απότρεψε την Ιταλική Μαθηµατική κοινότητα της εποχής από την ενάσχοληση µε το θέµα Τουναντίον η επίλυσή της θεωρήθηκε ύψιστη πρόκληση για τους Ιταλούς Αλγεβριστές του 6 ου αιώνα Ο πρώτος Μαθηµατικός ο οποίος ανακάλυψε (γύρω στα 5) µία µέθοδο για την επίλυση της καλούµενης ανηγµένης µορφής της κυβικής εξίσωσης (reduced ή deressed cubic) ήταν ο καθηγητής Μαθηµατικών στο Πανεπιστήµιο της Μπολόνια, Sciione dal Ferro (465-56) (Ανηγµένη καλείται η µορφή της κυβικής εξίσωσης η οποία δεν περιέχει τον δευτεροβάθµιο όρο Η πιο γενική µορφή αυτής είναι η a b + + = ) Για κάποιον που δεν γνωρίζει σε βάθος της επικρατούσα κατάσταση στην Πανεπιστηµιακή Ιταλική κοινότητα της εποχής, θα φανεί βέβαια παράξενο ότι ο Ferro, δεν δηµοσιεύσε ποτέ την µέθοδό του! Η µέθοδός του παρέµεινε µυστική µέχρι το 5, οπότε ο Ferro αποκάλυψε την µέθοδό του στον Antonio Maria Fior και στον γαµπρό του Anibale della Nave Για να γίνει αντιληπτό γιατί ο Ferro δεν αποκάλυψε νωρίτερα το οµολογουµένως κατάρθωµά του, πρέπει να λάβει υπόψη ότι την εποχή της Αναγέννησης οι ακαδηµαϊκές θέσεις δεν ήταν µε κανένα τρόπο ασφαλείς Κάθε στιγµή και από οποιονδήποτε, δηµόσιες προκλήσεις µπορούσαν να τεθούν σε Μαθηµατικούς όπως ο Ferro Εάν αυτοί δεν ήταν σε θέση να αντιµετωπίσουν επιστηµονικά τους αµφισβητίες, οι φήµες τους καθώς και οι ίδιες οι καριέρες τους µπορούσαν να κινδυνεύσουν σοβαρά Ως εκ τούτου, µία σοβαρή νέα ανακάλυψη ήταν ένα ισχυρό όπλο Το επόµενο άτοµο που θα έλθει στο προσκήνιο είναι ο Niccolo Fontana Tartaglia από την Μπρέσια ( ) Το 55 ο Antonio Maria Fior προκάλεσε τον Tartaglia να λύσει τριάντα ανηγµένες κυβικές εξισώσεις, φέρνοντας κατά αυτό τον τρόπο τον Tartaglia σε εξαιρετική δύσκολη θέση Τελικά,

2 εργαζόµενος µέχρι το πέρας της προθεσµίας της πρόκλησης ο Tartaglia κατάφερε να φθάσει στην ακριβή λύση της ανηγµένης κυβικής εξίσωσης Κατά την διάρκεια ενός τροµερού δηµόσιου θριάµβου, ο Tartaglia κατάφερε να υπερκεράσει τον λιγότερο προικισµένο αµφισβητία του, Fior Ο Girolamo Cardano (5-576) έχοντας µάθει για την επιστηµονική «διένεξη» µεταξύ του Fior και του Tartaglia και τον τελικό θρίαµβο του τελευταίου, εντυπωσιασµένος, επιζήτησε επίµονα να µάθει από τον Tartaglia την µέθοδό του Όµως ο Tartaglia δεν αποκάλυπτε την µυστική µέθοδό του Τελικά µετά από µεγάλη αλληλογραφία µεταξύ των, ο Tartaglia αποκάλυψε την µέθοδό του, σε µία δυσνόητη εκδοχή, µε την προϋπόθεση ότι ο Cardano θα ορκιζόταν ότι θα την κρατήσει µυστική Το 54, ο Cardano και ο µαθητής του Lodovico Ferrari (5-565) εξετάζοντας τα χειρόγραφα του Ferro, ανακάλυψαν ότι η µέθοδός του ήταν παρόµοια µε αυτή του Tartaglia Μετά από αυτήν την ανακάλυψη ο Cardano θεώρησε ότι θα µπορούσε να δηµοσιεύσει την λύση της ανηγµένης κυβικής εξίσωσης χωρίς να αθετήσει και την υπόσχεσή του στον Tartaglia Έτσι, το 545, ο Cardano παρουσίασε την µέθοδο επίλυσης της ανηγµένης κυβικής εξίσωσης στο βιβλίο του Ars Magna αναφέροντας τόσο ότι ο Ferro ήταν ο πρώτος που ανακάλυψε την µέθοδο αλλά και ότι ο Tartaglia κατάληξε στην ίδια µέθοδο ανεξάρτητα Εδώ κλείνουµε την σύντοµη ιστορική αναδροµή Τονίζεται ασφαλώς, ότι βάσει του θεµελιώδους θεωρήµατος της άλγεβρας η κυβική εξίσωση έχει ακριβώς τρεις ρίζες Ανηγµένη µορφή της κυβικής εξίσωσης Η πιο γενική µορφή της κυβικής εξίσωσης είναι η: ( ) a + a + a + a =, a () ιαιρώντας µε a προκύπτει: a b c =, () a a a όπου a =, b =, c = a a a Ως πρώτο βήµα για την επίλυση της () θέτω: = y λ () Εκτελώντας τις πράξεις και κάνοντας αναγωγή οµοίων όρων καταλήγω στην εξίσωση: ( ) ( ) ( ) y a y b a y a b c + λ + λ + λ + λ + λ λ + = (4) Ο δευτεροβάθµιος όρος στην εξίσωση (4) µπορεί να απαληφθεί εάν θέσουµε: a a λ = λ = (5)

3 Κατά αυτόν τον τρόπο η (4) γράφεται: a a bc y + b y + + c = (6) 7 Ορίζουµε τώρα: a a bc b και q + c, (7α,β) 7 οπότε η (6) γράφεται τελικά: y y q + + = (8) Αυτή είναι η λεγόµενη ανηγµένη κυβική εξίσωση (reduced cubic equation) Της λείπει ο δευτεροβάθµιος όρος αλλά κατά τα άλλα οι συντελεστές είναι γενικοί a Εάν y µία λύση της (8) τότε από την () και εν όψει της (5) η αντίστοιχη λύση της () είναι: = y Επίλυση της ανηγµένης κυβικής εξίσωσης y y q + + = Η µέθοδος που θα ακολουθήσουµε είναι παραλλαγή αυτής του Viète Ξεκινάµε εισάγοντας δύο νέες µεταβλητές z και u για τις οποίες θεωρούµε: Τότε: y = z + u (9) ( ) ( ) ( 9) y = z + u y = z + u + zu z + u y = z + u + zuy ( ) y zuy z + u = () Συγκρίνοντας την (8) και την () βλέπουµε ότι ταυτίζοντας εάν: zu = + z u = q (α,β) Από την (α) έχω: u = και η (β) γράφεται: z z = q 7z Απαλείφοντας από αυτήν την εξίσωση τον παρανοµαστή παίρνουµε: z + qz = () 7 6 Αυτή είναι µία διτετράγωνη (biquadratic) εξίσωση ως προς Επιλύοντας την κατά τα γνωστά θα έχουµε: z z q ± =, () όπου:

