Решенија на задачите за III година LII РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА ЗА УЧЕНИЦИТЕ ОД СРЕДНИТЕ УЧИЛИШТА ВО РЕПУБЛИКА МАКЕДОНИЈА 16 мај 2009

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Решенија на задачите за III година LII РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА ЗА УЧЕНИЦИТЕ ОД СРЕДНИТЕ УЧИЛИШТА ВО РЕПУБЛИКА МАКЕДОНИЈА 16 мај 2009"

Transcript

1 LII РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА ЗА УЧЕНИЦИТЕ ОД СРЕДНИТЕ УЧИЛИШТА ВО РЕПУБЛИКА МАКЕДОНИЈА 6 мај 9 III година Задача. Микроскоп е составен од објектив со фокусно растојание, c и окулар со фокусно растојание,8c. Растојанието помеѓу објективот и окуларот е 8,6 c. На колкаво растојание p од објективот треба да се постави предметот за неговиот лик да се набљудува јасно на растојание 8 c од окото (кое е непосредно до окуларот)? Да се конструира добивањето на ликот. Ravenkata na tenka le}a za objektivot e: +, p l p o kae se izrazuva rastojanieto p l p l Ravenkata na tenka le}a za okularot e: () P l p F F F L F p. l L Biej}i: p l, prethonata ravenka se prezapi{uva vo oblik: l l l +, o kae se izrazuva rastojanieto l l () l + l So zaena na poznatite brojni vrenosti za, i l (l 8 c) vo ravenkata () se obiva: l6, c. So zaena na ovaa vrenost vo ravenkata (), se obiva: p,3 c. Републички натпревар по физика 6.5.9

2 Задача. Паралелен сноп светлина со бранова должина λ 63,8 n паѓа нормално на дифракциона мрежичка чиј период е μ. Во фокусната рамнина на собирна леќа, чие фокусно растојание е 3c (и која е поставена зад мрежичката) се добива интензитетната рапспределба на дифрактираната светлина и се мери растојанието на вториот дифракционен максимум во однос на централниот (нулти) максимум. Како ќе се промени ова растојание доколку светлината падне под агол α во однос на нормалата на решетката? Средината е воздушна. Poznato: λ63,8 n63,8-9 μ -5 3 c,3 α x, x?, При нормално паѓање на светлината врз мрежичката: sin θ λ () λ sin θ () 9 63,8 sinθ 5 θ 3,6 x tan θ (3) x tanθ ; x 9. Кога светлината паѓа под агол α на мрежичката, патната разлика помеѓу зраците i e: CD B (sinα sin θ '). Според тоа условот за максимум во вториот дифракционен ред ќе биде: (sinα sin θ') λ () λ sinθ ' sinα 9 63,8 sinθ ' sin 5 θ ' 6,3 x' tan θ ' (5) ' ' x tan ' ; 33. θ x C D B θ ' x x. α Републички натпревар по физика 6.5.9

3 Задача 3. Три мали тела со сферна форма, изработени од материјали со голема топлоспроводливост се наоѓаат во орбитите на Венера, Земја и Марс и се загреваат под дејство на сончевото зрачење. До која температура се загреани телата ако нив и Сонцето можеме да ги сметаме за апсолутни црни тела? Колкава е разликата во брановите должини λ што одговараат на максимумот во топлинското зрачење на најоддалеченото и најблиското тело до Сонцето? Радиусите на орбитите на Венера, Земја и Марс се: a,8, a,5 и a,8 соодветно, радиусот на Сонцето е R 6,95 b, , температурата на површината на Сонцето е K. TS K и Виновата константа е Моќноста на сончевото зрачење (енергија што во единица време ја зрачи Сонцето од сета своја површина) ја пресметуваме според Штефан-Болцмановиот закон: W P S σts, PS πr σts, () S кадешто S πr е плоштината на Сонцето, R е радиус на Сонцето, TS е температура на неговата површина. Дел од оваа енергија ќе падне на телото со радиус r кое се наоѓа на растојание a од Сонцето. За да пресметаме колкава енергија P паѓа на телото во единица време, се служиме со следнава пропорција P : P S S : S, кадешто S е плоштина на пресекот на телото со сферата чиј центар е во Сонцето и има радиус a, а пак S е плоштината на таа сфера. Оттука за P се добива πr P P S. () πa Апсорбирајќи ја оваа енергија телото се загрева, па почнува и самото да зрачи. Моќноста на неговото зрачење се пресметува според P' πr σt. (3) Телото ќе постигне топлинска рамнотежа кога енергијата што ја апсорбира во единица време ќе стане еднаква на енергијата што ја зрачи за истото време т.е. кога P P'. Од овој услов ја пресметуваме температурата на телото πr πa πr σt S πr σt R R T TS T S. () a a Со замена на соодветните бројни вредности, за температурите на трите тела кои се наоѓаат во орбитие на Венера, Земја и Марс наоѓаме: T 39K 56 C ; T 79K 6 C ; T 6K 7 C. 3 Брановите должини λ при кои топлинското зрачење на телата има максимум се пресметуваат според Виновиот закон λ T b. Оттука разликата помеѓу овие бранови должини за најоддалеченото и најблиското тело од Сонцето ќе биде: b b 6 Δλ λ3 λ μ. T T 3 Републички натпревар по физика 6.5.9

4 Задача. Неподвижен атом на водород емитира фотон што одговара на првата линија од Лајмановата серија ( n, ). Колкава брзина добива атомот притоа? Определете ја релативната промена на фреквенцијата на фотонот заради придвижувањето на атомот. Вредности на некои физички константи потребни за решавање на задачата: маса на водороден атом - 3 M 8 e, каде што e е маса на електронот, маса на електрон - e 9, kg, елементарен 9 3 електричен полнеж - e,6 C, Планкова константа h 6,63 Js, диелектрична константа на вакуумот - приближна релација ε 8,85 F/ + x + x кога x. При решавање на задачата може да ја употребите следнава При емисија на фотон од атомот треба да бидат исполнети законите за запазување на енергијата и импулсот: Mv h + E E h, () h Mv, () c кадешто М е масата на водородниот атом, v е брзината со која се придвижува атомот при емисија на фотонот, e фреквенцијата на емитираниот фотон, а е фреквенцијата што одговара на соодветниот премин во водородниот атом. Според Боровиот модел на водородниот атом, за енергијата на фотонот што соодвествува на првата линија од Лајмановата серија која се добива при премин на електронот од состојба со n во состојба со n, се добива e 3 h E E 8ε h n e 8ε h,8 8 J (3) Со комбинација на релациите () и () се добива следнава квадратна равенка: M v + Mcv h. (3) чии решенија ги запишуваме во обликот: h v + c. () Mc Решението со знак (+) води кон брзина која по апсолутна вредност е поголема од брзината на светлината и затоа е физички невозможно, па следува дека брзината со која се поместува атомот е 3 h v c + c + 3,5 /s. (5) Mc Mc Решението (5) може да се запише и во покомпактна форма ако се земе предвид дека 8 3 Mc,7, и се искористи приближната релација + x + x. Тогаш се добива Републички натпревар по физика 6.5.9

5 3 v. (6) Mc Релативната промена на фреквенцијата ја наоѓаме тргнувајќи од релациите () и () Mv v h v h ( ) Mv ; c v c. (7) Со замена на (6) во (7) се добива 3 9 5, 8Mc. Републички натпревар по физика 6.5.9

6 Задача 5. Специфичната активност на препарат кој се состои од радиоактивен Co и нерадиоактивен е еднаква на a, Bq g. Периодот на полураспаѓање на Co е T 59 Co 7,3 дена. Колкав е односот на масата на радиоктивниот кобалт во препаратот и вкупната маса на препаратот, изразен во проценти? Авогадровиот број изнесува 3 N 6, ol. Специфична активност се дефинира како активност на единица маса од препаратот. Согласно дефиницијата за специфична активност имаме: a λn ( Co) λn( Co), () кадешто е вкупната маса на препаратот, е масата на радиоактивниот кобалт, на радиоактивни кобалтови атоми и λ е константата на радиоактивното распаѓање. N ( Co) е бројот Бараниот однос го изразуваме од релацијата () a λn ( Co) am λn ( Co) am ( Co) N ln T. () При добивањето на горната релација земено е предвид дека ( Co) ( ) N Co, (3) M N кадешто M ( Co) е моларната маса на радиактивниот кобалт, а N е Авогадровиот број. Имајќи предвид дека моларната маса на Co изнесува g/ol, од релацијата (3), добиваме,88 3 или,9%. Републички натпревар по физика 6.5.9

