1.1. ΕΙΣΑΓΩΓΗ ΚΑΙ ΠΡΟΚΑΤΑΡΚΤΙΚΕΣ ΕΝΝΟΙΕΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1.1. ΕΙΣΑΓΩΓΗ ΚΑΙ ΠΡΟΚΑΤΑΡΚΤΙΚΕΣ ΕΝΝΟΙΕΣ"

Transcript

1 Κεφ. I Εισαγωγή.. ΕΙΣΑΓΩΓΗ ΚΑΙ ΠΡΟΚΑΤΑΡΚΤΙΚΕΣ ΕΝΝΟΙΕΣ Η ανάγκη µαθηµατικής περιγραφής και µοντελοποίησης συστηµάτων τα οποία εξελίσσονται χρονικά κατά τρόπο που περιέχει, σε µικρό ή µεγάλο βαθµό, τυχαιότητα, (stochasticity, randomness) και όχι κατά τρόπο προσδιοριστικό (deterministic) οδήγησε στην ανάπτυξη της Θεωρίας των Στοχαστικών Ανελίξεων ή Στοχαστικών ιαδικασιών (Stochastic Processes). Για τη µαθηµατική περιγραφή της τυχαιότητας στην εξέλιξη ενός στοχαστικού συστήµατος ας συµβολίσουµε µε X(t) την κατάσταση του συστήµατος κατά την χρονική στιγµή t (t 0). Θεωρούµε ότι για κάθε t η κατάσταση Χ(t) είναι µια τυχαία µεταβλητή η οποία ορίζεται πάνω σε ένα χώρο πιθανότητας (Ω,, P) κοινό για όλα τα t. Είναι δηλαδή η X(t), για συγκεκριµένο t, µια απεικόνιση X(ω,t) µε πεδίο ορισµού το δειγµατικό χώρο Ω ενός πειράµατος τύχης και τιµές στο, ή στο γενικότερα. Για συγκεκριµένο ω Ω έχουµε την συνάρτηση Χ(ω,t) = x(t), t 0, η οποία αποτελεί µια τροχιά (sample path) από όλες τις δυνατές τροχιές που µπορούν να προκύψουν από τον χώρο πιθανότητας (Ω,, P) και την οικογένεια των τ.µ. {Χ(t): t 0}. Γενικεύοντας την ερµηνεία του t ως στοιχείου ενός παραµετρικού συνόλου, και χρησιµοποιώντας τον όρο τυχαία µεταβλητή ενιαία, είτε δηλαδή πρόκειται για µονοδιάστατες είτε πρόκειται για πολυδιάστατες, έχουµε τον παρακάτω ορισµό. Ορισµός. Ονοµάζουµε Στοχαστική Ανέλιξη κάθε οικογένεια τυχαίων µεταβλητών {X(t): t } πάνω σε ένα κοινό χώρο πιθανότητας (Ω,, P). Το σύνολο των δυνατών τιµών των τυχαίων µεταβλητών X(t) (t ), συµβολιζόµενο µε, ονοµάζεται χώρος καταστάσεων και το σύνολο ονοµάζεται παραµετρικός χώρος. Σηµειώνεται εδώ ότι, όπως ο χώρος καταστάσεων έτσι και ο παραµετρικός χώρος δεν είναι κατ ανάγκη µονοδιάστατος. Για παράδειγµα, η X(t) µπορεί να είναι διδιάστατη και να αφορά την θερµοκρασία και την υγρασία µε t τετραδιάστατο έτσι ώστε να καθορίζεται ο χρόνος καθώς και οι γεωγραφικές συντεταγµένες του σηµείου στο οποίο αναφερόµαστε. Θεωρούµε συνεπώς ότι και m. 7

2 Ανάλογα µε το εάν οι χώροι και είναι συνεχή ή όχι υποσύνολα των και m αντίστοιχα, η στοχαστική ανέλιξη θα είναι: (α) συνεχής µε συνεχή παραµετρικό χώρο, (β) συνεχής µε διακριτό παραµετρικό χώρο, (γ) διακριτή µε συνεχή παραµετρικό χώρο και (δ) διακριτή µε διακριτό παραµετρικό χώρο. εν αποκλείεται βέβαια και η περίπτωση µια στοχαστική ανέλιξη να είναι µικτή µε διακριτό ή συνεχή παραµετρικό χώρο. Παραδείγµατα των ως άνω κατηγοριών είναι: Παράδειγµα ο. Η τάση του ηλεκτρικού ρεύµατος σε δίκτυο διανοµής κατά τη χρονική στιγµή t (συνεχής σ.α. µε συνεχή παραµετρικό χώρο). Παράδειγµα ο. Η ηµερήσια κατανάλωση ύδατος σε συγκεκριµένη περιοχή (συνεχής σ.α. µε διακριτό παραµετρικό χώρο). Παράδειγµα 3ο. Ο αριθµός πελατών σε ένα κατάστηµα κατά την χρονική στιγµή t (διακριτή σ.α. µε συνεχή παραµετρικό χώρο). Παράδειγµα 4ο. Ο αριθµός των µετοχών µε ανοδική κίνηση σε συγκεκριµένη ηµέρα (διακριτή σ.α. µε διακριτό παραµετρικό χώρο). Για την πιθανοθεωρητική περιγραφή των στοχαστικών ανελίξεων µε συνεχή παραµετρικό χώρο µας χρειάζεται η έννοια της από κοινού κατανοµής για ένα υπεραριθµήσιµο πλήθος τυχαίων µεταβλητών. Τούτο όµως θα παραβίαζε το αξίωµα της σ-αθροιστικότητας του µέτρου πιθανότητας P. Εν τούτοις, µε βάση το Θεώρηµα Επέκτασης Μέτρου, ο Kolmogorov απέδειξε ότι δια µέσου κατανοµών πεπερασµένης διάστασης είναι δυνατόν να οριστεί κατά µοναδικό τρόπο η κατανοµή πιθανότητας για ένα υπεραριθµήσιµο πλήθος τ.µ. Οι ως άνω κατανοµές πρέπει να ικανοποιούν ορισµένες συνθήκες, γνωστές ως συνθήκες συµβατότητας του Kolmogorov. Έστω Τ n = {t,, t n } ένα πεπερασµένο σύνολο στοιχείων του παραµετρικού χώρου και (x), x n, η από κοινού συνάρτηση κατανοµής πιθανότητας των τ.µ. D Tn Χ(t ),..., Χ(t n ). Η D Tn αποτελεί κατανοµή n-διάστατης τ.µ. και ως εκ τούτου ονοµάζεται κατανοµή πεπερασµένης διάστασης. Έστω τώρα { } η οικογένεια κατανοµών πεπερασµένης διάστασης µε Τn = {t,, t n } n και n. Οι κατανοµές της οικογένειας αυτής οφείλουν να ικανοποιούν τις παρακάτω συνθήκες: Συνθήκες Συµβατότητας. Για οποιαδήποτε n και m µε n < m και µε οποιαδήποτε σύνολα δεικτών Tn και T m µε κοινά στοιχεία t i,..., t ( i n), οι περιθώριες κατανοµές ( ) και D ( ) που προκύπτουν από τις DT x T x D Tn 8