4 4 4 q = q + = + (4) η διακρίνουσα της () Λόγω της (4) η () γράφεται: 4 7 z = ± + (5) Από την (β) και εν όψει της (5) προκύπτει λοιπόν ότι: (6) 4 7 u = + Χωρίς βλάβη της γενικότητας θεωρώ ότι: Τότε θα είναι: (Εάν έπαιρνα 4 7 z = + + (7α) 4 7 u = + (7β) 4 7 z = + θα ήταν απλώς 4 7 u = + + ) Παίρνοντας τις κυβικές ρίζες στις (7) και αντικαθιστώντας στην (9) καταλήγουµε στο συµπέρασµα ότι η λύση της (9) είναι η: y = z + u y = (8) Αυτή είναι η περίφηµη έκφραση για την ανηγµένη κυβική εξίσωση που παρουσιάστηκε για πρώτη φορά στο έργο Ars Magna του Cardano (545) Ας δούµε ένα παράδειγµα Έστω η εξίσωση: = Εδώ =, q = 8 Ώστε από την (8) έχω µετά τις πράξεις: y = Πριν προχωρήσουµε όµως, θα πρέπει να ασχοληθούµε µε τις κυβικές ρίζες της µονάδας 4 Κυβικές ρίζες της µονάδας Κυβικές ρίζες της µονάδας ονοµάζονται οι λύσεις της εξίσωσης = 4

5 Έχουµε λοιπόν: = = = ( )( + + ) =, + + = = ± i όπου i = η φανταστική µονάδα Εποµένως οι τρεις κυβικές ρίζες της µονάδας είναι οι: =, = + i, = i Η εξίσωση έχει δηλαδή µία πραγµατική ρίζα και δύο µιγαδικές συζηγείς ρίζες Βάσει του θεµελιώδους θεωρήµατος της Άλγεβρας αυτές είναι όλες οι ρίζες της εξίσωσης Εάν θεωρήσω την ω = + i ως την κύρια κυβική ρίζα της µοναδας (rincial cubic root of unity) έχω: και i i i ω = + = = = i i 4 4 ω = ω ω = + = + = = Από τα προηγούµενα διαπιστώνουµε ότι οι κυβικές ρίζες της µονάδας είναι οι: {,, } κύρια κυβική ρίζα της µονάδας Η κύρια κυβική ρίζα της µονάδας ικανοποιεί την ταυτότητα: Πράγµατι: ω ( )( ) + ω + ω = ω = ω = ω + ω + ω = + ω + ω = (οεδ) Χρησιµοποιώντας το θεώρηµα του De Moivre είναι: Προφανώς, π π cos sin cos π sin π ω = + i = π + i π = + i = ( cos π + i sin π) ω = ( ) ω = i = ω = = 4 ( ) ( ) ( ) Άρα οι τρεις κυβικές ρίζες της µονάδας µπορούν να γραφούν και ως εξής: ( ) ( ) ω ω ω =, όπου ω η {,, } 5 Οι κυβικές ρίζες οποιουδήποτε αριθµού 5

6 Κυβικές ρίζες ενός αριθµού u ονοµάζονται οι ρίζες της εξίσωσης Οι τρεις κυβικές ρίζες τoυ u είναι: { } u, u, u ρίζα της µονάδας Πράγµατι, ζ = u ζ = u ζ = ζ = ω ζ = ω, όπου ( ) ( ) ζ = u = u, ( ) ζ = ω u = ω u = u = u, ( ) ω = η κύρια κυβική ζ = ω u = ω u = u = u 6 Παραδείγµατα Οι κυβικές ρίζες του αριθµού 8 είναι οι: { } 8, u, u ζ = ζ = ω ζ = ω ή, ( ), ( ) Οι κυβικές ρίζες του αριθµού 8 είναι οι: { } 8, 8, 8 ζ = ζ = ω ζ = ω { } ζ = ζ = ζ = Εάν θεωρήσουµε ότι η κύρια κυβική ρίζα ενός αρνητικού αριθµού είναι ένας αρνητικός αριθµός τότε 8 =, οπότε οι κυβικές ρίζες του αριθµού 8 είναι οι: {, ( ), ( ) } ζ = ζ = ζ = Συµβολικά προγράµµατα (CAS: Comuter Algebraic System) όπως το Mathematica έχουν υιοθετήσει την επιλογή ότι η κύρια κυβική ρίζα ενός αρνητικού αριθµού είναι ένας µιγαδικός αριθµός µε θετικό φανταστικό µέρος Έτσι το Mathematica δίνει: ComleEandAH 8L ê E + è!!! Με αυτήν την επιλογή του Mathematica έχουµε διαδοχικά: { ζ } = 8, ζ = ω 8, ζ = ω 8 i, ( i ), ( i ) { } ζ = + ζ = ω + ζ = ω + ζ = i, ζ = ω i, ζ = ω i {,, } {,, } { ζ = ω, ζ =, ζ = ω} ζ = ( ), ζ =, ζ = ( ) ζ = ω ζ = ω ω ζ = ω ω ζ = ω ζ = ω ζ = ω ω { } ηλαδή παίρνουµε και πάλι (προφανώς!) τις ίδιες κυβικές ρίζες αλλά µε άλλη σειρά Είµαστε έτοιµοι πλέον να συνεχίσουµε την επίλυση της (ανηγµένης) τριτοβάθµιας πολυωνυµικής εξίσωσης ω = 6

7 6 Ανηγµένη κυβική εξίσωση: Μετά την σχέση του Cardano Όπως είδαµε στην παράγραφο, η γενική λύση της ανηγµένης κυβικής εξίσωσης δίνεται από την σχέση του Cardano (Εξ 8) y = z + u = (8) Από την ανάλυση των παραγράφων 4 και 5 είναι κατανοητό ότι υπάρχουν τρεις κυβικές ρίζες για το και τρεις για το u Οι εξής: { z, ωz, ω z} και { u, u, u} όπου ( ) i ω ω, ω = = + η κύρια κυβική ρίζα της µονάδας Φαινοµενικά υπάρχουν = 9 δυνατοί συνδυασµοί για το άθροισµα z + u, πράγµα που θα οδηγούσε στο λανθασµένο συµπερασµα ότι η κυβική εξίσωση έχει εννιά λύσεις Αυτό πουξεχάστηκε είναι ότι τα z, u δεν ανεξάρτητα µεταξύ των Πρέπει να ικανοποιούν τις Εξ (): zu = + z u = q (α,β) Οι µοναδικοί συνδυασµοί που ικανοποιούν και τις δύο εξισώσεις είναι οι: ) { z, u } ) { z, u} ω ω ) { z, u} ω ω Πράγµατι (θυµηθείτε ω = ) ω z ω u = ω zu = και ωz ω u = ω zu = Όλοι οι υπόλοιποι συνδυασµοί ικανοποιούν την (β) αλλά όχι και την (α) Πχ ω z ω u = ω ω zu = ω, z u zu ω = ω = ω κλπ Συνεπώς, οι τρεις ρίζες της ανηγµένης κυβικής εξίσωσης y y q + + = είναι οι: z όπου y = z + u y = ω z + ωu y = ω z + ω u, (9) 4 7 z = + +, 4 7 u = + και ( ) ω = 7

8 Ας κάνουµε επαλήθευση! ( ) ( ) ( ) ( ) y + y + q = z + u + z + u + q = z + u + zu z + u + z + u + q = ( z u q) ( zu )( z u) = = + + = ( ω + ω ) + ( ω + ω ) + = 6 ( ) ( ) ( z u q) ( zu )( z u) y y q z u z u q = ω z + ω u + ω zu ω z + ω u + ω z + ω u + q = = ω + ω = + + = ( ω + ω ) + ( ω + ω ) + = 6 ( ) ( ) ( z u q) ( zu )( z u) y y q z u z u q = ω z + ω u + ω zu ω z + ω u + ω z + ω u + q = = ω + ω = Ας δούµε κατόπιν ένα παράδειγµα Έστω η ανηγµένη κυβική εξίσωση Με το Mathematica παίρνουµε χωρίς κόπο: SolveA 8 5E :8 5<, : I 5 è!!! M>, : I 5+è!!! M>> 8 5 = Ας δούµε τι µπορούµε να κάνουµε εµείς! Πρώτα από όλα, εδώ = 8 και q = 5 Οπότε: ( 5) ( 8) 5 ± + = ± + = = ± = ± = Συνεπώς οι ρίζες της εξίσωσης = z + u = + = 5 = 7 = = = 8 = = 8 5 = είναι: ( ) ( ) ( ) = ω z + ω u = = + i + i = + i 5 5 ( ) ( ) ( ) = ω z + ω u = + = i + + i = i Οι ρίζες που βρέθηκαν και µε το Mathematica (Στην περίπτωση που εξετάσαµε θα µπορούσαµε να εργαστούµε βέβαια και µε το σχήµα Horner!) u z 8