46. РЕГИОНАЛЕН НАТПРЕВАР ПО ФИЗИКА април III година. (решенија на задачите)

46. РЕГИОНАЛЕН НАТПРЕВАР ПО ФИЗИКА април III година. (решенија на задачите) 46. РЕГИОНАЛЕН НАТПРЕВАР ПО ФИЗИКА 3 април 3 III година (решенија на задачите) Задача. Хеликоптер спасува планинар во опасност, спуштајќи јаже со должина 5, и маса 8, kg до планинарот. Планинарот испраќа

Διαβάστε περισσότερα

45 РЕГИОНАЛЕН НАТПРЕВАР ПО ФИЗИКА 2012 III година (решенија на задачите)

45 РЕГИОНАЛЕН НАТПРЕВАР ПО ФИЗИКА 2012 III година (решенија на задачите) 45 РЕГИОНАЛЕН НАТПРЕВАР ПО ФИЗИКА III година (решенија на задачите Рамнострана стаклена призма чиј агол при врвот е = 6 поставена е во положба на минимална девијација за жолтата светлина Светлината паѓа

Διαβάστε περισσότερα

37. РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА 2013 основни училишта 18 мај VII одделение (решенија на задачите)

37. РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА 2013 основни училишта 18 мај VII одделение (решенија на задачите) 37. РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА 03 основни училишта 8 мај 03 VII одделение (решенија на задачите) Задача. Во еден пакет хартија која вообичаено се користи за печатење, фотокопирање и сл. има N = 500

Διαβάστε περισσότερα

Решенија на задачите за I година LII РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА ЗА УЧЕНИЦИТЕ ОД СРЕДНИТЕ УЧИЛИШТА ВО РЕПУБЛИКА МАКЕДОНИЈА 16 мај 2009.

Решенија на задачите за I година LII РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА ЗА УЧЕНИЦИТЕ ОД СРЕДНИТЕ УЧИЛИШТА ВО РЕПУБЛИКА МАКЕДОНИЈА 16 мај 2009. LII РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА ЗА УЧЕНИЦИТЕ ОД СРЕДНИТЕ УЧИЛИШТА ВО РЕПУБЛИКА МАКЕДОНИЈА 16 мај 009 I година Задача 1. Топче се пушта да паѓа без почетна брзина од некоја висина над површината на земјата.

Διαβάστε περισσότερα

56. РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА 2013 Скопје, 11 мај I година (решенија на задачите)

56. РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА 2013 Скопје, 11 мај I година (решенија на задачите) 56. РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА 03 Скопје, мај 03 I година (решенија на задачите) Задача. Експресен воз го поминал растојанието помеѓу две соседни станици, кое изнесува, 5 km, за време од 5 min. Во

Διαβάστε περισσότερα

56. РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА 2013 Скопје, 11 мај IV година (решенија на задачите)

56. РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА 2013 Скопје, 11 мај IV година (решенија на задачите) 56. РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА 03 Скопје, мај 03 IV година (решенија на задачите) Задача. Птица со маса 500 лета во хоризонтален правец и не внимавајќи удира во вертикално поставена прачка на растојание

Διαβάστε περισσότερα

а) Определување кружна фреквенција на слободни пригушени осцилации ωd ωn = ω б) Определување периода на слободни пригушени осцилации

а) Определување кружна фреквенција на слободни пригушени осцилации ωd ωn = ω б) Определување периода на слободни пригушени осцилации Динамика и стабилност на конструкции Задача 5.7 За дадената армирано бетонска конструкција од задачата 5. и пресметаните динамички карактеристики: кружна фреквенција и периода на слободните непригушени

Διαβάστε περισσότερα

М-р Јасмина Буневска ОСНОВИ НА ПАТНОТО ИНЖЕНЕРСТВО

М-р Јасмина Буневска ОСНОВИ НА ПАТНОТО ИНЖЕНЕРСТВО УНИВЕРЗИТЕТ СВ. КЛИМЕНТ ОХРИДСКИ - БИТОЛА ТЕХНИЧКИ ФАКУЛТЕТ - БИТОЛА - Отсек за сообраќај и транспорт - ДОДИПЛОМСКИ СТУДИИ - ECTS М-р Јасмина Буневска ОСНОВИ НА ПАТНОТО ИНЖЕНЕРСТВО ПРИЛОГ ЗАДАЧИ ОД ОПРЕДЕЛУВАЊЕ

Διαβάστε περισσότερα

ЗАДАЧИ ЗА УВЕЖБУВАЊЕ НА ТЕМАТА ГЕОМЕТРИСКИ ТЕЛА 8 ОДД.

ЗАДАЧИ ЗА УВЕЖБУВАЊЕ НА ТЕМАТА ГЕОМЕТРИСКИ ТЕЛА 8 ОДД. ЗАДАЧИ ЗА УВЕЖБУВАЊЕ НА ТЕМАТА ГЕОМЕТРИСКИ ТЕЛА 8 ОДД. ВО ПРЕЗЕНТАЦИЈАТА ЌЕ ПРОСЛЕДИТЕ ЗАДАЧИ ЗА ПРЕСМЕТУВАЊЕ ПЛОШТИНА И ВОЛУМЕН НА ГЕОМЕТРИСКИТЕ ТЕЛА КОИ ГИ ИЗУЧУВАМЕ ВО ОСНОВНОТО ОБРАЗОВАНИЕ. СИТЕ ЗАДАЧИ

Διαβάστε περισσότερα

45 РЕГИОНАЛЕН НАТПРЕВАР ПО ФИЗИКА 2012 II година (решенија на задачите)

45 РЕГИОНАЛЕН НАТПРЕВАР ПО ФИЗИКА 2012 II година (решенија на задачите) 45 РЕГИОНАЛЕН НАТПРЕВАР ПО ФИЗИКА 1 II година (решенија на задачите) 1 Координатите на два точкасти полнежи q 1 = + 3 µ C и q = 4µ C, поставени во xy рамнината се: x 1 = 3, 5cm; y 1 =, 5cm и x = cm; y

Διαβάστε περισσότερα

Водич за аудиториски вежби по предметот Биофизика

Водич за аудиториски вежби по предметот Биофизика Универзитет Св. Кирил и Методиј Скопје Медицински Факултет Доцент Др. Томислав Станковски Асист. Мр. Душко Лукарски, спец.мед.нук.физ Водич за аудиториски вежби по предметот Биофизика Магистри по фармација

Διαβάστε περισσότερα

Од точката С повлечени се тангенти кон кружницата. Одреди ја големината на AOB=?

Од точката С повлечени се тангенти кон кружницата. Одреди ја големината на AOB=? Задачи за вежби тест плоштина на многуаголник 8 одд На што е еднаков збирот на внатрешните агли кај n-аголник? 1. Одреди ја плоштината на паралелограмот, според податоците дадени на цртежот 2. 3. 4. P=?

Διαβάστε περισσότερα

Проф. д-р Ѓорѓи Тромбев ГРАДЕЖНА ФИЗИКА. Влажен воздух 3/22/2014

Проф. д-р Ѓорѓи Тромбев ГРАДЕЖНА ФИЗИКА. Влажен воздух 3/22/2014 Проф. д-р Ѓорѓи Тромбев ГРАДЕЖНА ФИЗИКА Влажен воздух 1 1 Влажен воздух Влажен воздух смеша од сув воздух и водена пареа Водената пареа во влажниот воздух е претежно во прегреана состојба идеален гас.

Διαβάστε περισσότερα

ЗБИРКА ОДБРАНИ РЕШЕНИ ЗАДАЧИ ПО ФИЗИКА

ЗБИРКА ОДБРАНИ РЕШЕНИ ЗАДАЧИ ПО ФИЗИКА УНИВЕРЗИТЕТ "СВ КИРИЛ И МЕТОДИЈ" СКОПЈЕ ФАКУЛТЕТ ЗА ЕЛЕКТРОТЕХНИКА И ИНФОРМАЦИСКИ ТЕХНОЛОГИИ Верка Георгиева Христина Спасевска Маргарита Гиновска Ласко Баснарков Лихнида Стојановска-Георгиевска ЗБИРКА

Διαβάστε περισσότερα

ЛУШПИ МЕМБРАНСКА ТЕОРИЈА

ЛУШПИ МЕМБРАНСКА ТЕОРИЈА Вежби ЛУШПИ МЕМБРАНСКА ТЕОРИЈА РОТАЦИОНИ ЛУШПИ ТОВАРЕНИ СО РОТАЦИОНО СИМЕТРИЧЕН ТОВАР ОСНОВНИ ВИДОВИ РОТАЦИОНИ ЛУШПИ ЗАТВОРЕНИ ЛУШПИ ОТВОРЕНИ ЛУШПИ КОМБИНИРАНИ - СФЕРНИ - КОНУСНИ -ЦИЛИНДРИЧНИ - СФЕРНИ

Διαβάστε περισσότερα

4.3 Мерен претворувач и мерен сигнал.