3 υψηλότερης διάστασης κατανοµές DT n ( x ) και D T m ( x) πρέπει να συµπίπτουν για κάθε x. Οι ως άνω συνθήκες συµβατότητας, εκτός του ότι είναι ικανές για τη µοναδικότητα της επέκτασης του µέτρου πιθανότητας, είναι και αναγκαίες για λόγους πέραν αυτών της επέκτασης. Τούτο διότι αν οι κατανοµές πεπερασµένης διάστασης δεν ικανοποιούσαν τις ως άνω συνθήκες θα προέκυπταν αντιφατικά συµπεράσµατα, όπως π.χ. η τ.µ. X(t) να έχει περισσότερες της µιας κατανοµές... ΒΑΣΙΚΕΣ ΚΑΤΗΓΟΡΙΕΣ ΣΤΟΧΑΣΤΙΚΩΝ ΑΝΕΛΙΞΕΩΝ Παρουσιάζουµε τώρα ορισµένες κατηγορίες στοχαστικών ανελίξεων τις οποίες θα µελετήσουµε συστηµατικά στα επόµενα κεφάλαια. Από τις γενικότερες κατηγορίες στοχαστικών ανελίξεων είναι αυτή των στασίµων. Η στασιµότητα εδώ έχει να κάνει µε τη διατήρηση στο χρόνο όλων, ή τουλάχιστον των βασικότερων, στατιστικών χαρακτηριστικών µιας σ.α. Ορισµός. Μια σ.α. {X(t): t 0} ονοµάζεται στάσιµη υπό αυστηρή έννοια (strict-sense stationary) όταν οι κατανοµές πεπερασµένης διάστασης είναι αναλλοίωτες σε χρονικές µεταθέσεις. Τούτο σηµαίνει ότι για κάθε πεπερασµένο σύνολο χρονικών στιγµών, έστω Τ n = {t,, t n } η κατανοµή DT n των τ.µ. Χ(t),..., Χ(t n ) συµπίπτει µε την κατανοµή D T n + s των τ.µ. Χ(t+s),..., Χ(t n +s) για κάθε s > 0. Τα πλέον βασικά χαρακτηριστικά µιας σ.α. είναι η συνάρτηση του µέσου και η συνάρτηση Αυτοσυνδιακύµανσης µ(t) = Ε[Χ(t)], t 0, (.) g(t, s) = Cov[X(t), X(s)] = E[{X(t) µ(t)}{x(s) µ(s)}], t, s 0. (.) Ανάλογα έχουµε και τη συνάρτηση Αυτοσυσχέτισης ρ(t, s) = Corr[X(t), X(s)] = g(t, s) g(t, t)g(s, s), t, s 0. (.3) 9

4 Επειδή για δύο τ.µ. Χ, Υ έχουµε Cov(X, Y) = Cov(Y, X) είναι προφανές ότι οι συναρτήσεις αυτοσυνδιακύµανσης και αυτοσυσχέτισης είναι συµµετρικές, είναι δηλαδή g(t, s) = g(s, t) και ρ(t, s) = ρ(s, t) για κάθε t, s 0. Ορισµός. Μια σ.α. {X(t): t 0} λέγεται στάσιµη υπό ευρεία έννοια (widesense stationary) όταν η συνάρτηση του µέσου είναι: µ(t) = µ, t 0, και η συνάρτηση αυτοσυνδιακύµανσης είναι: g(t, s) = h( t-s ), για κάθε t, s 0. Ορισµός 3. Μια σ.α. {X(t): t 0} λέγεται ανεξαρτήτων προσαυξήσεων εάν για κάθε n και κάθε t 0 < t < t < < t n οι διαφορές είναι ανεξάρτητες τυχαίες µεταβλητές. Υ(t j ) = X(t j ) X(t j- ) (j =,,.n) Είναι φανερό ότι µια σ.α. είναι ανεξαρτήτων προσαυξήσεων εάν και µόνο εάν οι µεταβολές της σε µη αλληλοεπικαλυπτόµενα χρονικά διαστήµατα είναι ανεξάρτητες. Παράδειγµα. Εάν Ζ n (n =,, ) είναι µια ακολουθία ανεξαρτήτων τ.µ. n τότε η σ.α. {X(n) = Z : n } είναι ανεξαρτήτων προσαυξήσεων. i Θεώρηµα. Αν η σ.α. {X(t): t 0} είναι ανεξαρτήτων προσαυξήσεων τότε η συνάρτηση Αυτοσυνδιακύµανσης είναι: Var[X(t)], εάν t s, g(t, s) = h(min{t, s}) = Var[X(s)], εάν t > s. (.4) Απόδειξη. Από τον ορισµό της συνάρτησης αυτοσυνδιακύµανσης µε τ = s t 0 έχουµε g(t, t + τ) = Cov[X(t), X(t+τ)] = Cov[X(t), X(t+τ) X(t) +X(t)] = Cov[X(t), X(t+τ) X(t)] + Cov[X(t), X(t)] = Cov[X(t), X(t)] = h(t) = Var[X(t)]. Οµοίως, για τ = t s 0 και λόγω της συµµετρικότητας της g(t, s) έχουµε: g(s + τ, s) = g(s, s + τ) = Var[X(s)]. 0

5 Ορισµός 4. Μια σ.α. {X(t): t 0} λέγεται ότι έχει στάσιµες προσαυξήσεις όταν οι τ.µ. X(t + s) X(t) έχουν την ίδια κατανοµή για όλα τα t. Τούτο σηµαίνει ότι µια σ.α. είναι στάσιµων προσαυξήσεων εάν και µόνο εάν η κατανοµή των µεταβολών µεταξύ δύο χρονικών στιγµών εξαρτάται αποκλειστικά από την απόσταση µεταξύ των χρονικών στιγµών. Ορισµός 5. Μια σ.α. {X(t): t 0} λέγεται Μαρκοβιανή εάν για κάθε n < m και κάθε t 0 < t < < t n < < t m η δεσµευµένη κατανοµή των Χ(t n+ ),, X(t m ) δεδοµένων των Χ(t ),, X(t n ) εξαρτάται µόνο από την Χ(t n ). Τούτο σηµαίνει ότι από όλο το παρελθόν µιας Μαρκοβιανής σ.α. µόνο η πιο πρόσφατη κατάσταση καθορίζει το µέλλον. Είναι επίσης προφανές ότι κάθε σ.α. ανεξαρτήτων προσαυξήσεων είναι Μαρκοβιανή. Ορισµός 6. Μια σ.α. {X(t): t 0} ονοµάζεται martingale όταν για κάθε n και κάθε t < < t n η δεσµευµένη µέση τιµή Ε[Χ(t n+ ) X(t ),, X(t n )] = X(t n ). (.6) Κάθε Μαρκοβιανή σ.α µε δεσµευµένη µέση τιµή την τελευταία κατάσταση, καθώς και κάθε σ.α. ανεξαρτήτων προσαυξήσεων µε µέσες προσαυξήσεις Ε[Χ(t+τ) Χ(t)] = 0 για κάθε t, τ 0, είναι martingale. Ορισµός 7. Μια σ.α {X(t): t 0} ονοµάζεται Κίνηση Brown (Brownian motion) όταν ισχύουν τα παρακάτω: (α) Χ(0) = 0, (β) είναι στάσιµων και ανεξάρτητων προσαυξήσεων, (γ) για κάθε t > 0 η Χ(t) έχει Κανονική κατανοµή µε µέση τιµή 0 και διασπορά c t. Αποδεικνύεται εύκολα ότι οι ανεξάρτητες προσαυξήσεις X(t) X(s) µε t > s 0 µιας κίνησης Brown ακολουθούν Κανονική κατανοµή µε µέση τιµή µηδέν και διασπορά c (t - s). (βλ. Άσκηση.9). Ορισµός 8. Μια σ.α. {X(t): t 0} ονοµάζεται Γκαουσιανή (Gaussian) αν για κάθε n και κάθε t,, t n οι τ.µ. Χ(t ),, X(t n ) ακολουθούν την n-διάστατη Κανονική κατανοµή. Είναι φανερό ότι η Κίνηση Brown είναι µια Γκαουσιανή σ.α. µε µέση τιµή Ε[X(t)] = 0 και διασπορά Var[X(t)] = c t.