9 Ας δούµε ένα άλλο παράδειγµα Έστω η (γενική) κυβική εξίσωση η οποία έχει ρίζες τους πραγµατικούς αριθµούς ζ + ζ ( ζ ) = ζ ζ ζ = 4 Κάνοντας την αντικατάσταση εξίσωση: 9 7 = 7 Επειδή οι ρίζες της θα είναι οι:,, Τότε: ζ = + και εκτελώντας τις πράξεις καταλήγουµε στην ανηγµένη κυβική ζ ζ ζ = είναι οι: 4 7 4,, =,, 6 6 Με το Mathematica βρίσκουµε εύκολα: SolveA E :: 7 6 >, : 6 >, : 4 >>,, οι ρίζες της ανηγµένης κυβικής εξίσωσης Για να δούµε εµείς! Εδώ 9 = και 7 q = 7 Αντικαθιστώντας στην έκφραση ± + έχουµε µετά τις πράξεις: ± + = ± = ± i Με z = + i και u = i οι τρεις ρίζες που παίρνουµε είναι: = + = z u i i = ω z + ω u = ( ) + i ( ) i = ω z + ω u = ( ) + i + ( ) i Μάλλον καλύτερα µε το Mathematica! υστυχώς δεν υπάρχει γενική µέθοδος η οποία µπορεί να µας δώσει πάντα απλοποιήσεις σε εκφράσεις όπως η 7 + i i

10 Χρησιµοποιώντας το Mathematica (ή δουλεύοντας αρκετά κοπιαστικά µόνοι µας!) παίρνουµε τελικά: i 7 j k yê 8 è!!! z + i 7 j { k 4 H L êi 7 j k è!!! H L 4êi 7 j k y 8 è!!! z { è!!! yê z { ê +H L 4êi j k yê z êê FullSimlify { è!!! +H L êi 7 j k è!!! yê z êê FullSimlify { yê z êê FullSimlify { Το παράδειγµα αυτό είναι ενδεικτικό της περίφηµης irreducible case της ανηγµένης κυβικής εξίσωσης Στην περίπτωση αυτή η κυβική εξίσωση έχει τρεις πραγµατικές ρίζες Και µάλιστα (προς µεγάλη έκπληξη των Μαθηµατικών της Αναγέννησης!) θα πρέπει αναγκαστικά να δεχθούµε την ύπαρξη των φανταστικών αριθµών (τους οποίους µέχρι την ενασχόληση µε τη κυβική εξίσωση οι Μαθηµατικοί της εποχής εκείνης τους είχαν αποφύγει!) Θυµηθείτε ότι µε κάθε ανηγµένη κυβική εξίσωση z + qz = (ιδέ παράγραφο ) 7 6 y y q Η λύση της διτετράγωνης εξίσωσης µας δίνει τις τρίτες δυνάµεις z και u Στην περίπτωση µας: Η διακρίνουσα είναι τότε: 9 7 = οπότε 7 5 = q + 4 = < 7 48 Συνεπώς η διτετράγωνη εξίσωση έχει δύο ρίζες 9 = και z και + + = συνδέεται η διτετράγωνη εξίσωση: z και 7 q = 7 u των βοηθητικών µεταβλητών u οι οποίες είναι µιγαδικές συζηγείς Παρόλο που η διακρίνουσα της διτετράγωνης εξίσσωσης είναι αρνητική η ανηγµένη κυβική εξίσωση έχει τρεις πραγµατικές ρίζες! Πραγµατικά εντυπωσιακό συµπέρασµα για τους µαθηµατικούς της Αναγέννησης! 7 ιερεύνηση της ανηγµένης κυβικής εξίσωσης και η διακρίνουσα 4 7 = q + Στα περαιτέρω θα περιοριστούµε στην περίπτωση όπου οι συντελεστές, q είναι πραγµατικοί αριθµοί Θα δείξουµε τότε ότι σε κάθε περίπτωση η διακρίνουσα καθορίζει το είδος των ριζών της ανηγµένης κυβικής εξίσωσης

11 Εξετάζουµε πρώτα την περίπτωση q = 4 + = Τότε: 4 7 y z u q q q = + = + = ( ) ω+ω + = = ω + ω = ω+ ω = y z u y z u ( ) q q q q = ω + ω = ω + ω = ηλαδή στην περίπτωση αυτή έχουµε (τουλάχιστον) δύο ίσες ρίζες Εξετάζουµε κατόπιν την περίπτωση q > 4 + > 4 7 Τότε οι εκφράσεις ± + είναι πραγµατικές Πράγµατι: = > R = < R 4 7 όπου κάνουµε την παραδοχή ότι η κύρια κυβική ρίζα ενός αρνητικού αριθµού είναι επίσης ένας αρνητικός αριθµός Εποµένως στην περίπτωση αυτή οι τρεις ρίζες της κυβικής εξίσωσης είναι: y = z + u R y = ω z + ω u y = ω z + ωu Εξετάζω τώρα το άθροισµα y + y Είναι: ( ) ( ) ( ) ( ) ( ) y + y = ω z + ω u + ω z + ω u = ω + ω z + ω + ω u = z u = z + u R Ως εκ τούτου οι ρίζες y, y είναι µιγαδικές συζηγείς Συνοψίζοντας, εάν > η ανηγµένη κυβική εξίσωση έχει µία πραγµατική ρίζα και δύο µιγαδικές συζηγείς ρίζες q Τέλος εξετάζουµε την περίπτωση < 4 + < 4 7 Όπως είδαµε και στο παράδειγµα στην περίπτωση αυτή η κυβική εξίσωση έχει τρεις πραγµατικές ρίζες

12 Η αντίστοιχη διτετράγωνη εξίσωση έχει δύο µιγαδικές συζηγείς ρίζες, έστω: όπου Θέτοντας ` z = c + id και q c = και Ειδικότερα, d = u = c id, (και τα δύο πραγµατικά) c = r cos θ και d = r sin θ και εν όψει του θεωρήµατος De Moivre παίρνουµε: = + = + + = y z u c id c id ( cos sin ) ( cos sin ) = r θ + i θ + r θ i θ = θ + kπ θ + kπ θ + kπ θ + kπ = r cos + i sin + cos i sin = θ + kπ = r cos, k = {,, } k = y = r cos k = y = r cos k = y = r cos θ θ + π θ + 4π Πράγµατι οι τρεις ρίζες είναι πραγµατικές 8 Τύποι του Viète για την ανηγµένη κυβική εξίσωση Έστω, (,,) y i = οι τρεις ρίζες της ανηγµένης κυβικής εξίσωσης Τότε: i ( )( )( ) ( ) ( ) y + y + q = y y y y y y y + y + q = y y + y + y y + y y + y y + y y y y y y Από την ισότητα των πολυωνύµων έχω: y + y + y = y y + y y + y y = y y y = q Αυτές οι σχέσεις που ικανοποιούν οι τρεις ρίζες είναι οι τύποι του Viète για την ανηγµένη κυβική εξίσωση 9 Επίλογος Ο αναγνώστης θα διερωτηθεί γιατί η φόρµουλα του Cardano y = z + u = ,