4.3 Мерен претворувач и мерен сигнал. 4.3 Мерен претворувач и мерен сигнал. 1 2 Претворањето на процесната величина во мерен сигнал се изведува со помош на мерен претворувач. Може да се каже дека улогата на претворувачот е претворање на енергијата

Διαβάστε περισσότερα

Квантна теорија: Увод и принципи

Квантна теорија: Увод и принципи 243 Квантна теорија: Увод и принципи 8 Во ова поглавје се воведуваат некои од основните принципи на квантната механика. Првин се дава преглед на експерименталните резултати што довеле до надминување на

Διαβάστε περισσότερα

Регулација на фреквенција и активни моќности во ЕЕС

Регулација на фреквенција и активни моќности во ЕЕС 8 Регулација на фреквенција и активни моќности во ЕЕС 8.1. Паралелна работа на синхроните генератори Современите електроенергетски системи го напојуваат голем број на синхрони генератори кои работат паралелно.

Διαβάστε περισσότερα

ГРАДЕЖНА ФИЗИКА Размена на топлина. проф. д-р Мери Цветковска

ГРАДЕЖНА ФИЗИКА Размена на топлина. проф. д-р Мери Цветковска ГРАДЕЖНА ФИЗИКА Размена на топлина Енергетска ефикасност Енергетски Обука за енергетски карактеристики контролори на згради Зошто се воведува??? Што се постигнува??? Намалена енергетска интензивност Загадување

Διαβάστε περισσότερα

ИНТЕРПРЕТАЦИЈА на NMR спектри. Асс. д-р Јасмина Петреска Станоева

ИНТЕРПРЕТАЦИЈА на NMR спектри. Асс. д-р Јасмина Петреска Станоева ИНТЕРПРЕТАЦИЈА на NMR спектри Асс. д-р Јасмина Петреска Станоева Нуклеарно магнетна резонанца Нуклеарно магнетна резонанца техника на молекулска спектроскопија дава информација за бројот и видот на атомите

Διαβάστε περισσότερα

Анализа на триаголници: Упатство за наставникот

Анализа на триаголници: Упатство за наставникот Анализа на триаголници: Упатство за наставникот Цел:. Што мислиш? Колку многу триаголници со основа a=4см и висина h=3см можеш да нацрташ? Линк да Видиш и Направиш Mathcast за Што мислиш? Нацртај точка

Διαβάστε περισσότερα

Вовед во радиотерапијата, електромагнетна ирадијација и јонизирачки зраци, историски факти поврзани со радиотерапијата

Вовед во радиотерапијата, електромагнетна ирадијација и јонизирачки зраци, историски факти поврзани со радиотерапијата Вовед во радиотерапијата, електромагнетна ирадијација и јонизирачки зраци, историски факти поврзани со радиотерапијата Радиотерапијата е гранка на медицината која вклучува примена на јонизирачки зраци

Διαβάστε περισσότερα

МЕТОДИ ЗА ДИГИТАЛНО ДИРЕКТНО ФАЗНО УПРАВУВАЊЕ НА СЕРИСКИ РЕЗОНАНТНИ ЕНЕРГЕТСКИ КОНВЕРТОРИ

МЕТОДИ ЗА ДИГИТАЛНО ДИРЕКТНО ФАЗНО УПРАВУВАЊЕ НА СЕРИСКИ РЕЗОНАНТНИ ЕНЕРГЕТСКИ КОНВЕРТОРИ 8. СОВЕТУВАЊЕ Охрид, 22 24 септември Љупчо Караџинов Факултет за електротехника и информациски технологии, Универзитет Светите Кирил и Методиј Скопје Гоце Стефанов Факултет за електротехника Радовиш,Универзитет

Διαβάστε περισσότερα

Деформабилни каркатеристики на бетонот

Деформабилни каркатеристики на бетонот УКИМ Градежен Факултет, Скопје Деформабилни каркатеристики на бетонот проф. д-р Тони Аранѓеловски Деформабилни карактеристики на бетонот Содржина: Деформации на бетонот под влијание на краткотрајни натоварувања

Διαβάστε περισσότερα

Ветерна енергија 3.1 Вовед

Ветерна енергија 3.1 Вовед 3 Ветерна енергија 3.1 Вовед Енергијата на ветерот е една од првите форми на енергија која ја користел човекот. Уште старите Египќани ја користеле за задвижување на своите бродови и ветерни мелници. Ваквиот

Διαβάστε περισσότερα

XXV РЕГИОНАЛЕН НАТПРЕВАР ПО МАТЕМАТИКА

XXV РЕГИОНАЛЕН НАТПРЕВАР ПО МАТЕМАТИКА XXV РЕГИОНАЛЕН НАТПРЕВАР ПО МАТЕМАТИКА за учениците од основното образование 31.03.007 година IV одделение 1. Во полињата на дадената лента допиши природни броеви во празните полиња, така што производот

Διαβάστε περισσότερα

РЕШЕНИЈА Државен натпревар 2017 ТЕОРИСКИ ПРОБЛЕМИ. K c. K c,2

РЕШЕНИЈА Државен натпревар 2017 ТЕОРИСКИ ПРОБЛЕМИ. K c. K c,2 РЕШЕНИЈА Државен натпревар 07 ЗА КОМИСИЈАТА Вкупно поени:_50 од теор: 5 од експ: 5_ Прегледал: М. Буклески, В. Ивановски ТЕОРИСКИ ПРОБЛЕМИ (Запишете го начинот на решавање и одговорот на предвиденото место

Διαβάστε περισσότερα

МЕХАНИКА 1 МЕХАНИКА 1

МЕХАНИКА 1 МЕХАНИКА 1 диј е ИКА Универзитет Св. Кирил и Методиј Универзитет Машински Св. факултет Кирил -и Скопје Методиј во Скопје Машински факултет 3М21ОМ01 ТЕХНИЧКА МЕХАНИКА професор: доц. д-р Виктор Гаврилоски 1. ВОВЕДНИ

Διαβάστε περισσότερα

Резиме на основните поими. најчесто образуван помеѓу електричен спроводник од

Резиме на основните поими. најчесто образуван помеѓу електричен спроводник од 1. Вовед во електрохемиските техники 1 Резиме на основните поими Електрохемија е интердисциплинарна наука што ја проучува врската помеѓу електричните и хемиските феномени. Хемиски (редокс) реакции предизвикани

Διαβάστε περισσότερα

Практикум по неорганска хемија, применета во фармација

Практикум по неорганска хемија, применета во фармација Универзитет Св. Кирил и Методиј - Скопје Фармацевтски факултет, Скопје Институт за применета хемија и фармацевтски анализи Практикум по неорганска хемија, применета во фармација студиска програма Магистер

Διαβάστε περισσότερα

БИОФИЗИКА Оптика. Доцент Др. Томислав Станковски

БИОФИЗИКА Оптика. Доцент Др. Томислав Станковски БИОФИЗИКА Оптика Доцент Др. Томислав Станковски За интерна употреба за потребите на предметот Биофизика Катедра за Медицинска Физика Медицински Факултет Универзитет Св. Кирил и Методиj, Скопjе Септември

Διαβάστε περισσότερα

Примена на Matlab за оптимизација на режимите на работа на ЕЕС

Примена на Matlab за оптимизација на режимите на работа на ЕЕС 6. СОВЕТУВАЊЕ Охрид, 4-6 октомври 2009 Мирко Тодоровски Ристо Ачковски Јовица Вулетиќ Факултет за електротехника и информациски технологии, Скопје Примена на Matlab за оптимизација на режимите на работа