6 .3. ΓΕΝΝΗΤΡΙΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ύο χρήσιµα µαθηµατικά εργαλεία στον χειρισµό των στοχαστικών ανελίξεων είναι η Γεννήτρια Συνάρτηση Πιθανοτήτων και η Ροπογεννήτρια Συνάρτηση. Ορισµός. Έστω διακριτή τ.µ. Χ µε σ.µ.π. p = P[Χ = ] ( = 0,, ). Ονοµάζουµε Γεννήτρια Πιθανοτήτων της τ.µ. Χ τη συνάρτηση π(s) = E[s X ] = s, s < R p (3.) µε R την ακτίνα σύγκλισης της ως άνω δυναµοσειράς. Επειδή p 0 µε p =, έχουµε R. Η ονοµασία γεννήτρια πιθανοτήτων προέρχεται από την προφανή σχέση Έχουµε ακόµα ότι n d p n = π (s) n s=0, n = 0,,,. (3.) n! ds n d Ε[X(X-) (X-n+)] = π (s) n s=, n =,,, (3.3) ds γι αυτό και η γεννήτρια πιθανοτήτων είναι επίσης γνωστή ως Γεννήτρια Παραγοντικών Ροπών. Παράδειγµα. Η γεννήτρια πιθανοτήτων µιας τ.µ. Χ που ακολουθεί τη ιωνυµική κατανοµή µε παραµέτρους n και p είναι: π(s) = n n s = s p ( p) = { p( s)} n, - < s <. p n = 0 ( ) Παράδειγµα. Η γεννήτρια πιθανοτήτων µιας τ.µ. Χ που ακολουθεί την κατανοµή Poisson µε παράµετρο λ (λ > 0) είναι: π(s) = s = p λ λ se = exp{-λ( - s)}, - < s <. = 0! Ορισµός. Έστω τυχαία µεταβλητή Χ, µε σ.µ.π. p = P[Χ = ] ( =..., -, 0,, ), εάν είναι διακριτή, και σ.π.π. f(x), x, εάν είναι συνεχής. Ονοµάζουµε Ροπογεννήτρια της τ.µ. Χ τη συνάρτηση

7 s g(s) = E[e sx e p, στη διακριτή περίπτωση ] = sx e f (x)dx, στη συνεχή περίπτωση (3.4) µε s, όπου κατάλληλο υποσύνολο του έτσι ώστε η σειρά, αντιστοίχως το ολοκλήρωµα, να συγκλίνει. Η ονοµασία ροπογεννήτρια προέρχεται από τη σχέση E[X n n d ] = g(s) n s=0, n = 0,,,. (3.5) ds Παράδειγµα 3. Η ροπογεννήτρια συνάρτηση µιας τ.µ. Χ που ακολουθεί την κατανοµή Poisson µε παράµετρο λ (λ > 0) είναι: g(s) = e = s p s λ λ e e = exp{ λ( e s )}, - < s <.! = 0 Παράδειγµα 4. Η ροπογεννήτρια συνάρτηση µιας τ.µ. Χ που ακολουθεί την Εκθετική κατανοµή µε παράµετρο α (α > 0) είναι: g(s) = sx sx αx α e f (x)dx = e αe dx =, s < α. 0 α s Παράδειγµα 5. Η ροπογεννήτρια συνάρτηση µιας τ.µ. Ζ που ακολουθεί τη Τυποποιηµένη Κανονική κατανοµή είναι: µε - < s <. sz sz e g(s) = e f(z)dz = exp{ z }dz π = exp{ (z sz ± s )}dz π = = π exp{ s } exp{ (z s) }dz exp{ s }, Με τον ίδιο τρόπο αποδεικνύεται ότι η ροπογεννήτρια συνάρτηση τ.µ. Χ µε Κανονική κατανοµή µέσης τιµής µ και διασποράς σ είναι: g(s) = exp{ µ s + σ s }, - < s <. (3.6) 3

8 Από τα παραπάνω είναι φανερό ότι η γεννήτρια πιθανοτήτων π(s) µιας διακριτής τ.µ. Χ µπορεί να προκύψει από τη ροπογεννήτρια αυτής g(s) θέτοντας s στη θέση του e s, και αντιστρόφως, η ροπογεννήτρια g(s) µιας διακριτής τ.µ. Χ προκύπτει από την γεννήτρια πιθανοτήτων αυτής θέτοντας e s στη θέση του s. Θεώρηµα. Εάν Χ τ.µ. µε ροπογεννήτρια συνάρτηση g(t), τότε η τ.µ. Υ = αχ + β έχει ροπογεννήτρια την Απόδειξη. Έχουµε g Y (s) = e βs g(αs). (3.7) g Y (s) = E[e sy ] = E[e s(αχ + β) ] = e βs E[e αsx ] = e βs g(αs). Θεώρηµα. (Φράγµατα του Chernoff) Έστω Χ τ.µ. µε ροπογεννήτρια συνάρτηση g(s). Τότε για κάθε c > 0 P[X c] e -cs g(s) για s > 0, και (3.8) P[X c] e -cs g(s) για s < 0. Απόδειξη. κάθε ε > 0 Για µια µη αρνητική τ.µ. Υ από την ανισότητα Marov έχουµε για P[Y ε] Ε[Υ]/ε. Ορίζουµε την τ.µ. Υ = e sx ( 0 µε πιθανότητα ), οπότε για s > 0 έχουµε P[X c] = P[e sx e sc ] Ε[e sx ]/ e sc = e -sc g(s), και για s < 0 P[X c] = P[e sx e sc ] Ε[e sx ]/ e sc = e -sc g(s). y y 4 (α) s > 0 (β) s < c x 0 c x Σχήµα.. Εκθετική Συνάρτηση: y = e sx, x. 4

9 Θεώρηµα 3. (Ανισότητα του Jensen) Έστω Χ τ.µ. µε (πεπερασµένη) µέση τιµή µ. Για κάθε κυρτή συνάρτηση h ισχύει η ανισότητα. Ε[h(Χ)] h(e[x]). (3.0) Aπόδειξη. Λόγω της κυρτότητας της h υπάρχει ευθεία υποστήριξης (support line) (ε): y = h(µ) + α(x µ) η οποία διέρχεται από το σηµείο (µ, h(µ)) και βρίσκεται κάτω από την καµπύλη y = h(x) για κάθε x. Ισχύει συνεπώς η ανισότητα h(x) h(µ) + α(x µ) για κάθε x. Θέτοντας στη θέση του x την τ.µ. Χ και λαµβάνοντας τις µέσες τιµές έχουµε: Ε[h(Χ)] h(µ) + α(ε[χ] µ) = h(µ) = h(ε[χ]). y y = h(x) y = h(µ)+α(x µ) x µ Σχήµα.. Ευθεία Υποστήριξης διερχόµενη από το σηµείο (µ, h(x)). Εύκολα αποδεικνύεται ότι η ισότητα ισχύει εάν και µόνο εάν Χ = c µε πιθανότητα. 5

10 ΑΣΚΗΣΕΙΣ.. Να αποδειχθεί ότι αν Ν(t) και M(t) (t > 0) είναι ανεξάρτητες τ.µ. που ακολουθούν κατανοµή Poisson µε παραµέτρους λ t και λ t αντίστοιχα τότε η δεσµευµένη κατανοµή της Ν(t) όταν δίνεται ότι N(t) + M(t) = n ακολουθεί την ιωνυµική κατανοµή µε παραµέτρους n και p = λ / (λ + λ )... Έστω Χ µη αρνητική συνεχής τ.µ. µε σ.π.π. f(x) και σ.κ.π. F(x). Ως συνάρτηση διακινδύνευσης (hazard function) της τ.µ. Χ ορίζεται η (α) P[t < X t + t X> t] h(t) = lim για t 0. t Να δείξετε ότι ισχύει η σχέση h(t) = f (t), t > 0. F(t) (β) Να δειχθεί ότι αν η τ.µ. Χ ακολουθεί την Εκθετική κατανοµή παραµέτρου α τότε έχει συνάρτηση διακινδύνευσης την h(t) = α (t > 0)..3. Να δειχθεί ότι αν µια µη αρνητική τ.µ. Χ έχει συνάρτηση διακινδύνευσης σταθερά και ίση µε c (c > 0) τότε η τ.µ. Χ ακολουθεί την Εκθετική κατανοµή µε παράµετρο c..4. Αν X και X είναι ανεξάρτητες µη αρνητικές συνεχείς τ.µ. µε συναρτήσεις διακινδύνευσης h (t) και h (t) αντίστοιχα τότε P[X < X min{x, X } = t] = h(t). h (t) + h (t).5. Να δειχθεί ότι η µόνη µη µηδενική λύση της σχέσης g(x + y) = g(x) g(y) x, y είναι η εκθετική συνάρτηση g(x) = e cx..6. Να δειχθεί ότι αν για µια µη αρνητική τ.µ. Χ ισχύει η σχέση P[X x + c X c] = P[X x] για κάθε c > 0, τότε η τ.µ. Χ ακολουθεί Εκθετική κατανοµή..7. Αν X, Y είναι ανεξάρτητες τ.µ. που ακολουθούν Εκθετική κατανοµή µε παραµέτρους λ και λ αντίστοιχα να προσδιοριστεί: (α) η κατανοµή της τ.µ. Z = min{x, Y}, (β) η κατανοµή της τ.µ. W = max{x, Y} και (γ) η δεσµευµένη κατανοµή του Ζ µε δεδοµένο ότι Ζ = Χ. 6