13 για τις ρίζες της ανηγµένης κυβικής εξίσωσης δεν είναι γνωστή όπως η αντίστοιχη σχέση για τις ρίζες της δευτεροβάθµιας πολυωνυµικής εξίσωσης (quadratic equation) Η αιτία είναι προφανής εάν λάβουµε υπόψη τα δύο παραδείγµατα που παρουσιάσαµε στην παράγραφο 7 Είναι γεγονός ότι οι αριθµητικές µέθοδοι (λχ η µέθοδος του Newton) είναι πιο εύχρηστες τόσο για την κυβική όσο και για την τεταρτοβάθµια πολυωνυµική εξίσωση (quartic equation) Παρόλα αυτά θα κόµιζα γλαύκα στην Αθήνα εάν έλεγα ότι η επίλυση των εξισώσεων αυτών ήταν ένας µεγάλος θρίαµβος των Μαθηµατικών της Αναγέννησης! Επιλεγµένη βιβλιογραφία Elementary Theory of Equations, LE Dickson, (John Willey&Sons 94) Galois Theory (Emil Artin), (Dover reublication, 998) htt://wwwstoryofmathematicscom/6th_tartagliahtml 4 htt://enwikiediaorg/wiki/cubic_function 5 htt://mathworldwolframcom/cubicformulahtml

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η (Ηµεροµηνία Αποστολής στον Φοιτητή: Οκτωβρίου 005) Η Άσκηση στην εργασία αυτή είναι

Διαβάστε περισσότερα

Ιστορία των Μαθηματικών

Ιστορία των Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Μαθηματικά στην Αναγέννηση. Χαρά Χαραλάμπους ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5.:

Διαβάστε περισσότερα

Εαρινό Εξάμηνο Χ. Χαραλάμπους ΑΠΘ

Εαρινό Εξάμηνο Χ. Χαραλάμπους ΑΠΘ Εαρινό εξάμηνο 2012 5.04.12 Χ. Χαραλάμπους Τεταρτοβάθμιες εξισώσεις και Cardano (Ferrari) To πρώτο πρόβλημα στις τεταρτοβάθμιες! ΙΔΕΑ: Αν και από τις δύο μεριές της ισότητας είχαμε τέλεια τετράγωνα τότε

Διαβάστε περισσότερα

ΤΡΙΤΟΥ ΚΑΙ ΤΕΤΑΡΤΟΥ ΒΑΘΜΟΥ. Έρευνα Παρουσίαση Μπάμπης Δημητριάδης Μαθηματικός Κέρκυρα 2012

ΤΡΙΤΟΥ ΚΑΙ ΤΕΤΑΡΤΟΥ ΒΑΘΜΟΥ. Έρευνα Παρουσίαση Μπάμπης Δημητριάδης Μαθηματικός Κέρκυρα 2012 ΕΞΙΣΩΣΕΙΣ ΤΡΙΤΟΥ ΚΑΙ ΤΕΤΑΡΤΟΥ ΒΑΘΜΟΥ Έρευνα Παρουσίαση Μπάμπης Δημητριάδης Μαθηματικός Κέρκυρα 01 1 ΙΣΤΟΡΙΚΟ ΣΗΜΕΙΩΜΑ Πρωτεργάτες για τη μελέτη και τη λύση εξισώσεων ανωτέρου βαθμού είναι μεταξύ άλλων,

Διαβάστε περισσότερα

1 Galois Theory, I. Stewart. https://repository.kallipos.gr/bitstream/11419/731/4/book Galois theory.

1 Galois Theory, I. Stewart. https://repository.kallipos.gr/bitstream/11419/731/4/book Galois theory. Χαρά Χαραλάμπους Τμήμα Μαθηματικών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης 10 Απριλίου 2016 Με βάση την ομιλία (30.3.16) στην 8η Διεθνής Μαθηματική Εβδομάδα «Θεωρία Galois σε 30 λεπτά» Ελληνική Μαθηματική

Διαβάστε περισσότερα

Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών

Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών Γιώργος Αλογοσκούφης, Δυναµική Μακροοικονοµική, Αθήνα 206 Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών Στο παράρτηµα αυτό εξετάζουµε τις ιδιότητες και τους τρόπους επίλυσης εξισώσεων διαφορών. Oι εξισώσεις

Διαβάστε περισσότερα

5.1 Ιδιοτιµές και Ιδιοδιανύσµατα

5.1 Ιδιοτιµές και Ιδιοδιανύσµατα Κεφάλαιο 5 Ιδιοτιµές και Ιδιοδιανύσµατα 5 Ιδιοτιµές και Ιδιοδιανύσµατα Αν ο A είναι ένας n n πίνακας και το x είναι ένα διάνυσµα στον R n, τότε το Ax είναι και αυτό ένα διάνυσµα στον R n Συνήθως δεν υπάρχει

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 2

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt016/nt016.html Πέµπτη 7 Οκτωβρίου 016 Ασκηση 1. Βρείτε όλους

Διαβάστε περισσότερα

ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης , (1)

ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης , (1) 1 ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης (1) όπου οι συντελεστές είναι δοσµένες συνεχείς συναρτήσεις ορισµένες σ ένα ανοικτό διάστηµα. Ορισµός 1. Ορίζουµε τον διαφορικό τελεστή µέσω της

Διαβάστε περισσότερα

Η εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση

Η εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση Η εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση Αλέξανδρος Γ. Συγκελάκης 6 Απριλίου 2006 Περίληψη Θέµα της εργασίας αυτής, είναι η απόδειξη οτι η εξίσωση x 3 + y 3 = z 3 όπου xyz 0,

Διαβάστε περισσότερα

Συµπληρωµατικές σηµειώσεις για τον «Επιστηµονικό Υπολογισµό» Χειµερινό εξάµηνο Τµήµα Μαθηµατικών, Πανεπιστήµιο Αιγαίου

Συµπληρωµατικές σηµειώσεις για τον «Επιστηµονικό Υπολογισµό» Χειµερινό εξάµηνο Τµήµα Μαθηµατικών, Πανεπιστήµιο Αιγαίου Τελευταία ενηµέρωση: 4 Ιανουαρίου 8 Συµπληρωµατικές σηµειώσεις για τον «Επιστηµονικό Υπολογισµό» Χειµερινό εξάµηνο 6-7 -- Τµήµα Μαθηµατικών, Πανεπιστήµιο Αιγαίου Οδηγίες για την 6 η άσκηση της 6 ης εργασίας

Διαβάστε περισσότερα

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange 64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από

Διαβάστε περισσότερα

Πολυώνυµα - Πολυωνυµικές εξισώσεις

Πολυώνυµα - Πολυωνυµικές εξισώσεις 4 ΚΕΦΑΛΑΙΟ Πολυώνυµα - Πολυωνυµικές εξισώσεις Ορισµός πολυωνύµου Ονοµάζoυµε ΠΟΛΥΩΝΥΜΟ του κάθε παράσταση της µορφής α ν ν +α ν- ν- + +α +α 0, ν ΙΝ και α 0, α,, α ν-, α ν ΙR. Παρατηρήσεις α. Τα α ν ν, α

Διαβάστε περισσότερα

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό.

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Ακολουθίες πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας α Κάθε

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai2017/lai2017html Παρασκευή 20 Οκτωβρίου 2017

Διαβάστε περισσότερα

Ιστορία των Μαθηματικών

Ιστορία των Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Μαθηματικά στην Αναγέννηση Χαρά Χαραλάμπους ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5.1:

Διαβάστε περισσότερα

Μάθηµα 1. Κεφάλαιο 1o: Συστήµατα. γ R παριστάνει ευθεία και καλείται γραµµική εξίσωση µε δύο αγνώστους.