Διαβάστε περισσότερα

ЗБИРКА НА ОДБРАНИ РЕШЕНИ ЗАДАЧИ ОД ОБЛАСТА НА СИНТЕЗАТА НА СИСТЕМИ НА АВТОMАТСКО УПРАВУВАЊЕ

ЗБИРКА НА ОДБРАНИ РЕШЕНИ ЗАДАЧИ ОД ОБЛАСТА НА СИНТЕЗАТА НА СИСТЕМИ НА АВТОMАТСКО УПРАВУВАЊЕ Универзитет Св. Кирил и Методиј - Скопје Факултет за електротехника и информациски технологии - Скопје ЕЛИЗАБЕТА ЛАЗАРЕВСКА ЗБИРКА НА ОДБРАНИ РЕШЕНИ ЗАДАЧИ ОД ОБЛАСТА НА СИНТЕЗАТА НА СИСТЕМИ НА АВТОMАТСКО

Διαβάστε περισσότερα

MEHANIKA NA FLUIDI. IV semestar, 6 ECTS Вонр. проф. d-r Zoran Markov. 4-Mar-15 1

MEHANIKA NA FLUIDI. IV semestar, 6 ECTS Вонр. проф. d-r Zoran Markov. 4-Mar-15 1 MEHANIKA NA FLUIDI IV semestar, 6 ECTS Вонр. проф. d-r Zoran Markov 1 СОДРЖИНА 1. Вовед во механиката на флуидите 2. Статика на флуидите 3. Кинематика на струењата 4. Динамика на идеален флуид 5. Некои

Διαβάστε περισσότερα

Предизвици во моделирање

Предизвици во моделирање Предизвици во моделирање МОРА да постои компатибилност на јазлите од мрежата на КЕ на спојот на две површини Предизвици во моделирање Предизвици во моделирање Предизвици во моделирање Предизвици во моделирање

Διαβάστε περισσότερα

10. Математика. Прашање. Обратен размер на размерот е: Геометриска средина x на отсечките m и n е:

10. Математика. Прашање. Обратен размер на размерот е: Геометриска средина x на отсечките m и n е: Обратен размер на размерот е: Геометриска средина x на отсечките m и n е: За две геометриски фигури што имаат сосема иста форма, а различни или исти големини велиме дека се: Вредноста на размерот е: Односот

Διαβάστε περισσότερα

Доц. д-р Наташа Ристовска

Доц. д-р Наташа Ристовска Доц. д-р Наташа Ристовска Класификација според структура на скелет Алифатични Циклични Ароматични Бензеноидни Хетероциклични (Повторете ги хетероцикличните соединенија на азот, петчлени и шестчлени прстени,

Διαβάστε περισσότερα

Практикум по Општа и неорганска хемија

Практикум по Општа и неорганска хемија Универзитет Св. Кирил и Методиј - Скопје Фармацевтски факултет, Скопје Институт за применета хемија и фармацевтски анализи Практикум по Општа и неорганска хемија студиска програма Лабораториски биоинжинер

Διαβάστε περισσότερα

ХЕМИСКА КИНЕТИКА. на хемиските реакции

ХЕМИСКА КИНЕТИКА. на хемиските реакции ХЕМИСКА КИНЕТИКА Наука која ја проучува брзината Наука која ја проучува брзината на хемиските реакции Познато: ЗАКОН ЗА ДЕЈСТВО НА МАСИ Guldberg-Vage-ов закон При константна температура (T=const) брзината

Διαβάστε περισσότερα

Годишен зборник 2014 Yearbook Факултет за информатика, Универзитет Гоце Делчев Штип Faculty of Computer Science, Goce Delcev University Stip

Годишен зборник 2014 Yearbook Факултет за информатика, Универзитет Гоце Делчев Штип Faculty of Computer Science, Goce Delcev University Stip 89 УНИВЕРЗИТЕТ ГОЦЕ ДЕЛЧЕВ ШТИП ФАКУЛТЕТ ЗА ИНФОРМАТИКА ГОДИШЕН ЗБОРНИК 204 YEARBOOK 204 ГОДИНА 3 ЈУНИ, 205 GOCE DELCEV UNIVERSITY STIP FACULTY OF COMPUTER SCIENCE VOLUME III Издавачки совет Проф. д-р

Διαβάστε περισσότερα

II. Структура на атом, хемиски врски и енергетски ленти

II. Структура на атом, хемиски врски и енергетски ленти II. Структура на атом, хемиски врски и енергетски ленти II. Структура на атом, хемиски врски и енергетски ленти 1. Структура на атом 2. Јони 3. Термодинамика 3.1 Темодинамичка стабилност 3.2 Влијание на

Διαβάστε περισσότερα

УНИВЕРЗИТЕТ ГОЦЕ ДЕЛЧЕВ - ШТИП

УНИВЕРЗИТЕТ ГОЦЕ ДЕЛЧЕВ - ШТИП УНИВЕРЗИТЕТ ГОЦЕ ДЕЛЧЕВ - ШТИП ФАКУЛТЕТ ЗА ПРИРОДНИ И ТЕХНИЧКИ НАУКИ КАТЕДРА ЗА ГЕОЛОГИЈА И ГЕОФИЗИКА МАГИСТЕРСКИ ТРУД КОРЕЛАЦИЈА ПОМЕЃУ РЕАЛНАТА ГЕОЛОШКА СРЕДИНА И ГЕОЕЛЕКТРИЧНИОТ МОДЕЛ Ментор: Проф.

Διαβάστε περισσότερα

д. м. и. Дони Димовски ФОТОВОЛТАИЧНА ЕЛЕКТРАНА НА КРОВ ОД ИНДУСТРИСКИ ОБЈЕКТ

д. м. и. Дони Димовски ФОТОВОЛТАИЧНА ЕЛЕКТРАНА НА КРОВ ОД ИНДУСТРИСКИ ОБЈЕКТ УНИВЕРЗИТЕТ СВ. КЛИМЕНТ ОХРИДСКИ ТЕХНИЧКИ ФАКУЛТЕТ БИТОЛА д. м. и. Дони Димовски ФОТОВОЛТАИЧНА ЕЛЕКТРАНА НА КРОВ ОД ИНДУСТРИСКИ ОБЈЕКТ МАГИСТЕРСКИ ТРУД МАШИНСТВО Битола, 2013 ФОТОВОЛТАИЧНА ЕЛЕКТРАНА НА

Διαβάστε περισσότερα

ТЕХНИЧКО - ЕКОНОМСКО ИСКОРИСТУВАЊЕ НА СОНЧЕВАТА ЕНЕРГИЈА ВО СОВРЕМЕНИ УРБАНИ СРЕДИНИ СО ПРИМЕНА НА НАЈНОВИ ТЕХНИЧКИ И ТЕХНОЛОШКИ РЕШЕНИЈА

ТЕХНИЧКО - ЕКОНОМСКО ИСКОРИСТУВАЊЕ НА СОНЧЕВАТА ЕНЕРГИЈА ВО СОВРЕМЕНИ УРБАНИ СРЕДИНИ СО ПРИМЕНА НА НАЈНОВИ ТЕХНИЧКИ И ТЕХНОЛОШКИ РЕШЕНИЈА УНИВЕРЗИТЕТ СВ. КЛИМЕНТ ОХРИДСКИ - БИТОЛА ТЕХНИЧКИ ФАКУЛТЕТ - БИТОЛА МАШИНСКИ ОТСЕК Владо Петрушевски ТЕХНИЧКО - ЕКОНОМСКО ИСКОРИСТУВАЊЕ НА СОНЧЕВАТА ЕНЕРГИЈА ВО СОВРЕМЕНИ УРБАНИ СРЕДИНИ СО ПРИМЕНА НА

Διαβάστε περισσότερα

БИОФИЗИКА Биомеханика. Доцент Др. Томислав Станковски

БИОФИЗИКА Биомеханика. Доцент Др. Томислав Станковски БИОФИЗИКА Биомеханика Доцент Др. Томислав Станковски За интерна употреба за потребите на предметот Биофизика Катедра за Медицинска Физика Медицински Факултет Универзитет Св. Кирил и Методиj, Скопjе Септември

Διαβάστε περισσότερα

8. МЕРНИ МОСТОВИ И КОМПЕНЗАТОРИ

8. МЕРНИ МОСТОВИ И КОМПЕНЗАТОРИ 8. МЕРНИ МОСТОВИ И КОМПЕНЗАТОРИ Мерните мостови и компензаторите спаѓаат во посредните мерни постапки. Мерењата со мерните мостови и компензаторите се остваруваат со затворени мерни процеси засновани врз