11 .8. Εφαρµόζοντας την ανισότητα του Jensen να δείξετε ο αριθµητικός µέσος µη αρνητικών αριθµών είναι µεγαλύτερος του γεωµετρικού µέσου εκτός εάν όλοι οι αριθµοί συµπίπτουν µεταξύ τους οπότε συµπίπτουν και οι εν λόγω µέσοι..9. Να συγκριθεί ο αρµονικός µέσος αριθµών x i (i =,,n) µε x i 0, µε τον αριθµητικό τους µέσο..0. Να προσδιοριστεί η γεννήτρια πιθανοτήτων των παρακάτω κατανοµών. (α) Γεωµετρική κατανοµή παραµέτρου p. (β) Αρνητική ιωνυµική παραµέτρων n και p... Να προσδιοριστεί η ροπογεννήτρια συνάρτηση των παρακάτω κατανοµών. (α) Κατανοµή Γάµµα παραµέτρων α και p. (β) Κατανοµή Cauchy παραµέτρων δ και µ. n.. Έστω {a n } και {b n } δύο ακολουθίες αριθµών και c n = = 0 a b n η συνέλιξη αυτών. Έστω επίσης Α(s), B(s) και C(s) οι αντίστοιχες γεννήτριες συναρτήσεις. Να δειχθεί ότι ισχύει η σχέση: C(s) = A(s) B(s)..3. ιακριτή τ.µ. Τ έχει συνάρτηση πιθανότητας p n = P[Τ = n] (n = 0,,, ). Αν π(s) είναι η γεννήτρια συνάρτηση των πιθανοτήτων p n και Π(s) η γεννήτρια συνάρτηση των πιθανοτήτων P n = p ν ν= n+ (n = 0,,, ), να δείξετε ότι ισχύει η σχέση Π(s) = π(s), s <. s Με βάση την παραπάνω σχέση να δείξετε ότι η µέση τιµή και η διασπορά της τ.µ. Τ είναι αντίστοιχα: Ε[Τ] = Π() και Var[T] = Π () Π(){ Π()}..4. Έστω G X,Y (s,t) η από κοινού γεννήτρια συνάρτηση πιθανοτήτων των τ.µ. Χ, Υ που ορίζεται από τη σχέση l G X,Y (s, t) s t P[X =, Y = = = 0l= 0 l]. 7

12 Να δειχθεί ότι η γεννήτρια πιθανοτήτων της τ.µ. Χ δίνεται από την C Χ (s) = G X,Y (s,) και G Y (t) = G X,Y (,t). Να δειχθεί επίσης ότι =. s t E [XY] G(s, t) s= t=.5. Έστω Ν διακριτή τ.µ. µε σ.µ.π. p n = P[N = n] (n =,, ) και γεννήτρια πιθανοτήτων π(s). Έστω {Υ i : i =,, } ακολουθία ανεξάρτητων και ισόνοµων τ.µ. µε ροπογεννήτρια συνάστηση g(s). Να δειχθεί ότι η ροπογεννήτρια συνάρτηση του αθροίσµατος µε τυχαίο αριθµό όρων Ν, είναι η Χ = Υ + Υ Υ Ν g X (s) = π(g(s)). N.6. Να προσδιοριστεί η σ.π.π. της τ.µ. X = i= Yi, όπου Yi (i ) ανεξάρτητες και ισόνοµες τ.µ. µε Εκθετική κατανοµή παραµέτρου λ και Ν τ.µ. µε Γεωµετρική παραµέτρου p..7. Να δειχθεί ότι αν G (s) και G (s) είναι γεννήτριες συναρτήσεις και α (0, ), τότε και G (s)g (s) καθώς και αg (s) + (-α)g (s) είναι γεννήτριες συναρτήσεις..8. Έστω {Υ n : n =,, } ακολουθία ανεξάρτητων και ισόνοµων τ.µ. µε διασπορά σ n και X n = ν= Yν (n =,, ). Να αποδειχθεί ότι για n m ισχύουν τα παρακάτω: (α) Cov[X n, X m ] = nσ. (β) Corr[X n, X m ] = n/m..9. Να αποδειχθεί ότι στη κίνηση Brown οι ανεξάρτητες προσαυξήσεις X(t) X(s) (t > s 0) ακολουθούν κατανοµή Ν[0, c (t-s)]..0. Να αποδειχθεί ότι στη κίνηση Brown µε c =, η δεσµευµένη κατανοµή της θέσης X(s) µε δεδοµένη τη θέση x, έστω, κατά τη χρονική στιγµή t, δηλαδή µε X(t) = x, για s < t, είναι Ν[xs/t, s(t-s)/t]. 8

1.1. ΕΙΣΑΓΩΓΗ ΚΑΙ ΠΡΟΚΑΤΑΡΚΤΙΚΕΣ ΕΝΝΟΙΕΣ

1.1. ΕΙΣΑΓΩΓΗ ΚΑΙ ΠΡΟΚΑΤΑΡΚΤΙΚΕΣ ΕΝΝΟΙΕΣ ΓΕ Κοκολάκης Σηµειώσεις Στοχαστικών Ανελίξεων Κεφ Ι Εισαγωγή Κεφ I Εισαγωγή ΕΙΣΑΓΩΓΗ ΚΑΙ ΠΡΟΚΑΤΑΡΚΤΙΚΕΣ ΕΝΝΟΙΕΣ Η ανάγκη µαθηµατικής περιγραφής και µοντελοποίησης συστηµάτων τα οποία εξελίσσονται χρονικά

Διαβάστε περισσότερα

ιωνυµική Κατανοµή(Binomial)

ιωνυµική Κατανοµή(Binomial) ιωνυµική Κατανοµή(Binomial) ~B(n,p) n N και 0

Διαβάστε περισσότερα

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ 20 3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ ΟΡΙΣΜΟΣ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ Μια πολύ σηµαντική έννοια στη θεωρία πιθανοτήτων και τη στατιστική είναι η έννοια της µαθηµατικής ελπίδας ή αναµενόµενης τιµής ή µέσης τιµής µιας τυχαίας

Διαβάστε περισσότερα

Dunamoseirèc A. N. Giannakìpouloc, Tm ma Statistik c OPA

Dunamoseirèc A. N. Giannakìpouloc, Tm ma Statistik c OPA Dunamoseirèc A. N. Giannakìpouloc, Tm ma Statistik c OPA Eisagwg Οι δυναμοσειρές είναι μια πολύ ενδιαφέρουσα κατηγορία σειρών. Βρίσκουν πολύ σημαντικές εφαρμογές στον ορισμό συναρτήσεων καθώς και σε διάφορες

Διαβάστε περισσότερα

ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ

ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Δ.Φουσκάκης- Πολυδιάστατες Τυχαίες Μεταβλητές 1 ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Συνάρτηση Κατανομής: Έστω Χ=(Χ 1,,Χ ) T τυχαίο διάνυσμα (τ.δ). Ονομάζουμε συνάρτηση κατανομής πιθανότητας (σ.κ.π.) του τ.δ.