Μάθηµα 1. Κεφάλαιο 1o: Συστήµατα. γ R παριστάνει ευθεία και καλείται γραµµική εξίσωση µε δύο αγνώστους. Μάθηµα 1 Κεφάλαιο 1o: Συστήµατα Θεµατικές Ενότητες: A. Συστήµατα Γραµµικών Εξισώσεων B. Συστήµατα 3x3 Α. ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Ορισµοί Κάθε εξίσωση της µορφής α x+β =γ, µε α, β, γ R παριστάνει

Διαβάστε περισσότερα

Αλγεβρικές παραστάσεις - Αναγωγή οµοίων όρων

Αλγεβρικές παραστάσεις - Αναγωγή οµοίων όρων Αλγεβρικές παραστάσεις - Αναγωγή οµοίων όρων 1. Μια παράσταση που περιέχει πράξεις µόνο µε αριθµούς, λέγεται αριθµητική παράσταση. Παράδειγµα: + + 1 =. είναι µια αριθµητική παράσταση, το αποτέλεσµα των

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt014/nt014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

Γραµµική Αλγεβρα Ι. Ενότητα: Εισαγωγικές Εννοιες. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών

Γραµµική Αλγεβρα Ι. Ενότητα: Εισαγωγικές Εννοιες. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών Ενότητα: Εισαγωγικές Εννοιες Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

3 η δεκάδα θεµάτων επανάληψης

3 η δεκάδα θεµάτων επανάληψης η δεκάδα θεµάτων επανάληψης. Για ποιες τιµές του, αν υπάρχουν, ισχύει κάθε µία από τις ισότητες α. log = log( ) β. log = log γ. log 4 log = Να λυθεί η εξίσωση 4 log ( ) + = 0 6 α) Θα πρέπει > 0 και > 0,

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων 4 Εισαγωγή Kεφάλαιο 4 Συστήµατα διαφορικών εξισώσεων Εστω διανυσµατικό πεδίο F: : F=F( r), όπου r = ( x, ) και Fr είναι η ταχύτητα στο σηµείο r πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουµε τις τροχιές

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ Ελαχιστοποίηση κόστους διατροφής Ηεπιχείρηση ζωοτροφών ΒΙΟΤΡΟΦΕΣ εξασφάλισε µια ειδική παραγγελίααπό έναν πελάτη της για την παρασκευή 1.000 κιλών ζωοτροφής, η οποία θα πρέπει

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ 1 Συναρτήσεις Όταν αναφερόμαστε σε μια συνάρτηση, ουσιαστικά αναφερόμαστε σε μια σχέση ή εξάρτηση. Στα μαθηματικά που θα μας απασχολήσουν, με απλά λόγια, η σχέση

Διαβάστε περισσότερα

13 Μέθοδοι υπολογισµού ολοκληρωµάτων Riemann

13 Μέθοδοι υπολογισµού ολοκληρωµάτων Riemann 3 Μέθοδοι υπολογισµού ολοκληρωµάτων Riemnn 3. Μέθοδος αντικατάστασης ή αλλαγής µεταβλητής Πρόταση 3.. Εστω ότι η u = f (y) είναι συνεχής στο διάστηµα I, η y = g() έχει συνεχή παράγωγο στο διάστηµα Ι και

Διαβάστε περισσότερα

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα;

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα; ΘΕΩΡΙΑ ΠΟΛΥΩΝΥΜΩΝ 1. Τι ονοµάζουµε µονώνυµο Μονώνυµο ονοµάζεται κάθε γινόµενο το οποίο αποτελείται από γνωστούς και αγνώστους (µεταβλητές ) πραγµατικούς αριθµούς. Ο γνωστός πραγµατικός αριθµός ονοµάζεται

Διαβάστε περισσότερα

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές Κεφάλαιο Παραγοντοποίηση σε Ακέραιες Περιοχές Γνωρίζουµε ότι στο Ÿ κάθε στοιχείο εκτός από το 0 και τα ± γράφεται ως γινόµενο πρώτων αριθµών κατά τρόπο ουσιαστικά µοναδικό Από τη Βασική Άλγεβρα ξέρουµε

Διαβάστε περισσότερα

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014 Εαρινό εξάμηνο 2014 8.04.14 Χ. Χαραλάμπους Παράδειγμα από το κείμενο του Abu Kamil (Αίγυπτος: γ ς ~850-930 μ.χ.) ) Σε ένα πρόβλημα υπολογίζει πως να χωρίσει κανείς το 10 σε δύο μέρη, έτσι ώστε όταν το

Διαβάστε περισσότερα

f (x) = l R, τότε f (x 0 ) = l. = lim (0) = lim f(x) = f(x) f(0) = xf (ξ x ). = l. Εστω ε > 0. Αφού lim f (x) = l R, υπάρχει δ > 0

f (x) = l R, τότε f (x 0 ) = l. = lim (0) = lim f(x) = f(x) f(0) = xf (ξ x ). = l. Εστω ε > 0. Αφού lim f (x) = l R, υπάρχει δ > 0 Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 5: Παράγωγος Α Οµάδα. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε πλήρως την απάντησή σας). (α) Αν η f είναι παραγωγίσιµη

Διαβάστε περισσότερα

Ιστορία των Μαθηματικών

Ιστορία των Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Μαθηματικά στην Αναγέννηση. Χαρά Χαραλάμπους ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5.:

Διαβάστε περισσότερα

Υπερβατικοί Αριθµοί και Θεώρηµα του Liouville

Υπερβατικοί Αριθµοί και Θεώρηµα του Liouville Υπερβατικοί Αριθµοί και Θεώρηµα του Liouville Χρήστος Κονταράτος 14 Νοεµβρίου 2014 1 Περιεχόµενα 1 Εισαγωγή 3 2 Το Θεώρηµα του Liouville 4 3 Η Υπερβατικότητα του ξ 6 4 Αριθµοί του Liouville 8 2 1 Εισαγωγή

Διαβάστε περισσότερα

Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ

Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ Παρουσίαση ΙΑΝΥΣΜΑΤΑ Παρουσίαση η Κάθετες συνιστώσες διανύσµατος Παράδειγµα Θα αναλύσουµε το διάνυσµα v (, ) σε δύο κάθετες µεταξύ τους συνιστώσες από τις οποίες η µία να είναι παράλληλη στο α (3,) Πραγµατικά

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Προσεγγίσεις της µονάδας και Αθροισιµότητα - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: Προσεγγίσεις της µονάδας και Αθροισιµότητα - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Προσεγγίσεις της µονάδας και Αθροισιµότητα - Ασκήσεις Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 7

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 7 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 7 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 15 Μαΐου 2013 Ασκηση 1. Εστω n 3 ακέραιος.

Διαβάστε περισσότερα

Η ιστορία της Άλγεβρας

Η ιστορία της Άλγεβρας Άλγεβρα είναι ο κλάδος των μαθηματικών που ασχολείται γενικά με την έννοια της δομής. Πιο συγκεκριμένα, αντικείμενα της άλγεβρας είναι σύνολα στα οποία έχουν οριστεί πράξεις μεταξύ των στοιχείων τους.

Διαβάστε περισσότερα

Η Έννοια της εξίσωσης:

Η Έννοια της εξίσωσης: Η Έννοια της εξίσωσης: Θεωρία και λυμένα παραδείγματα Εξίσωση με έναν άγνωστο λέμε μια ισότητα η οποία περιέχει αριθμούς και έναν άγνωστο γράμμα ( μεταβλητή). Εξισώσεις είναι οι: χ+=8, χ-21=4,χ+1, 8χ=26.