Διαβάστε περισσότερα

ЕВН ЕЛЕКТРОСТОПАНСТВО НА МАКЕДОНИЈА

ЕВН ЕЛЕКТРОСТОПАНСТВО НА МАКЕДОНИЈА 20140300978 ЕВН ЕЛЕКТРОСТОПАНСТВО НА МАКЕДОНИЈА ИЗМЕНИ И ДОПОЛНУВАЊЕ НА МРЕЖНИ ПРАВИЛА ЗА ДИСТРИБУЦИЈА НА ЕЛЕКТРИЧНА ЕНЕРГИЈА ( СЛУЖБЕН ВЕСНИК НА РЕПУБЛИКА МАКЕДОНИЈА БР. 87/12) Член 1 Во мрежните правила

Διαβάστε περισσότερα

7.1 Деформациони карактеристики на материјалите

7.1 Деформациони карактеристики на материјалите 7. Механички особини Механичките особини на материјалите ја карактеризираат нивната способност да се спротистават на деформациите и разрушувањата предизвикани од дејството на надворешните сили, односно

Διαβάστε περισσότερα

ИНСТРУМЕНТАЛНИ МЕТОДИ ЗА АНАЛИЗА

ИНСТРУМЕНТАЛНИ МЕТОДИ ЗА АНАЛИЗА ИНСТРУМЕНТАЛНИ МЕТОДИ ЗА АНАЛИЗА интерна скрипта за студентите од УГД Штип Рубин Гулабоски Виолета Иванова Петропулос Универзитет Гоце Делчев-Штип, Штип, 2014 година 1 Вовед Инструменталните методи за

Διαβάστε περισσότερα

УНИВЕРЗИТЕТ СВ. КЛИМЕНТ ОХРИДСКИ ТЕХНИЧКИ ФАКУЛТЕТ БИТОЛА MAШИНСКИ ОТСЕК

УНИВЕРЗИТЕТ СВ. КЛИМЕНТ ОХРИДСКИ ТЕХНИЧКИ ФАКУЛТЕТ БИТОЛА MAШИНСКИ ОТСЕК УНИВЕРЗИТЕТ СВ. КЛИМЕНТ ОХРИДСКИ ТЕХНИЧКИ ФАКУЛТЕТ БИТОЛА MAШИНСКИ ОТСЕК ПРИМЕНА НА ОБНОВЛИВИТЕ ИЗВОРИ НА ЕНЕРГИЈА ЗА ПОЕФИКАСНО ПРОИЗВОДСТВО НА РИБИ ВО ЈП СТРЕЖЕВО - магистерски труд - Кандидат: Ментор:

Διαβάστε περισσότερα

ТАРИФЕН СИСТЕМ ЗА ДИСТРИБУЦИЈА

ТАРИФЕН СИСТЕМ ЗА ДИСТРИБУЦИЈА ТАРИФЕН СИСТЕМ ЗА ДИСТРИБУЦИЈА Тарифен систем за ДС на ЕВН Македонија 2014 година (rke.org.mk) Надоместок за користење на дистрибутивниот систем плаќаат сите потрошувачи, корисници на дистрибутивниот сите

Διαβάστε περισσότερα

Природни ресурси и технологии Natural resources and technology

Природни ресурси и технологии Natural resources and technology УНИВЕРЗИТЕТ ГОЦЕ ДЕЛЧЕВ ШТИП ФАКУЛТЕТ ЗА ПРИРОДНИ И ТЕХНИЧКИ НАУКИ UDC 622:55:574:658 ISSN 185-6966 Природни ресурси и технологии Natural resources and technology ноември 2011 november 2011 ГОДИНА 5 БРОЈ

Διαβάστε περισσότερα

МАТЕМАТИКА - НАПРЕДНО НИВО МАТЕМАТИКА НАПРЕДНО НИВО. Време за решавање: 180 минути. јуни 2012 година

МАТЕМАТИКА - НАПРЕДНО НИВО МАТЕМАТИКА НАПРЕДНО НИВО. Време за решавање: 180 минути. јуни 2012 година ШИФРА НА КАНДИДАТОТ ЗАЛЕПИ ТУКА ДРЖАВНА МАТУРА МАТЕМАТИКА - НАПРЕДНО НИВО МАТЕМАТИКА НАПРЕДНО НИВО Време за решавање: 180 минути јуни 2012 година Шифра на ПРВИОТ оценувач Запиши тука: Шифра на ВТОРИОТ

Διαβάστε περισσότερα

ШЕМИ ЗА РАСПОРЕДУВАЊЕ НА ПРОСТИТЕ БРОЕВИ

ШЕМИ ЗА РАСПОРЕДУВАЊЕ НА ПРОСТИТЕ БРОЕВИ МАТЕМАТИЧКИ ОМНИБУС, (07), 9 9 ШЕМИ ЗА РАСПОРЕДУВАЊЕ НА ПРОСТИТЕ БРОЕВИ Весна Целакоска-Јорданова Секој природен број поголем од што е делив самo со и сам со себе се вика прост број. Запишани во низа,

Διαβάστε περισσότερα

2. КАРАКТЕРИСТИКИ НА МЕРНИТЕ УРЕДИ

2. КАРАКТЕРИСТИКИ НА МЕРНИТЕ УРЕДИ . КАРАКТЕРИСТИКИ НА МЕРНИТЕ УРЕДИ Современата мерна техника располага со големо количество разнородни мерни уреди. Одделните видови мерни уреди имаат различни специфични својства, но и некои заеднички

Διαβάστε περισσότερα

ЛАМБЕРТОВА ФУНКЦИЈА ГРАФИК, ПРЕСМЕТКИ И ПРИМЕНА. Емилија Целакоска 1 1. ВОВЕД

ЛАМБЕРТОВА ФУНКЦИЈА ГРАФИК, ПРЕСМЕТКИ И ПРИМЕНА. Емилија Целакоска 1 1. ВОВЕД МАТЕМАТИЧКИ ОМНИБУС, 1 (2017), 33 43 ЛАМБЕРТОВА ФУНКЦИЈА ГРАФИК, ПРЕСМЕТКИ И ПРИМЕНА Емилија Целакоска 1 1. ВОВЕД Математичарите поретко слушнале за Јохан Хајнрих Ламберт (1728 1777) бидејќи неговиот придонес

Διαβάστε περισσότερα

Проф. д-р Ѓорѓи Тромбев ГРАДЕЖНА ФИЗИКА. Размена на топлина 3/22/2014

Проф. д-р Ѓорѓи Тромбев ГРАДЕЖНА ФИЗИКА. Размена на топлина 3/22/2014 Проф. д-р Ѓорѓи Тромбев ГРАДЕЖНА ФИЗИКА Размена на топлина 3//04 Вовед Размена на топлина, се редица појави кои се присутни и не пратат цело време во текот на нашето постоење. Фактички, размената на топлина

Διαβάστε περισσότερα

ПОДОБРУВАЊЕ НА КАРАКТЕРИСТИКИТЕ НА ИСПИТНА СТАНИЦА ЗА ТЕСТИРАЊЕ НА ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ

ПОДОБРУВАЊЕ НА КАРАКТЕРИСТИКИТЕ НА ИСПИТНА СТАНИЦА ЗА ТЕСТИРАЊЕ НА ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ 8. СОВЕТУВАЊЕ Охрид, 22 24 септември Љубомир Николоски Крсте Најденкоски Михаил Дигаловски Факултет за електротехника и информациски технологии, Скопје Зоран Трипуноски Раде Кончар - Скопје ПОДОБРУВАЊЕ

Διαβάστε περισσότερα

1. ОПШТИ ПОИМИ ЗА ТУРБОПУМПИТЕ ДЕФИНИЦИЈА 1.2 ПОДЕЛБА, ОСНОВНИ ШЕМИ И ПРИНЦИП НА РАБОТА ИСТОРИСКИ РАЗВОЈ НА ПУМПИТЕ 7

1. ОПШТИ ПОИМИ ЗА ТУРБОПУМПИТЕ ДЕФИНИЦИЈА 1.2 ПОДЕЛБА, ОСНОВНИ ШЕМИ И ПРИНЦИП НА РАБОТА ИСТОРИСКИ РАЗВОЈ НА ПУМПИТЕ 7 . ОПШТИ ПОИМИ ЗА ТУРБОПУМПИТЕ. ДЕФИНИЦИЈА. ПОДЕЛБА, ОСНОВНИ ШЕМИ И ПРИНЦИП НА РАБОТА.3 ИСТОРИСКИ РАЗВОЈ НА ПУМПИТЕ 7. ТЕОРЕТСКИ ОСНОВИ. КАРАКТЕРИСТИКИ НА СТРУЕЊЕТО НИЗ ТУРБОПУМПИТЕ. ЕНЕРГИЈА НА СТРУЕЊЕ