Διαβάστε περισσότερα

ρ. Ευστρατία Μούρτου

ρ. Ευστρατία Μούρτου ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΩΝ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΕΞΑΜΗΝΟ : Ε ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ : - ΜΑΘΗΜΑ «ΒΙΟΣΤΑΤΙΣΤΙΚΗ» ΚΕΦ. ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ρ. Ευστρατία Μούρτου

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα

Διαβάστε περισσότερα

ΜΕΡΙΚΕΣ ΕΙΔΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ

ΜΕΡΙΚΕΣ ΕΙΔΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ ΚΕΦΑΛΑΙΟ 8 ΜΕΡΙΚΕΣ ΕΙΔΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ Στις ενότητες που ακολουθούν εξετάζουμε συνεχείς κατανομές με ευρεία χρήση στις εφαρμογές. Σε αυτές περιλαμβάνονται η ομοιόμορφη, η εκθετική, η Γάμμα και η

Διαβάστε περισσότερα

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων Ακαδ. Έτος 2014-2015 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΧΡΟΝΟΣΕΙΡΩΝ. Οι ηµερήσιες, αεροπορικές και οδικές, αφίξεις τουριστών στην χώρα µας x t

ΑΝΑΛΥΣΗ ΧΡΟΝΟΣΕΙΡΩΝ. Οι ηµερήσιες, αεροπορικές και οδικές, αφίξεις τουριστών στην χώρα µας x t ΑΝΑΛΥΣΗ ΧΡΟΝΟΣΕΙΡΩΝ ΚΕΦ. ΕΙΣΑΓΩΓΗ. Χρονοσειρές Με τον όρο χρονοσειρά εννοούµε συνήθως µια ακολουθία { = } x : 0,,,..., όπου κάθε x εκφράζει την κατά την χρονική στιγµή κατάσταση ενός συστήµατος το οποίο

Διαβάστε περισσότερα

Ακολουθούν ενδεικτικές ασκήσεις που αφορούν την πρώτη εργασία της ενότητας ΔΙΠ50

Ακολουθούν ενδεικτικές ασκήσεις που αφορούν την πρώτη εργασία της ενότητας ΔΙΠ50 Άσκηση 1 η 1 η Εργασία ΔΙΠ50 Ακολουθούν ενδεικτικές ασκήσεις που αφορούν την πρώτη εργασία της ενότητας ΔΙΠ50 Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07)

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) Επιµέλεια Σηµειώσεων : Βασιλειάδης Γεώργιος Καστοριά, εκέµβριος 2006

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

Κεφάλαιο 3: Τυχαίες µεταβλητές και κατανοµές πιθανότητας.

Κεφάλαιο 3: Τυχαίες µεταβλητές και κατανοµές πιθανότητας. Κεφάλαιο 3: Τυχαίες µεταβλητές και κατανοµές πιθανότητας. Περιεχόµενα ιακριτές τυχαίες µεταβλητές Συνεχείς τυχαίες µεταβλητές Μέση τιµή τυχαίων µεταβλητών Ροπές, διασπορά, και τυπική απόκλιση τυχαίων µεταβλητών

Διαβάστε περισσότερα

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα

Διαβάστε περισσότερα

Πιθανότητες & Τυχαία Σήματα. Διγαλάκης Βασίλης

Πιθανότητες & Τυχαία Σήματα. Διγαλάκης Βασίλης Πιθανότητες & Τυχαία Σήματα Διγαλάκης Βασίλης Στατικές (Στάσιμες) Διαδικασίες Στατική (Stationary) ορίζεται η διαδικασία της οποίας οι στατιστικές ιδιότητες δεν μεταβάλλονται με την πάροδο του χρόνου.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009 ΕΥΡΩΠΑΙΚΟ ΑΠΟΛΥΤΗΡΙΟ 2009 ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009 ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 4 ώρες (240 λεπτά) ΕΠΙΤΡΕΠΟΜΕΝΑ ΒΟΗΘΗΜΑΤΑ Ευρωπαικό τυπολόγιο Μη προγραμματιζόμενος υπολογιστής, χωρίς γραφικά

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Σε κάθε αποτέλεσμα του πειράματος αντιστοιχεί μία αριθμητική τιμή Μαθηματικός ορισμός: Τυχαία μεταβλητή X είναι

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ι θ α ν ό τ η τ ε ς ΙΙ Πειραιάς 2007 1 2 Από κοινού συνάρτηση πυκνότητας μιας δισδιάστατης συνεχούς τυχαίας μεταβλητής Μία διδιάστατη συνεχής τυχαία μεταβλητή

Διαβάστε περισσότερα

[ ] [ ] ΘΕΜΑ 1o A. Για x x 0 έχουµε: παραγωγίσιµη στο χ 0 ) άρα η f είναι συνεχής στο χ 0.

[ ] [ ] ΘΕΜΑ 1o A. Για x x 0 έχουµε: παραγωγίσιµη στο χ 0 ) άρα η f είναι συνεχής στο χ 0. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΙΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 29 ΜΑΪΟΥ 23 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1o A. Για x x έχουµε: f (

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 Ε_3.Μλ3ΘΤ(ε) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Κεφάλαιο 5 ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Οταν ένα µεταβλητό µέγεθος εξαρτάται αποκλειστικά από τις µεταβολές ενός άλλου µεγέθους, τότε η σχέση που συνδέει

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 8 ΜΑΪΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία, σελ. 53, σχολικού βιβλίου. Α. Θεωρία, σελ. 9, σχολικού βιβλίου. Α3. Θεωρία, σελ. 58, σχολικού βιβλίου. Α4. α) Σ, β) Σ,

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

Θεωρητικές Κατανομές Πιθανότητας

Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ

Διαβάστε περισσότερα

4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ-

4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- Κεφάλαιο 4 ΟΛΟΚΛΗΡΩΜΑ 4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- µατα Ορισµός 4.1.1. Αρχική ή παράγουσα συνάρτηση ή αντιπαράγωγος µιας συνάρτησης f(x), x [, b], λέγεται κάθε συνάρτηση F (x) που επαληθεύει

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΘΕΩΡΙΑ ΟΥΡΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΘΕΩΡΙΑ ΟΥΡΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΘΕΩΡΙΑ ΟΥΡΩΝ Ακαδ. Έτος 2011-2012 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Διδάσκων επί Συμβάσει Π.Δ 407/80 v.koutras@fme.aegean.gr

Διαβάστε περισσότερα

Περιεχόμενα. 1. Ειδικές συναρτήσεις. 2. Μιγαδικές Συναρτήσεις. 3. Η Έννοια του Τελεστή. Κεφάλαιο - Ενότητα

Περιεχόμενα. 1. Ειδικές συναρτήσεις. 2. Μιγαδικές Συναρτήσεις. 3. Η Έννοια του Τελεστή. Κεφάλαιο - Ενότητα Περιεχόμενα Κεφάλαιο - Ενότητα σελ 1. Ειδικές συναρτήσεις 1.0 Εισαγωγή 1.1 Εξίσωση του Laplace Συστήματα συντεταγμένων 1.2 Συνάρτηση δ του Dirac 1.3 Συνάρτηση του Heaviside 1.4 Οι συναρτήσεις Β, Γ και

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

sup B, τότε υπάρχουν στοιχεία α A και β B µε α < β.

sup B, τότε υπάρχουν στοιχεία α A και β B µε α < β. ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Εξετάσεις στη Μαθηµατική Ανάλυση Ι Φεβρουαρίου, 3 Θ. (α ) Εστω A, B µη κενά ϕραγµένα σύνολα πραγµατικών αριθµών. είξτε ότι αν inf A

Διαβάστε περισσότερα

Γνωστές κατανομές συνεχών μεταβλητών (συν.) (Δ). Γάμμα κατανομή

Γνωστές κατανομές συνεχών μεταβλητών (συν.) (Δ). Γάμμα κατανομή Γνωστές κατανομές συνεχών μεταβλητών (συν.) (Δ). Γάμμα κατανομή Συνάρτηση Γάμμα: Ιδιότητες o d Γ(α+)=αΓ(α) - αναδρομική συνάρτηση Γ(α+) = α! αν α ακέραιος. Πιθανότητες & Στατιστική 5 Τμήμα Μηχανικών Η/Υ

Διαβάστε περισσότερα

n i P(x i ) P(X = x i ) = lim

n i P(x i ) P(X = x i ) = lim Κεϕάλαιο 2 Πιθανότητες και Τυχαίες Μεταβλητές Μπορούµε να καταλάβουµε την έννοια της πιθανότητας από τη σχετική συχνότητα εµϕάνισης n i κάποιας τιµής x i µιας διακριτής τ.µ. X. Αν είχαµε τη δυνατότητα

Διαβάστε περισσότερα

Έντυπο Υποβολής Αξιολόγησης Γ.Ε.