Διαβάστε περισσότερα

Αριθµητική Παραγώγιση και Ολοκλήρωση

Αριθµητική Παραγώγιση και Ολοκλήρωση Ιαν. 9 Αριθµητική Παραγώγιση και Ολοκλήρωση Είδαµε στο κεφάλαιο της παρεµβολής συναρτήσεων πώς να προσεγγίζουµε µια (συνεχή) συνάρτηση f από ένα πολυώνυµο, όταν γνωρίζουµε + σηµεία του γραφήµατος της συνάρτησης:

Διαβάστε περισσότερα

Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών

Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών Ενότητα: ιανυσµατικοί χώροι Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Β ΛΥΚ. ΕΞΙΣΩΣΕΙΣ

ΑΣΚΗΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Β ΛΥΚ. ΕΞΙΣΩΣΕΙΣ ΑΣΚΗΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Β ΛΥΚ. ΕΞΙΣΩΣΕΙΣ Λυγάτσικας Ζήνων Πειραµατικό Γενικό Λύκειο Βαρβακείου Σχολής 6 Ιανουαρίου 013 1 Ασκήσεις 1.1 Ασκήσεις Επανάληψης 1. είξτε ότι : ηµ x + 3συν y 5.. Να αποδείξτε ότι

Διαβάστε περισσότερα

V (F ) = {(u 1, u 2, u 3 ) P 2 K F (u 1, u 2, u 3 ) = 0}

V (F ) = {(u 1, u 2, u 3 ) P 2 K F (u 1, u 2, u 3 ) = 0} 1 Θεώρημα BEZOU T Ο δακτύλιος K[x 1,..., x n ] είναι περιοχή μονοσήμαντης ανάλυσης. Άρα κάθε πολυώνυμο f K[x 1,..., x n ] (που δεν είναι σταθερά, δηλαδή f / K) αναλύεται σε γινόμενο αναγώγων πολυωνύμων,

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x.

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x. Κεφάλαιο 4 Μήκη και ορθές γωνίες Μήκος διανύσµατος Στο επίπεδο, R 2, ϐρίσκουµε το µήκος ενός διανύσµατος x = (x 1, x 2 ) χρησιµοποιώντας το Πυθαγόρειο ϑεώρηµα : x 2 = x 2 1 + x 2 2. Στο χώρο R 3, εφαρµόζουµε

Διαβάστε περισσότερα

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα.

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα. Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Εισαγωγή στην Αλγεβρα Τελική Εξέταση 15 Φεβρουαρίου 2017 1. (Οµάδα Α) Εστω η ακολουθία Fibonacci F 1 = 1, F 2 = 1 και F n = F n 1 + F n 2, για n

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει 8 7y = 4 y + y ( 8 7y) = ( 4 y + y) ( y) + 4 y y 4 y = 4 y y 8 7y = 4 y + ( 4 y) = ( 4 y y) ( 4 y) = 4( 4 y)( y) ( 4 y) 4( 4 y)( y) = 0 ( 4 y) [ 4 y 4( y) ] = 4 ( 4 y)( y + 4) = 0 y = ή y = 4) 0 4 H y

Διαβάστε περισσότερα

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 Μικρό Θεώρηµα του Fermat, η συνάρτηση του Euler και Μαθηµατικοί ιαγωνισµοί Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Αύγουστος 2008 Αλεξανδρος Γ. Συγκελακης

Διαβάστε περισσότερα

e-mail@p-theodoropoulos.gr

e-mail@p-theodoropoulos.gr Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων

Διαβάστε περισσότερα

Η Ευκλείδεια διαίρεση

Η Ευκλείδεια διαίρεση 1 Η Ευκλείδεια διαίρεση Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρηµα Αποδεικνύεται ότι για οποιουσδήποτε ακέραιους α και β, β 0, ισχύει το παρακάτω θεώρηµα και διατυπώνεται ως εξής : Αν α και β ακέραιοι µε β

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Ειδικές Συναρτήσεις

Τίτλος Μαθήματος: Ειδικές Συναρτήσεις Τίτλος Μαθήματος: Ειδικές Συναρτήσεις Ενότητα: Ρίζες των συναρτήσεων Bessel Όνομα Καθηγήτριας: Χρυσή Κοκολογιαννάκη Τμήμα: Μαθηματικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ 8// Γ ΕΡΓΑΣΙΑ Μαθηµατικά για την Πληροφορική Ι (ΘΕ ΠΛΗ Η ύλη της εργασίας είναι παράγραφοι 6 και 6 από τη Γραµµική Άλγεβρα και Ενότητες,,, από τον Λογισµό

Διαβάστε περισσότερα

Συνήθεις ιαφορικές Εξισώσεις, Απαντήσεις-Παρατηρήσεις στην Εξέταση Περιόδου Σεπτεµβρίου.

Συνήθεις ιαφορικές Εξισώσεις, Απαντήσεις-Παρατηρήσεις στην Εξέταση Περιόδου Σεπτεµβρίου. Συνήθεις ιαφορικές Εξισώσεις, Απαντήσεις-Παρατηρήσεις στην Εξέταση Περιόδου Σεπτεµβρίου. Ανδρέας Ζούπας 22 Ιανουαρίου 203 Οι λύσεις απλώς προτείνονται και σαφώς οποιαδήποτε σωστή λύση είναι αποδεκτή! Θέµα-

Διαβάστε περισσότερα

Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville

Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville Κεφάλαιο : Προβλήµατα τύπου Stur-Liouvie. Ορισµός προβλήµατος Stur-Liouvie Πολλές τεχνικές επίλυσης µερικών διαφορικών εξισώσεων βασίζονται στην αναγωγή της µερικής διαφορικής εξίσωσης σε συνήθεις διαφορικές

Διαβάστε περισσότερα

Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών

Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών Γιώργος Αλογοσκούφης, Δυναµική Μακροοικονοµική, Αθήνα 5 Μαθηµατικό Παράρτηµα Εξισώσεις Διαφορών Στο παράρτηµα αυτό εξετάζουµε τις ιδιότητες και τους τρόπους επίλυσης εξισώσεων διαφορών. Oι εξισώσεις διαφορών

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση. Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης. Σκοποί Μαθήματος

Διαβάστε περισσότερα

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής D ολοκλήρωση ρητών συναρτήσεων Το θέμα μας στην ενότητα αυτή είναι η ολοκλήρωση ρητών συναρτήσεων. Ας θυμηθούμε πρώτα ποιες συναρτήσεις ονομάζονται ρητές. Ορισμός: Μία συνάρτηση ονομάζεται ρητή όταν μπορεί

Διαβάστε περισσότερα

Εαρινό εξάμηνο Χ. Χαραλάμπους ΑΠΘ

Εαρινό εξάμηνο Χ. Χαραλάμπους ΑΠΘ Εαρινό εξάμηνο 2011 23.03.11 Χ. Χαραλάμπους ΑΠΘ al Khwārizmī ā ī (780 850) Ιράκ Kitāb al Jam wa l tafrīq bi ḥisāb al Hind (λατινικά Dixitalgorizm) ~825 الكتابwa'l muqabala al Kitab al mukhtasar fi hisab

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i ΙΔΙΟΤΗΤΕΣ

Διαβάστε περισσότερα

, όπου οι σταθερές προσδιορίζονται από τις αρχικές συνθήκες.