Διαβάστε περισσότερα

Предмет: Задатак 4: Слика 1.0

Предмет: Задатак 4: Слика 1.0 Лист/листова: 1/1 Задатак 4: Задатак 4.1.1. Слика 1.0 x 1 = x 0 + x x = v x t v x = v cos θ y 1 = y 0 + y y = v y t v y = v sin θ θ 1 = θ 0 + θ θ = ω t θ 1 = θ 0 + ω t x 1 = x 0 + v cos θ t y 1 = y 0 +

Διαβάστε περισσότερα

ДРВОТО КАКО МАТЕРИЈАЛ ЗА

ДРВОТО КАКО МАТЕРИЈАЛ ЗА ГРАДЕЖЕН ФАКУЛТЕТ-СКОПЈЕ Катедра за бетонски и дрвени конструкции ДРВОТО КАКО МАТЕРИЈАЛ ЗА ГРАДЕЖНИ КОНСТРУКЦИИ Доцент д-р Тони Аранѓеловски ОСНОВИ НА ДРВЕНИ КОНСТРУКЦИИ СТРУКТУРА НА ДРВОТО Дрвото е биолошки,

Διαβάστε περισσότερα

НЕКОИ АЛГОРИТМИ ЗА РЕШАВАЊЕ НА ЗАДАЧАТА НА ПАТУВАЧКИОТ ТРГОВЕЦ

НЕКОИ АЛГОРИТМИ ЗА РЕШАВАЊЕ НА ЗАДАЧАТА НА ПАТУВАЧКИОТ ТРГОВЕЦ МАТЕМАТИЧКИ ОМНИБУС, 1 (2017), 101 113 НЕКОИ АЛГОРИТМИ ЗА РЕШАВАЊЕ НА ЗАДАЧАТА НА ПАТУВАЧКИОТ ТРГОВЕЦ Ирена Стојковска 1 Задачата на патувачкиот трговец е комбинаторна оптимизациона задача со едноставна

Διαβάστε περισσότερα

Секундарните еталони се споредуваат (еталонираат) со примарните, а потоа служат за проверка (споредба или калибрирање) на работните еталони.

Секундарните еталони се споредуваат (еталонираат) со примарните, а потоа служат за проверка (споредба или калибрирање) на работните еталони. ЕТАЛОНИ општ дел Тоа се мерни средства (уреди) наменети за верифицирање на мерните единици. За да се измери некоја големина потребно е да се направи нејзина споредба со усвоена мерна единица за таа големина.

Διαβάστε περισσότερα

БИОФИЗИКА Термодинамика. Доцент Др. Томислав Станковски

БИОФИЗИКА Термодинамика. Доцент Др. Томислав Станковски БИОФИЗИКА Термодинамика Доцент Др. Томислав Станковски За интерна употреба за потребите на предметот Биофизика Катедра за Медицинска Физика Медицински Факултет Универзитет Св. Кирил и Методиj, Скопjе Септември

Διαβάστε περισσότερα

МОДЕЛИРАЊЕ НА DC/DC КОНВЕРТОРИ ЗА УПРАВУВАЊЕ НА ЕДНОНАСОЧНИ МОТОРИ СО КОМПЈУТЕРСКА СИМУЛАЦИЈА COMPUTER SIMULATION AND MODELING OF DC/DC CONVERTERS

МОДЕЛИРАЊЕ НА DC/DC КОНВЕРТОРИ ЗА УПРАВУВАЊЕ НА ЕДНОНАСОЧНИ МОТОРИ СО КОМПЈУТЕРСКА СИМУЛАЦИЈА COMPUTER SIMULATION AND MODELING OF DC/DC CONVERTERS МОДЕЛИРАЊЕ НА DC/DC КОНВЕРТОРИ ЗА УПРАВУВАЊЕ НА ЕДНОНАСОЧНИ МОТОРИ СО КОМПЈУТЕРСКА СИМУЛАЦИЈА Гоце СТЕФАНОВ 1, Влатко ЧИНГОСКИ 2, Елена СТЕФАНОВА 3 1 Електротехнички факултет Радовиш, УГД Штип, gce.stefnv@ugd.edu.mk

Διαβάστε περισσότερα

АНАЛИТИЧКИ МЕТОД ЗА ПРЕСМЕТКА НА ДОВЕРЛИВОСТA НА ДИСТРИБУТИВНИTE СИСТЕМИ

АНАЛИТИЧКИ МЕТОД ЗА ПРЕСМЕТКА НА ДОВЕРЛИВОСТA НА ДИСТРИБУТИВНИTE СИСТЕМИ ЧЕТВРТО СОВЕТУВАЊЕ Охрид, 6 9 септември 004 д-р Ристо Ачковски, дипл ел инж Електротехнички факултет, Скопје Сашо Салтировски, дипл ел инж АД Електростопанство на Македонија, Скопје АНАЛИТИЧКИ МЕТОД ЗА

Διαβάστε περισσότερα

ЗАШТЕДА НА ЕНЕРГИЈА СО ВЕНТИЛАТОРИТЕ ВО ЦЕНТРАЛНИОТ СИСТЕМ ЗА ЗАТОПЛУВАЊЕ ТОПЛИФИКАЦИЈА-ИСТОК - СКОПЈЕ

ЗАШТЕДА НА ЕНЕРГИЈА СО ВЕНТИЛАТОРИТЕ ВО ЦЕНТРАЛНИОТ СИСТЕМ ЗА ЗАТОПЛУВАЊЕ ТОПЛИФИКАЦИЈА-ИСТОК - СКОПЈЕ 6. СОВЕТУВАЊЕ Охрид, 4-6 октомври 2009 Иле Георгиев Македонски Телеком а.д. Скопје ЗАШТЕДА НА ЕНЕРГИЈА СО ВЕНТИЛАТОРИТЕ ВО ЦЕНТРАЛНИОТ СИСТЕМ ЗА ЗАТОПЛУВАЊЕ ТОПЛИФИКАЦИЈА-ИСТОК - СКОПЈЕ КУСА СОДРЖИНА Во

Διαβάστε περισσότερα

Емпириска анализа на загатката на Фелдштајн и Хориока во транзициски земји, со осврт на Македонија

Емпириска анализа на загатката на Фелдштајн и Хориока во транзициски земји, со осврт на Македонија Факултет за Деловна Економија и Организациони Науки Магистерски труд Емпириска анализа на загатката на Фелдштајн и Хориока во транзициски земји, со осврт на Македонија Кандидат: Деспина Петреска Ментор:

Διαβάστε περισσότερα

Бесмртноста на душата кај Платон (II)

Бесмртноста на душата кај Платон (II) Бесмртноста на душата кај Платон (II) Стефан Пановски Студент на институтот за класични студии noxdiaboli@yahoo.com 1. За деловите на душата За да зборуваме за бесмртноста на душата, најнапред мора да

Διαβάστε περισσότερα

УСЛОВИ НА ПАРИТЕТ ВО МЕЃУНАРОДНИТЕ ФИНАНСИИ И ПРЕДВИДУВАЊЕ НА ДЕВИЗНИОТ КУРС. Parity Conditions in International Finance & Currency Forecasting

УСЛОВИ НА ПАРИТЕТ ВО МЕЃУНАРОДНИТЕ ФИНАНСИИ И ПРЕДВИДУВАЊЕ НА ДЕВИЗНИОТ КУРС. Parity Conditions in International Finance & Currency Forecasting УСЛОВИ НА ПАРИТЕТ ВО МЕЃУНАРОДНИТЕ ФИНАНСИИ И ПРЕДВИДУВАЊЕ НА ДЕВИЗНИОТ КУРС Parity Conditions in International Finance & Currency Forecasting Вовед Менаџерите на меѓународните компании, инвеститори, увозници

Διαβάστε περισσότερα

У Н И В Е Р З И Т Е Т С В. К И Р И Л И М Е Т О Д И Ј В О С К О П Ј Е

У Н И В Е Р З И Т Е Т С В. К И Р И Л И М Е Т О Д И Ј В О С К О П Ј Е У Н И В Е Р З И Т Е Т С В. К И Р И Л И М Е Т О Д И Ј В О С К О П Ј Е А Р Х И Т Е К Т О Н С К И Ф А К У Л Т Е Т П Р И Н Ц И П И Н А С Т А Т И К А Т А Вонр. проф. д-р Ана Тромбева-Гаврилоска Вонр. проф.