Έντυπο Υποβολής Αξιολόγησης Γ.Ε. Έντυπο Υποβολής Αξιολόγησης Γ.Ε. O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή KΕΦΑΛΑΙΟ ΤΟ ΣΥΝΟΛΟ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ιατεταγµένα σώµατα-αξίωµα πληρότητας Ένα σύνολο Σ καλείται διατεταγµένο σώµα όταν στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΡΟΣΕΓΓΙΣΗΣ ΔΗΜΗΤΡΙΟΣ ΝΟΥΤΣΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑΤΟΣ ΜΑΘΗΜΑΤΚΩΝ. Ιωάννινα 2014

ΘΕΩΡΙΑ ΠΡΟΣΕΓΓΙΣΗΣ ΔΗΜΗΤΡΙΟΣ ΝΟΥΤΣΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑΤΟΣ ΜΑΘΗΜΑΤΚΩΝ. Ιωάννινα 2014 ΘΕΩΡΙΑ ΠΡΟΣΕΓΓΙΣΗΣ ΔΗΜΗΤΡΙΟΣ ΝΟΥΤΣΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑΤΟΣ ΜΑΘΗΜΑΤΚΩΝ Ιωάννινα 0 Περιεχόμενα ΕΙΣΑΓΩΓΗ 5. Νόρμες.................................... 6. Υπαρξη και μονοσήμαντο.......................... 8 ΟΜΟΙΟΜΟΡΦΗ

Διαβάστε περισσότερα

θ. Bolzano θ. Ενδιάμεσων τιμών θ. Μεγίστου Ελαχίστου και Εφαρμογές

θ. Bolzano θ. Ενδιάμεσων τιμών θ. Μεγίστου Ελαχίστου και Εφαρμογές Περιοδικό ΕΥΚΛΕΙΔΗΣ Β ΕΜΕ (Τεύχος 35) θ Bolzano θ Ενδιάμεσων τιμών θ Μεγίστου Ελαχίστου και Εφαρμογές Στο άρθρο αυτό επιχειρείται μια προσέγγιση των βασικών αυτών θεωρημάτων με εφαρμογές έ- τσι ώστε να

Διαβάστε περισσότερα

Στοχαστικότητα: μελέτη, μοντελοποίηση και πρόβλεψη φυσικών φαινομένων

Στοχαστικότητα: μελέτη, μοντελοποίηση και πρόβλεψη φυσικών φαινομένων Στοχαστικότητα: μελέτη, μοντελοποίηση και πρόβλεψη φυσικών φαινομένων Δρ. Τακβόρ Σουκισιάν Κύριος Ερευνητής ΕΛΚΕΘΕ Forecasting is very dangerous, especially about the future --- Samuel Goldwyn 1 ΠΕΡΙΕΧΟΜΕΝΑ

Διαβάστε περισσότερα

ÖÑÏÍÔÉÓÔÇÑÉÏ ÏÑÏÓÇÌÏ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÏÑÏÓÇÌÏ ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑΛ Β 6 ΜΑΪΟΥ ΑΠΑΝΤΗΣΕΙΣ Α Θεωρία (θεώρ Frmat) σχολικό βιβλίο, σελ 6-6 Α Θεωρία (ορισµός) σχολικό βιβλίο, σελ 8 Α3 ΘΕΜΑ Β α β γ δ ε Σ Σ Λ Λ Σ B Έχουµε από υπόθεση

Διαβάστε περισσότερα

Μαρκοβιανές Αλυσίδες

Μαρκοβιανές Αλυσίδες Μαρκοβιανές Αλυσίδες { θ * } Στοχαστική Ανέλιξη είναι μια συλλογή τ.μ. Ο χώρος Τ (συνήθως είναι χρόνος) μπορεί να είναι είτε διακριτός είτε συνεχής και καλείται παραμετρικός χώρος. Το σύνολο των δυνατών

Διαβάστε περισσότερα

CRAMER-RAO ΚΑΤΩ ΦΡΑΓΜΑ - ΑΠΟ ΟΤΙΚΟΙ ΕΚΤΙΜΗΤΕΣ

CRAMER-RAO ΚΑΤΩ ΦΡΑΓΜΑ - ΑΠΟ ΟΤΙΚΟΙ ΕΚΤΙΜΗΤΕΣ CRAMER-RAO ΚΑΤΩ ΦΡΑΓΜΑ - ΑΠΟ ΟΤΙΚΟΙ ΕΚΤΙΜΗΤΕΣ Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Θεώρηµα Cramer-Rao Θεώρηµα Cramer-Rao Εστω X = (X 1, X,...,X n ) ένα δείγµα µε από κοινού πυκνότητα πιθανότητας f X

Διαβάστε περισσότερα

Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων:

Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων: Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων: Φάμπιο Αντωνίου Στοιχεία Επικοινωνίας: email: fantoniou@cc.uoi.gr Τηλ:651005954 Προσωπική Ιστοσελίδα: fantoniou.wordpress.com Γραφείο: Κτίριο

Διαβάστε περισσότερα

Sidney I. Resnik Adventures in Stochastic Processes

Sidney I. Resnik Adventures in Stochastic Processes Σηµειώσεις Στοχαστικών Ανελίξεων Αντώνης Τσολοµύτης & Γραµµατική Χατζηκωνσταντή Σηµειωσεις Στοχαστικων Ανελιξεων Βασισµένες στο ϐιβλίο : Sidney I Resni Adventures in Stochastic Processes Γοργύρα Σάµος

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ ( Μεθοδολογία- Παραδείγματα ) Κλεομένης Γ. Τσιγάνης

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

Για παραγγελίες των βιβλίων 2310610920

Για παραγγελίες των βιβλίων 2310610920 Για παραγγελίες των βιβλίων 369 Θέματα Προσομοίωσης Πανελλαδικών D.A.T. ΘΕΜΑ o ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 3 ΑΠΡΙΛΙΟΥ 8 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙ 3 ο : KΩΝΙΚΕΣ ΤΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΥ ( 3.) ΚΥΚΛΣ Γνωρίζουµε ότι ένας κύκλος (, ρ) είναι ο γεωµετρικός τόπος των σηµείων του επιπέδου τα οποία απέχουν µια ορισµένη απόσταση ρ από ένα

Διαβάστε περισσότερα

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1 ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 8 ΜΑΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ Α Α.

Διαβάστε περισσότερα

Σύντομη Εισαγωγή στις Στοχαστικές Ανελίξεις

Σύντομη Εισαγωγή στις Στοχαστικές Ανελίξεις Σύντομη Εισαγωγή στις Στοχαστικές Ανελίξεις Αν το αποτέλεσμα ενός τυχαίου πειράματος είναι - ένας αριθμός R, τότε μπορεί να εκφραστεί με μία τ.μ. Χ R - αριθμοί R τότε μπορεί να εκφραστεί με ένα τ.δ. Χ

Διαβάστε περισσότερα

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ Ακολουθίες και Σειρές Συναρτήσεων ρ. Κωνσταντίνος Κυρίτσης Εκπαιδευτικός Οργανισµός ΒΙΤΑΛΗ Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 10 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν

Διαβάστε περισσότερα

Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες

Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες Γιώργος Αλογοσκούφης, Θέµατα Δυναµικής Μακροοικονοµικής, Αθήνα 0 Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες Στο παράρτηµα αυτό εξετάζουµε τις ιδιότητες και τους τρόπους επίλυσης των εξισώσεων

Διαβάστε περισσότερα

Γενικά Μαθηματικά (Φυλλάδιο 1 ο )

Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος Περιλαμβάνει: ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΚΕΦΑΛΑΙΟ : ΠΑΡΑΓΩΓΙΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Διαβάστε περισσότερα

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Γενική Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικός Περιηγητής 1 ΠΕΡΙΕΧΟΜΕΝΑ 1. Διδακτέα-εξεταστέα