, όπου οι σταθερές προσδιορίζονται από τις αρχικές συνθήκες. Στην περίπτωση της ταλάντωσης µε κρίσιµη απόσβεση οι δύο γραµµικώς ανεξάρτητες λύσεις εκφυλίζονται (καταλήγουν να ταυτίζονται) Στην περιοχή ασθενούς απόσβεσης ( ) δύο γραµµικώς ανεξάρτητες λύσεις είναι

Διαβάστε περισσότερα

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑΤΑ Α

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑΤΑ Α ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 0 ΘΕΜΑΤΑ Α Θέµα ο. Να βρεθεί (α) η γενική λύση yy() της διαφορικής εξίσωσης y' y + καθώς και (β) η µερική λύση που διέρχεται από το σηµείο y(/). (γ) Από ποια σηµεία του επιπέδου

Διαβάστε περισσότερα

ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΑΝΟΥΑΡΙΟΥ 2010 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ. =. Οι πρώτες µερικές u x y

ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΑΝΟΥΑΡΙΟΥ 2010 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ. =. Οι πρώτες µερικές u x y ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΑΝΟΥΑΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΘΕΜΑ α) Καταρχήν θα µελετήσουµε την συνάρτηση f Η f γράφεται f ( ) = ( x + )( x ) ( x ) ή ακόµα f ( ) = u( x,

Διαβάστε περισσότερα

(x) = δ(x) π(x) + υ(x)

(x) = δ(x) π(x) + υ(x) Μάθηµα 12 Κεφάλαιο 4ο: Πολυώνυµα Πολυωνυµικές Εξισώσεις Θεµατικές Ενότητες: Α. ιαίρεση Πολυωνύµων Β. Σχήµα Horner Η ταυτότητα της Ευκλείδειας διαίρεσης Αν ( χ), δ ( χ) δύο πολυώνυµα µε δ ( χ) 0 και βαθµούς

Διαβάστε περισσότερα

( ) ( ) Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή x. αντικ σταση στο που = α. [ ο αριθµ ός πουτο µηδεν ίζει

( ) ( ) Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή x. αντικ σταση στο που = α. [ ο αριθµ ός πουτο µηδεν ίζει μέρος πρώτο v v 1 v 1 Γενική μορφή πολυωνύμου: ( ) 1 1 Όροι του ( ) v v v P = a v + av 1 + av +... + a + a 1 + a, ν Ν, α ν R Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή. P : a, a, a,...,

Διαβάστε περισσότερα

Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ)

Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ) Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ) ΜΙΧΑΛΗΣ ΤΖΟΥΜΑΣ ΕΣΠΟΤΑΤΟΥ 3 ΑΓΡΙΝΙΟ. ΠΕΡΙΛΗΨΗ Η έννοια της συνάρτησης είναι στενά συνυφασµένη µε τον πίνακα τιµών και τη γραφική παράσταση.

Διαβάστε περισσότερα

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή.

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή. Η Αριθµητική Ανάλυση χρησιµοποιεί απλές αριθµητικές πράξεις για την επίλυση σύνθετων µαθηµατικών προβληµάτων. Τις περισσότερες φορές τα προβλήµατα αυτά είναι ή πολύ περίπλοκα ή δεν έχουν ακριβή αναλυτική

Διαβάστε περισσότερα

x(t) 2 = e 2 t = e 2t, t > 0

x(t) 2 = e 2 t = e 2t, t > 0 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 216-17 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις σε Σήµατα και Συστήµατα Ασκηση

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί

Διαβάστε περισσότερα

Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων

Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων ΜΕΡΟΣ Α. ΕΞΙΣΩΣΕΙΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 69. ΕΞΙΣΩΣΕΙΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ Ορισμός Ονομάζουμε εξίσωση ου βαθμού με έναν άγνωστο κάθε ισότητα που έχει την μορφή α +β+ γ = 0 με α 0 (ο είναι ο άγνωστος της εξίσωσης,

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος.

Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΣΕΠΤΕΜΒΡΙΟΥ 2010 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ

ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΣΕΠΤΕΜΒΡΙΟΥ 2010 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΘΕΜΑ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΣΕΠΤΕΜΒΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ α) Η f ( ) έχει πραγµατικό µέρος φανταστικό µέρος u( x, y) x y = και v( x, y) = ( x + y xy), όπου = x+

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

4.3 Παραδείγµατα στην συνέχεια συναρτήσεων

4.3 Παραδείγµατα στην συνέχεια συναρτήσεων 5. Η συνάρτηση είναι συνεχής στο R. 6. Η συνάρτηση sin είναι συνεχής στο R. 7. Η συνάρτηση cos είναι συνεχής στο R. 8. Η συνάρτηση tan είναι συνεχής σε κάθε R µε k π + π/2, k Z. 9. Η συνάρτηση cotan είναι

Διαβάστε περισσότερα

Παρουσίαση 1 ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ

Παρουσίαση 1 ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Παρουσίαση ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Παρουσίαση α Στους µιγαδικούς δεν υφίστανται ανισοτικές σχέσεις Το σύνολο C διατηρεί ισοτικά όλες τις ιδιότητες του R εν υφίστανται ανισοτικές σχέσεις, υφίστανται µόνο στο

Διαβάστε περισσότερα

7. Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας

7. Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας 7 Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας Συζευγµένες ταλαντώσεις Βιβλιογραφία F S Crawford Jr Κυµατική (Σειρά Μαθηµάτων Φυσικής Berkeley, Τόµος 3 Αθήνα 979) Κεφ H J Pai Φυσική των ταλαντώσεων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΠΟΛΥΩΝΥΜΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΚΕΦΑΛΑΙΟ 4ο: ΠΟΛΥΩΝΥΜΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4ο: ΠΟΛΥΩΝΥΜΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ) Copyright 2015 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoocom Αδεια χρήσης 3η Εκδοση, Ιωάννινα, Σεπτέµβριος 2015 Περιεχόµενα 1 ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ

Διαβάστε περισσότερα

Κεφάλαιο 5 Οι χώροι. Περιεχόµενα 5.1 Ο Χώρος. 5.3 Ο Χώρος C Βάσεις Το Σύνηθες Εσωτερικό Γινόµενο Ασκήσεις

Κεφάλαιο 5 Οι χώροι. Περιεχόµενα 5.1 Ο Χώρος. 5.3 Ο Χώρος C Βάσεις Το Σύνηθες Εσωτερικό Γινόµενο Ασκήσεις Σελίδα 1 από 6 Κεφάλαιο 5 Οι χώροι R και C Περιεχόµενα 5.1 Ο Χώρος R Πράξεις Βάσεις Επεξεργασµένα Παραδείγµατα Ασκήσεις 5. Το Σύνηθες Εσωτερικό Γινόµενο στο Ορισµοί Ιδιότητες Επεξεργασµένα Παραδείγµατα

Διαβάστε περισσότερα

3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ

3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ ΚΕΦΑΛΑΙΟ : ΕΞΙΣΩΣΕΙΣ. ΕΞΙΣΩΣΕΙΣ ΟΥ ΒΑΘΜΟΥ ΜΕΘΟΔΟΛΟΓΙΑ : ΑΠΛΗ ΜΟΡΦΗ Κάθε εξίσωση που έχει ή μπορεί να πάρει τη μορφή : α+β=0 ή α=-β () λέγεται εξίσωση ου βαθμού (ή πρωτοβάθμια εξίσωση), με άγνωστο το, ενώ

Διαβάστε περισσότερα

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Σύνοψη Στο κεφάλαιο αυτό παρουσιάζεται η ιδέα του συμπτωτικού πολυωνύμου, του πολυωνύμου, δηλαδή, που είναι του μικρότερου δυνατού βαθμού και που, για συγκεκριμένες,

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΤΟΙΧΕΙΑ ΑΡΧΙΚΗΣ ΕΚ ΟΣΗΣ Συγγραφική ομάδα: Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος Παπασταυρίδης Σταύρος Πολύζος Γεώργιος Σβέρκος Ανδρέας Καθηγητής Πανεπιστημίου Αθηνών Καθηγητής

Διαβάστε περισσότερα

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις ΚΕΦΑΛΑΙΟ 2 Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις 2.1 ΕΙΣΑΓΩΓΗ Όπως έχουµε δει, για να προσδιορίσουµε τις αποκρίσεις ενός κυκλώµατος, πρέπει να λύσουµε ένα σύνολο διαφορικών

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 7 Φεβρουαρίου 03 Ασκηση. είξτε ότι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2008 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2008 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 8 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ o A Να αποδειχθεί ότι η συνάρτηση f ln, * είναι παραγωγίσιµη στο * και ισχύει: ln Μονάδες Α Πότε µια συνάρτηση f λέµε ότι είναι συνεχής σε

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων.