Διαβάστε περισσότερα

DEMOLITION OF BUILDINGS AND OTHER OBJECTS WITH EXPLOSIVES AND OTHER NONEXPLOSIVES MATERIALS

DEMOLITION OF BUILDINGS AND OTHER OBJECTS WITH EXPLOSIVES AND OTHER NONEXPLOSIVES MATERIALS Ристо Дамбов * РУШЕЊЕ НА ЗГРАДИ И ДРУГИ ГРАДЕЖНИ ОБЈЕКТИ СО ПОМОШ НА ЕКСПЛОЗИВНИ И НЕЕКСПЛОЗИВНИ МАТЕРИИ РЕЗИМЕ Во трудот се преставени основните параметри и начини за рушење на стари згради. Ќе се прикажат

Διαβάστε περισσότερα

ИСКОРИСТУВАЊЕ НА ЕНЕРГИЈАТА НА ВЕТРОТ ВО ЗЕМЈОДЕЛСТВОТО. Проф. д-р Влатко Стоилков

ИСКОРИСТУВАЊЕ НА ЕНЕРГИЈАТА НА ВЕТРОТ ВО ЗЕМЈОДЕЛСТВОТО. Проф. д-р Влатко Стоилков ИСКОРИСТУВАЊЕ НА ЕНЕРГИЈАТА НА ВЕТРОТ ВО ЗЕМЈОДЕЛСТВОТО Проф. д-р Влатко Стоилков 1 Содржина 1. Вовед 4 1.1. Потреба од пристап кон електрична енергија 5 1.2. Главни проблеми во руралните средини 5 1.3.

Διαβάστε περισσότερα

ОСНОВИ НА ДРВЕНИ КОНСТРУКЦИИ 3. СТАБИЛНОСТ НА КОНСТРУКТИВНИТЕ ЕЛЕМЕНТИ

ОСНОВИ НА ДРВЕНИ КОНСТРУКЦИИ 3. СТАБИЛНОСТ НА КОНСТРУКТИВНИТЕ ЕЛЕМЕНТИ ОСНОВИ НА ДРВЕНИ КОНСТРУКЦИИ 3. СТАБИЛНОСТ НА КОНСТРУКТИВНИТЕ ЕЛЕМЕНТИ Општо Елементите на дрвените конструкции мора да се пресметаат така да се докаже дека конструкцијата во целина со доволна сигурност

Διαβάστε περισσότερα

Макроекономски детерминанти за развој на пазарот на капитал во Република Македонија Милан Елисковски

Макроекономски детерминанти за развој на пазарот на капитал во Република Македонија Милан Елисковски Макроекономски детерминанти за развој на пазарот на капитал во Република Македонија Милан Елисковски Апстракт Пазарот на капитал има многу значајна улога во финансискиот сектор особено во развиените економии.

Διαβάστε περισσότερα

ОПТИЧКИ МЕТОДИ НА АНАЛИЗА

ОПТИЧКИ МЕТОДИ НА АНАЛИЗА ОПТИЧКИ МЕТОДИ НА АНАЛИЗА Оддел IV. Спектрохемиски анализи Поглавје 21. Спектроскопски методи на анализа Ског, Вест, Холер, Крауч, Аналитичка хемија Поглавје 10. Спектроскопски методи на анализа Харви,

Διαβάστε περισσότερα

5. Динамика на конструкции

5. Динамика на конструкции Динамика на конструкции. Динамика на конструкции Задача. За дадната армирано бтонска конструкција да с опрдли кружната фрквнција ω приодата на слободнит нпригушни осцилации Т n на основниот тон. Модулот

Διαβάστε περισσότερα

Κτηνιατρικό Πιστοποιητικό για την Π.Γ.Δ.Μ. /Ветеринарно здравствен сертификат за F.Y.R.O.M. /Veterinary certificate to F.Y.R.O.M. Κωδικός/ Код/ Code

Κτηνιατρικό Πιστοποιητικό για την Π.Γ.Δ.Μ. /Ветеринарно здравствен сертификат за F.Y.R.O.M. /Veterinary certificate to F.Y.R.O.M. Κωδικός/ Код/ Code Μέρος Ι: Στοιχεία της παρτίδας που αποστέλλεται/ Дел I: Детали за испратената пратка/ Part I: Details of dispatched consignment ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ/ HELLENIC REPUBLIC/ РЕПУБЛИКА ГРЦИЈА Πιστοποιητικό Υγείας/

Διαβάστε περισσότερα

Податоците презентирани во извештајот не ги одразуваат мислењата и ставовите на донаторите на проектот. Проектот Мојот пратеник е поддржан од:

Податоците презентирани во извештајот не ги одразуваат мислењата и ставовите на донаторите на проектот. Проектот Мојот пратеник е поддржан од: МОЈОТ ПРАТЕНИК 1 ГРАЃАНСКА АСОЦИЈАЦИЈА МОСТ ул. Стрезово, бр.7 1000 Скопје, Р Македонија www.most.org.mk e-mail: most@most.org.mk Печатено во Скопје, март 2008 Податоците презентирани во извештајот ги

Διαβάστε περισσότερα

6. СОВЕТУВАЊЕ. Охрид, 4-6 октомври 2009

6. СОВЕТУВАЊЕ. Охрид, 4-6 октомври 2009 6. СОВЕТУВАЊЕ Охрид, 4-6 октомври 009 м-р Методија Атанасовски Технички Факултет, Битола д-р Рубин Талески Факултет за Електротехника и Информациски Технологии, Скопје ИСТРАЖУВАЊЕ НА ЕФИКАСНОСТА НА МАРГИНАЛНИТЕ

Διαβάστε περισσότερα

ГРАДЕЖЕН ФАКУЛТЕТ. Проф. д-р Светлана Петковска - Ончевска Асист. м-р Коце Тодоров

ГРАДЕЖЕН ФАКУЛТЕТ. Проф. д-р Светлана Петковска - Ончевска Асист. м-р Коце Тодоров УНИВЕРЗИТЕТ СВ.КИРИЛ И МЕТОДИЈ ГРАДЕЖЕН ФАКУЛТЕТ Проф. д-р Светлана Петковска - Ончевска Асист. м-р Коце Тодоров СКОПJЕ, 202. ПРЕДГОВОР Предавањата по ГРАДЕЖНИ МАТЕРИЈАЛИ се наменети за студентите на Градежниот

Διαβάστε περισσότερα

Тест за I категорија, Државен натпревар по хемија, 16 мај

Тест за I категорија, Државен натпревар по хемија, 16 мај Шифра: ЗА КОМИСИЈАТА Поени од прашања: од задачи: Вкупно: Прегледал: I. ТЕСТ СО ПОВЕЌЕ ПОНУДЕНИ ОДГОВОРИ ОД КОИ САМО ЕДЕН Е ТОЧЕН (Се одговара со заокружување на само еден од понудените одговори под A,

Διαβάστε περισσότερα

ИЗБОР НА ЕНЕРГЕТСКИ ТРАНСФОРМАТОР ЗА МЕТАЛНА КОМПАКТНА ТРАФОСТАНИЦА

ИЗБОР НА ЕНЕРГЕТСКИ ТРАНСФОРМАТОР ЗА МЕТАЛНА КОМПАКТНА ТРАФОСТАНИЦА 8. СОВЕТУВАЊЕ Охрид, 22 24 септември Михаил Дигаловски Крсте Најденкоски Факултет за електротехника и информациски технологии, Скопје Тане Петров Бучим ДООЕЛ - Радовиш ИЗБОР НА ЕНЕРГЕТСКИ ТРАНСФОРМАТОР

Διαβάστε περισσότερα

Заземјувачи. Заземјувачи

Заземјувачи. Заземјувачи Заземјувачи Заземјување претставува збир на мерки и средства кои се превземаат со цел да се обезбедат нормални услови за работа на системот и безбедно движење на луѓе и животни во близина на објектот.