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ Χρήση τυχαίων µεταβλητών για την απεικόνιση εκβάσεων τυχαίου πειράµατος Κατανόηση της έννοιας κατανοµής πιθανοτήτων τυχαίας µεταβλητής Υπολογισµός της συνάρτηση κατανοµής πιθανοτήτων

Διαβάστε περισσότερα

4 Πιθανότητες και Στοιχεία Στατιστικής για Μηχανικούς

4 Πιθανότητες και Στοιχεία Στατιστικής για Μηχανικούς Πρόλογος Ο μηχανικός πρέπει να συνεχίσει να βελτιώνει την ποιότητα της δουλειάς του εάν επιθυμεί να είναι ανταγωνιστικός στην αγορά της χώρας του και γενικότερα της Ευρώπης. Μία σημαντική αναλογία σε αυτήν

Διαβάστε περισσότερα

Θέµατα Μιγαδικών Αριθµών από τις Πανελλαδικές Εξετάσεις

Θέµατα Μιγαδικών Αριθµών από τις Πανελλαδικές Εξετάσεις Θέµατα Μιγαδικών Αριθµών από τις Πανελλαδικές Εξετάσεις γιατί συχνά, οι ιδέες επαναλαµβάνονται ΕΠΙΜΕΛΕΙΑ: ΠΑΠΠΑΣ ΑΘΑΝΑΣΙΟΣ Ο ΓΕΝ ΛΥΚΕΙΟ ΥΜΗΤΤΟΥ Σελίδα από 8 Επιµέλεια: Παππάς Αθανάσιος/o ΓΕΛ ΥΜΗΤΤΟΥ 00

Διαβάστε περισσότερα

1.1.3 t. t = t2 - t1 1.1.4 x2 - x1. x = x2 x1 . . 1

1.1.3 t. t = t2 - t1 1.1.4  x2 - x1. x = x2 x1 . . 1 1 1 o Κεφάλαιο: Ευθύγραµµη Κίνηση Πώς θα µπορούσε να περιγραφεί η κίνηση ενός αγωνιστικού αυτοκινήτου; Πόσο γρήγορα κινείται η µπάλα που κλώτσησε ένας ποδοσφαιριστής; Απαντήσεις σε τέτοια ερωτήµατα δίνει

Διαβάστε περισσότερα

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις ΚΕΦΑΛΑΙΟ 2 Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις 2.1 ΕΙΣΑΓΩΓΗ Όπως έχουµε δει, για να προσδιορίσουµε τις αποκρίσεις ενός κυκλώµατος, πρέπει να λύσουµε ένα σύνολο διαφορικών

Διαβάστε περισσότερα

Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών. ( )

Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών. ( ) ΚΕΦΑΛΑΙ 6 ΕΥΘΕΙΑ-ΕΠΙΠΕ 6 Γεωµετρικοί τόποι και εξισώσεις στο χώρο Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών ρισµός 6 Θεωρούµε τη συνάρτηση F:Α,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 2007 ΕΚΦΩΝΗΣΕΙΣ. Α.3 Πότε η ευθεία y = l λέγεται οριζόντια ασύµπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 2007 ΕΚΦΩΝΗΣΕΙΣ. Α.3 Πότε η ευθεία y = l λέγεται οριζόντια ασύµπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3 ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 7 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Α.1 Αν z 1, z είναι µιγαδικοί αριθµοί, να αποδειχθεί ότι: z 1 z = z 1 z. Α. Πότε δύο συναρτήσεις f, g λέγονται ίσες; Μονάδες 4 Α.3 Πότε η ευθεία y

Διαβάστε περισσότερα

Μάστερ στην Εφαρµοσµένη Στατιστική

Μάστερ στην Εφαρµοσµένη Στατιστική Μάστερ στην Εφαρµοσµένη Στατιστική Πρότυπο Πρόγραµµα Master Εξάµηνο Σπουδών Κωδικός Τίτλος Μαθήµατος ιδακτικές Μονάδες 1 ο Εξάµηνο ΜΑΣ650 Μαθηµατική Στατιστική 10 ΜΑΣ655 ειγµατοληψία 10 ΜΑΣ658 Στατιστικά

Διαβάστε περισσότερα

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ Μερική Παράγωγος και Εφαρµογές ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 19 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας των µε- ϱικών

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ II ΕΠΑΛ (ΟΜΑ Α Β ) ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α A Έστω f µια συνάρτηση ορισµένη σε ένα διάστηµα Αν F είναι µια παράγουσα της f στο, τότε να αποδείξετε ότι: όλες οι συναρτήσεις της µορφής G() F() + c, c

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τοµέας Μαθηµατικών, Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόµενα Εισαγωγή στη

Διαβάστε περισσότερα

ΑΥΤΟΜΑΤΙΣΤΕΣ ΦΥΣΙΚΗ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2013-2014 ΔΕΥΤΕΡΑ 12-15 ΑΙΘ.ΖΑ115-116

ΑΥΤΟΜΑΤΙΣΤΕΣ ΦΥΣΙΚΗ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2013-2014 ΔΕΥΤΕΡΑ 12-15 ΑΙΘ.ΖΑ115-116 ΑΥΤΟΜΑΤΙΣΤΕΣ ΦΥΣΙΚΗ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2013-2014 ΔΕΥΤΕΡΑ 12-15 ΑΙΘ.ΖΑ115-116 1 ΕΙΣΑΓΩΓΙΚΟ-ΠΑΡΑΓΩΓΟΙ Ορισμός παραγώγου συνάρτησης σε σημείο Μια συνάρτηση f (X) λέμε ότι είναι παραγωγίσιμη σ ένα σημείο του

Διαβάστε περισσότερα

Υψώνουμε την δοσμένη σχέση στο τετράγωνο οπότε

Υψώνουμε την δοσμένη σχέση στο τετράγωνο οπότε ΑΠΑNTHΣΕΙΣ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΘΕΜΑ A A Απόδειξη Σελ 53 Α Ορισμός Σελ 9 Α3 Ορισμός Σελ 58 Α4 α) Σ β) Σ γ) Λ δ) Λ ε) Λ ΘΕΜΑ Β Β 4 4 4 Άρα ο γεωμετρικός τόπος των εικόνων των μιγαδικών

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1, Εισαγωγή στη θεωρία ακραίων τιμών

ΚΕΦΑΛΑΙΟ 1, Εισαγωγή στη θεωρία ακραίων τιμών ΚΕΦΑΛΑΙΟ 1, Εισαγωγή στη θεωρία ακραίων τιμών Αντικείμενο της θεωρίας ακραίων τιμών αποτελεί: Η ανάπτυξη και μελέτη στοχαστικών μοντέλων με σκοπό την επίλυση προβλημάτων που σχετίζονται με την εμφάνιση

Διαβάστε περισσότερα

!n k. Ιστογράμματα. n k. x = N = x k

!n k. Ιστογράμματα. n k. x = N = x k Ιστογράμματα Τα ιστογράμματα αποτελούν ένα εύχρηστο οπτικό τρόπο για να εξάγουμε την κατανομή που ακολουθούν μια σειρά μετρήσεων ενός μεγέθους αλλά και παράλληλα δίνουν τη δυνατότητα για εύκολη στατιστική

Διαβάστε περισσότερα

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ Συναρτήσεις, Ορια, Συνέχεια ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 05 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας των συναρτήσεων,

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

Γεννήτριες Συναρτήσεις

Γεννήτριες Συναρτήσεις Γεννήτριες Συναρτήσεις ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναπαράσταση Ακολουθιών Ακολουθία:

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

Ανίχνευσης & Εκτίμησης

Ανίχνευσης & Εκτίμησης Θεωρία Ανίχνευσης & Εκτίμησης Γεώργιος Β. Μουστακίδης, Καθηγητής Πανεπιστήμιο Πατρών Περιεχόμενα Πρόλογος Ευχαριστίες v vi 1 Εισαγωγή 1 1.1 Τρεις ενδιαφέρουσες εφαρμογές 1 1.1.1 Ανίχνευση αεροσκάφους