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων. 4 Εισαγωγή Kεφάλαιο 4 Συστήµατα διαφορικών εξισώσεων Εστω διανυσµατικό πεδίο F: : F=F( r), όπου r = ( x, ) και Fr είναι η ταχύτητα στο σηµείο r πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουµε τις τροχιές

Διαβάστε περισσότερα

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε Κεφάλαιο Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε. Εισαγωγή Η µέθοδος των πεπερασµένων διαφορών είναι από τις παλαιότερες και πλέον συνηθισµένες και διαδεδοµένες υπολογιστικές τεχνικές

Διαβάστε περισσότερα

L = F +. Είναι, 1 F, άρα και 1 L. Επεκτείνουµε τις πράξεις του F έτσι ώστε

L = F +. Είναι, 1 F, άρα και 1 L. Επεκτείνουµε τις πράξεις του F έτσι ώστε ΕΠΕΚΤΑΣΕΙΣ ΣΩΜΑΤΟΣ Προκαταρκτικά Σώµα = Αντιµεταθετικό σώµα, χαρακτηριστικής µηδενός Τα σώµατα αυτά καλούνται και αριθµητικά σώµατα Θα τα συµβολίζουµε µε τα γράµµατα F, F, L κλπ Έστω ότι κάποια ανάγκη

Διαβάστε περισσότερα

9 Πολυώνυμα Διαίρεση πολυωνύμων

9 Πολυώνυμα Διαίρεση πολυωνύμων 4ο Κεφάλαιο 9 Πολυώνυμα Διαίρεση πολυωνύμων Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορισμοί Μονώνυμο του x ονομάζουμε κάθε παράσταση της μορφής ν αx όπου α R, * ν N και x μια μεταβλητή που μπορεί να πάρει οποιαδήποτε

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 6 ΥΝΑΜΟΣΕΙΡΕΣ-ΣΕΙΡΕΣ TAYLOR

KΕΦΑΛΑΙΟ 6 ΥΝΑΜΟΣΕΙΡΕΣ-ΣΕΙΡΕΣ TAYLOR KΕΦΑΛΑΙΟ 6 ΥΝΑΜΟΣΕΙΡΕΣ-ΣΕΙΡΕΣ TAYLOR 6 Ορισµοί Ορισµός 6 Εστω α είναι µία πραγµατική ακολουθία και είναι πραγµατικοί αριθµοί Ένα άπειρο πολυώνυµο της µορφής: a ( ) () = καλείται δυναµοσειρά µε κέντρο το

Διαβάστε περισσότερα

Γραµµική Αλγεβρα. Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης, Ημ/νία: 27 Μαΐου 2013

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης, Ημ/νία: 27 Μαΐου 2013 Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων Εξεταζόμενο Μάθημα: Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης, Ημ/νία: 27 Μαΐου 2013 Απαντήσεις Θεμάτων Θεμα Α Α1. Θεωρία σχολικού βιβλίου σελ. 334-335

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Παραγοντοποιήσεις Πινάκων και Γραµµικών Απεικονίσεων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 82 13 Παραγοντοποιήσεις

Διαβάστε περισσότερα

5.2 ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟ ΟΣ

5.2 ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟ ΟΣ 5. ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟ ΟΣ ΘΕΩΡΙΑ. Ορισµός Μια ακολουθία λέγεται αριθµητική πρόοδος, αν και µόνο αν κάθε όρος της προκύπτει από τον προηγούµενο του µε πρόσθεση του ίδιου πάντοτε αριθµού.. Μαθηµατική έκφραση

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. Η έννοια του μιγαδικού Το σύνολο των μιγαδικών. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

ΣΗΜΕΙΩΣΕΙΣ. Η έννοια του μιγαδικού Το σύνολο των μιγαδικών. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i ΙΔΙΟΤΗΤΕΣ

Διαβάστε περισσότερα

Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες

Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες Γιώργος Αλογοσκούφης, Θέµατα Δυναµικής Μακροοικονοµικής, Αθήνα 0 Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες Στο παράρτηµα αυτό εξετάζουµε τις ιδιότητες και τους τρόπους επίλυσης των εξισώσεων

Διαβάστε περισσότερα

5 Γενική µορφή εξίσωσης ευθείας

5 Γενική µορφή εξίσωσης ευθείας 5 Γενική µορφή εξίσωσης ευθείας Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρηµα Κάθε ευθεία έχει εξίσωση της µορφής: Ax + By +Γ= 0, µε Α 0 ηβ 0 () και αντιστρόφως κάθε εξίσωση της µορφής () παριστάνει ευθεία γραµµή.

Διαβάστε περισσότερα

Σχολικός Σύµβουλος ΠΕ03

Σχολικός Σύµβουλος ΠΕ03 Ασκήσεις Μαθηµατικών Θετικής & Τεχνολογικής Κατεύθυνσης Γ Λυκείου ρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις

Διαβάστε περισσότερα

a 1d L(A) = {m 1 a m d a d : m i Z} a 11 a A = M B, B = N A, k=1

a 1d L(A) = {m 1 a m d a d : m i Z} a 11 a A = M B, B = N A, k=1 Α44 ΚΡΥΠΤΟΓΡΑΦΙΑ ΣΗΜΕΙΩΣΕΙΣ #12 ΘΕΟ ΟΥΛΟΣ ΓΑΡΕΦΑΛΑΚΗΣ 1 Πλεγµατα Εστω ο διανυσµατικός χώρος R d διάστασης d Ο χώρος R d έρχεται µε ένα εσωτερικό γινόµενο x, y = d i=1 x iy i και τη σχετική νόρµα x = x,

Διαβάστε περισσότερα

Γραµµική Άλγεβρα. Εισαγωγικά. Μέθοδος Απαλοιφής του Gauss

Γραµµική Άλγεβρα. Εισαγωγικά. Μέθοδος Απαλοιφής του Gauss Γραµµική Άλγεβρα Εισαγωγικά Υπάρχουν δύο βασικά αριθµητικά προβλήµατα στη Γραµµική Άλγεβρα. Το πρώτο είναι η λύση γραµµικών συστηµάτων Aλγεβρικών εξισώσεων και το δεύτερο είναι η εύρεση των ιδιοτιµών και

Διαβάστε περισσότερα

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση 8 Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση Υπάρχουν δύο θεµελιώδη αποτελέσµατα που µας βοηθούν να υπολογίζουµε πολλαπλά ολοκληρώµατα Το πρώτο αποτέλεσµα σχετίζεται µε τον υπολογισµό ενός

Διαβάστε περισσότερα

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων Κεφάλαιο 6 Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών παραβολικών διαφορικών εξισώσεων 6.1 Εισαγωγή Η µέθοδος των πεπερασµένων όγκων είναι µία ευρέως διαδεδοµένη υπολογιστική µέθοδος επίλυσης

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ 12) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 3

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ 12) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 3 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ Άσκηση. ( µον.). Έστω z ο µιγαδικός αριθµός z i, µε, R. (α) ίνεται η εξίσωση: z

Διαβάστε περισσότερα

1 Οι πραγµατικοί αριθµοί

1 Οι πραγµατικοί αριθµοί 1 Οι πραγµατικοί αριθµοί 1.1 Σύνολα αριθµών Το σύνολο των ϕυσικών αριθµών N = {1, 2, 3,...} Το σύνολο των ακεραίων Z = {... 3, 2, 1, 0, 1, 2, 3,...}. Οι ακέραιοι διαµερίζονται σε άρτιους και περιττούς

Διαβάστε περισσότερα