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Α Να αποδείξετε ότι η παράγωγος της συνάρτησης f(x) x είναι f (x) Β Πότε µια συνάρτηση f σε ένα διάστηµα

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Σφάλµατα και στατιστική επεξεργασία πειραµατικών µετρήσεων

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Σφάλµατα και στατιστική επεξεργασία πειραµατικών µετρήσεων ΘΕ1 ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Σφάλµατα και στατιστική επεξεργασία πειραµατικών µετρήσεων 1. Σκοπός Πρόκειται για θεωρητική άσκηση που σκοπό έχει την περιληπτική αναφορά σε θεµατολογίες όπως : σφάλµατα, στατιστική

Διαβάστε περισσότερα

Μέθοδος μέγιστης πιθανοφάνειας

Μέθοδος μέγιστης πιθανοφάνειας Μέθοδος μέγιστης πιθανοφάνειας Αν x =,,, παρατηρήσεις των Χ =,,,, τότε έχουμε διαθέσιμο ένα δείγμα Χ={Χ, =,,,} της κατανομής F μεγέθους με από κοινού σ.κ. της Χ f x f x Ορισμός : Θεωρούμε ένα τυχαίο δείγμα

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Σ.Α.Ε στο χώρο 6 Nicola Tapaouli Λύση εξισώσεων ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [4]: Κεφάλαιο 5: Ενότητες 5.-5. Παρασκευόπουλος

Διαβάστε περισσότερα

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ Ολοκληρώµατα ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 85 3 05 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας των ολοκληρωµάτων πραγµατικών συναρτήσεων

Διαβάστε περισσότερα

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6.

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6. ΜΙΓΑ ΙΚΟΙ 1 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 1 2 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 3 Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2 4 Για κάθε z C ισχύει z z 2 z 5 Για κάθε µιγαδικό z ισχύει:

Διαβάστε περισσότερα

Εισαγωγή στη θεωρία ακραίων τιμών

Εισαγωγή στη θεωρία ακραίων τιμών Εισαγωγή στη θεωρία ακραίων τιμών Αντικείμενο της θεωρίας ακραίων τιμών αποτελεί: Η ανάπτυξη και μελέτη στοχαστικών μοντέλων με σκοπό την επίλυση προβλημάτων που σχετίζονται με την εμφάνιση «πολύ μεγάλων»

Διαβάστε περισσότερα

e 1 1. Μια συνάρτηση f: R R έχει την ιδιότητα: (fof)(x)=2-x για κάθε χє R. Να δείξετε ότι: α) f(1)=1, β) η f αντιστρέφεται, γ) f x lim

e 1 1. Μια συνάρτηση f: R R έχει την ιδιότητα: (fof)(x)=2-x για κάθε χє R. Να δείξετε ότι: α) f(1)=1, β) η f αντιστρέφεται, γ) f x lim ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Μια συνάρτηση f: R R έχει την ιδιότητα: (fof)()=- για κάθε χє R. Να δείξετε ότι: α) f()=, β) η f αντιστρέφεται, γ) f - ()=-f(), є R., δ ) να λύσετε

Διαβάστε περισσότερα

Πεπερασμένες Διαφορές.

Πεπερασμένες Διαφορές. Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ ο A. Έστω µια συνάρτηση f, η οποία είναι συνεχής σε ένα διάστηµα. Αν f () > σε κάθε εσωτερικό σηµείο του, τότε να αποδείξετε ότι η f είναι γνησίως

Διαβάστε περισσότερα

13 Μονοτονία Ακρότατα συνάρτησης

13 Μονοτονία Ακρότατα συνάρτησης 3 Μονοτονία Ακρότατα συνάρτησης Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρημα Αν μια συνάρτηση f είναι συνεχής σ ένα διάστημα Δ, τότε: Αν f ( ) > 0για κάθε εσωτερικό του Δ, η f είναι γνησίως αύξουσα στο Δ. Αν

Διαβάστε περισσότερα

e-mail@p-theodoropoulos.gr

e-mail@p-theodoropoulos.gr Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων

Διαβάστε περισσότερα

5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ 48 49 5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ 5 ΕΙΣΑΓΩΓΗ ΟΡΙΣΜΟΣ: Κάθε συνάρτηση : A B με Α R n και Β R ονομάζεται πραγματική συνάρτηση n μεταβλητών ΠΑΡΑΤΗΡΗΣΕΙΣ: Ι Αν Α R n και Β R n τότε έχουμε διανυσματική συνάρτηση

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Μ. Τρίτη 3 Απριλίου 3 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ Α. Σχολικό βιβλίο,

Διαβάστε περισσότερα

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ Κοίταξε τις µεθόδους, τις λυµένες ασκήσεις και τις ασκήσεις προς λύση των ενοτήτων 6, 7 του βοηθήµατος Μεθοδολογία Άλγεβρας και Στοιχείων Πιθανοτήτων Α Γενικού Λυκείου των Ευσταθίου Μ. και Πρωτοπαπά Ελ.

Διαβάστε περισσότερα

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 2 ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 2 ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 4 Λύσεις των θεμάτων Έκδοση η

Διαβάστε περισσότερα

ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ. ΛΥΣΕΙΣ 3 ης. Άσκηση 1. , z1. Παρατηρούµε ότι: z0 = z5. = + ) και. β) 1 ος τρόπος: Έστω z = x+ iy, x, = x + y.

ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ. ΛΥΣΕΙΣ 3 ης. Άσκηση 1. , z1. Παρατηρούµε ότι: z0 = z5. = + ) και. β) 1 ος τρόπος: Έστω z = x+ iy, x, = x + y. ΛΥΣΕΙΣ ης ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ Άσκηση 6 6 Λύση: α) 7z + z (cosπ + isi π ) π+ kπ π+ kπ Κατά συνέπεια z (cos + isi ), k,,, 5 Παίρνουµε τις ρίζες 6 6 z (cos + isi ) ( + i ) + i, π π 6 6 6 z (cos + isi ) (cos

Διαβάστε περισσότερα

Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17

Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 Περιεχόμενα Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 ΚΕΦΑΛΑΙΟ 1. Το σύνολο των πραγματικών αριθμών... 19 1.1 Σύνολα αριθμών... 19 1.2 Αλγεβρική δομή του R... 20 1.2.1 Ιδιότητες πρόσθεσης...

Διαβάστε περισσότερα

Στοχαστικος Προγραμματισμος

Στοχαστικος Προγραμματισμος M:\-Books\Systems Otmzaton\4-stoastkos\4-stochastkos.doc 4 Στοχαστικος Προγραμματισμος Στοχαστικος Προγραμματισμος... Error! Bookmark not defned. 4. Εισαγωγη... Error! Bookmark not defned. 4. Βασικη Θεωρια

Διαβάστε περισσότερα

Θέματα. Α1. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του x,

Θέματα. Α1. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του x, Θέμα Α Θέματα Α. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του, στο οποίο όμως η f είναι συνεχής. Να αποδείξετε ότι αν η f() διατηρεί πρόσημο στο (, ) (, ), τότε

Διαβάστε περισσότερα

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής.

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής. 2.6 ΟΡΙΑ ΑΝΟΧΗΣ Το διάστηµα εµπιστοσύνης παρέχει µία εκτίµηση µιας άγνωστης παραµέτρου µε την µορφή διαστήµατος και ένα συγκεκριµένο βαθµό εµπιστοσύνης ότι το διάστηµα αυτό, µε τον τρόπο που κατασκευάσθηκε,

Διαβάστε περισσότερα

ΘΕΜΑΤΑ & ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ( 2001 2011 ) ΘΕΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΕΙΣ Ο.Ε.Φ.Ε. ( 2003 2011 )

ΘΕΜΑΤΑ & ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ( 2001 2011 ) ΘΕΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΕΙΣ Ο.Ε.Φ.Ε. ( 2003 2011 ) ΘΕΜΑΤΑ & ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ( & ΘΕΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΕΙΣ Ο.Ε.Φ.Ε. ( Επιμέλεια Συρραφή Θεμάτων Ζαχαριάδης Λάζαρος - Μαθηματικός ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΑΠΟ ΕΩΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ

Διαβάστε περισσότερα