Διαβάστε περισσότερα

КОМПЕНЗАЦИЈА НА РЕАКТИВНАТА ЕНЕРГИЈА КАЈ ИНДУСТРИСКИ ПОТРОШУВАЧИ И ТЕХНИЧКИ-ЕКОНОМСКИТЕ ПРИДОБИВКИ ОД НЕА

КОМПЕНЗАЦИЈА НА РЕАКТИВНАТА ЕНЕРГИЈА КАЈ ИНДУСТРИСКИ ПОТРОШУВАЧИ И ТЕХНИЧКИ-ЕКОНОМСКИТЕ ПРИДОБИВКИ ОД НЕА 7. СОВЕТУВАЊЕ Охрид, 2 4 октомври 2011 Слободан Биљарски,,Елма инг,, Берово Ванчо Сивевски,,Бомекс Рефрактори,, Пехчево Александар Ласков,,Факултет за електротехника и информациски технологии,, Скопје

Διαβάστε περισσότερα

Анализа на мрежите на ЈИЕ во поглед на вкупниот преносен капацитет

Анализа на мрежите на ЈИЕ во поглед на вкупниот преносен капацитет 6. СОВЕТУВАЊЕ Охрид, 4-6 октомври 2009 Мирко Тодоровски Ристо Ачковски Факултет за електротехника и информациски технологии, Скопје Анализа на мрежите на ЈИЕ во поглед на вкупниот преносен капацитет КУСА

Διαβάστε περισσότερα

Анализа на преодниот период на прекинувачите кај Н топологија на сериски резонантен конвертор при работа со уред за индукционо загревање

Анализа на преодниот период на прекинувачите кај Н топологија на сериски резонантен конвертор при работа со уред за индукционо загревање 7. СОВЕТУВАЊЕ Охрид, 2 4 октомври 2011 Гоце Стефанов Василија Шарац Дејан Милчевски Електротехнички факултет - Радовиш Љупчо Караџинов ФЕИТ - Скопје Анализа на преодниот период на прекинувачите кај Н топологија

Διαβάστε περισσότερα

БРЗ ДИЗАЈН НА ПРОТОТИП НА УПРАВУВАЧ И ИЗРАБОТКА НА ДИНАМИЧКИ МОДЕЛ ЗА ТЕСТИРАЊЕ НА ХАРДВЕР ВО ЈАМКА НА БРЗИНСКИ СЕРВОМЕХАНИЗАМ

БРЗ ДИЗАЈН НА ПРОТОТИП НА УПРАВУВАЧ И ИЗРАБОТКА НА ДИНАМИЧКИ МОДЕЛ ЗА ТЕСТИРАЊЕ НА ХАРДВЕР ВО ЈАМКА НА БРЗИНСКИ СЕРВОМЕХАНИЗАМ УНИВЕРЗИТЕТ СВ. КЛИМЕНТ ОХРИДСКИ БИТОЛА ТЕХНИЧКИ ФАКУЛТЕТ ЕЛЕКТРОТЕХНИЧКИ ОТСЕК МАГИСТЕРСКИ ТРУД БРЗ ДИЗАЈН НА ПРОТОТИП НА УПРАВУВАЧ И ИЗРАБОТКА НА ДИНАМИЧКИ МОДЕЛ ЗА ТЕСТИРАЊЕ НА ХАРДВЕР ВО ЈАМКА НА БРЗИНСКИ

Διαβάστε περισσότερα

МОДЕЛИРАЊЕ СО СТРУКТУРНИ РАВЕНКИ И ПРИМЕНА

МОДЕЛИРАЊЕ СО СТРУКТУРНИ РАВЕНКИ И ПРИМЕНА УНИВЕРЗИТЕТ ГОЦЕ ДЕЛЧЕВ ШТИП ФАКУЛТЕТ ЗА ИНФОРМАТИКА ПРИМЕНЕТА МАТЕМАТИКА Штип ВАСИЛКА ВИТАНОВА МОДЕЛИРАЊЕ СО СТРУКТУРНИ РАВЕНКИ И ПРИМЕНА МАГИСТЕРСКИ ТРУД Штип, 14 UNIVERSITY "GOCE DELCEV" - STIP FACULTY

Διαβάστε περισσότερα

шифра: Филигран Истражувачки труд на тема: Анализа на мала хидроцентрала Брајчино 2

шифра: Филигран Истражувачки труд на тема: Анализа на мала хидроцентрала Брајчино 2 шифра: Филигран Истражувачки труд на тема: Анализа на мала хидроцентрала Брајчино 2 Битола, 2016 Содржина 1. Вовед... 2 2. Поделба на хидроцентрали... 3 2.1. Поделба на хидроцентрали според инсталирана

Διαβάστε περισσότερα

Eкономската теорија и новата-кејнзијанска школа

Eкономската теорија и новата-кејнзијанска школа м-р Душко Јошески 1 УДК/UDK 330.362 : 330.832/.834 Апстракт Eкономската теорија и новата-кејнзијанска школа Во трудов се опишува школата на новите кејнзијанци(акерлоф и Стиглиц 2 се во групата цврсти Нео-Кејнзијанци,

Διαβάστε περισσότερα

Развоj на систем за следење на точка на максимална мо`кност

Развоj на систем за следење на точка на максимална мо`кност Универзитет Св. Климент Охридски Технички факултет-битола Магистерски труд Развоj на систем за следење на точка на максимална мо`кност Изработил: Благоj Гегов Октомври 2014 УНИВЕРЗИТЕТ СВ. КЛИМЕНТ ОХРИДСКИ

Διαβάστε περισσότερα

ОПТИЧКИ МЕТОДИ НА АНАЛИЗА Методи на расејување

ОПТИЧКИ МЕТОДИ НА АНАЛИЗА Методи на расејување 01/11/2016 Методи на расејување Оддел IV. Спектрохемиски анализи Поглавје 23Д. Методи на молекулско расејување (стр. 625-6) Ског, Вест, Холер, Крауч, Аналитичка хемија Поглавје 10. Спектроскопски методи

Διαβάστε περισσότερα

О Д Л У К А. 3. Жалбата изјавена против оваа Одлука, не го одлага нејзиното извршување.

О Д Л У К А. 3. Жалбата изјавена против оваа Одлука, не го одлага нејзиното извршување. Регулаторната комисија за енергетика на Република Македонија врз основа на член 22 став 1 точка 4 од Законот за енергетика (Службен весник на Република Македонија бр.16/11,136/11, 79/13, 164/13, 41/14,

Διαβάστε περισσότερα

Душан Чакмаков. Веројатност

Душан Чакмаков. Веројатност Душан Чакмаков Веројатност Интерна скрипта, Машински факултет Скопје, 04 ii Содржина. Вовед.... Случајни настани и веројатност... 5.. Простор на случајни настани... 5.. Аксиоми на веројатност... 9.3. Класичен

Διαβάστε περισσότερα

КАРАКТЕРИСТИКИ НА АМБАЛАЖНИТЕ ФИЛМОВИ И ОБВИВКИ КОИШТО МОЖЕ ДА СЕ ЈАДАТ ЗА ПАКУВАЊЕ НА ХРАНА

КАРАКТЕРИСТИКИ НА АМБАЛАЖНИТЕ ФИЛМОВИ И ОБВИВКИ КОИШТО МОЖЕ ДА СЕ ЈАДАТ ЗА ПАКУВАЊЕ НА ХРАНА Journal of Agricultural, Food and Environmental Sciences UDC: 621.798.1:663.14.31 КАРАКТЕРИСТИКИ НА АМБАЛАЖНИТЕ ФИЛМОВИ И ОБВИВКИ КОИШТО МОЖЕ ДА СЕ ЈАДАТ ЗА ПАКУВАЊЕ НА ХРАНА Дијана Милосављева, Ленче

Διαβάστε περισσότερα

СИСТЕМ СО ТОПЛИНСКИ УРЕД КОЈ КОРИСТИ ОБНОВЛИВИ ИЗВОРИ НА ЕНЕРГИЈА

СИСТЕМ СО ТОПЛИНСКИ УРЕД КОЈ КОРИСТИ ОБНОВЛИВИ ИЗВОРИ НА ЕНЕРГИЈА 8. СОВЕТУВАЊЕ Охрид, 22 24 септември Никола Петковски Верка Георгиева Факултет за електротехника и информациски технологии - Скопје СИСТЕМ СО ТОПЛИНСКИ УРЕД КОЈ КОРИСТИ ОБНОВЛИВИ ИЗВОРИ НА ЕНЕРГИЈА КУСА

Διαβάστε περισσότερα

БИОФИЗИКА Електромагнетизам. Доцент Др. Томислав Станковски

БИОФИЗИКА Електромагнетизам. Доцент Др. Томислав Станковски БИОФИЗИКА Електромагнетизам Доцент Др. Томислав Станковски За интерна употреба за потребите на предметот Биофизика Катедра за Медицинска Физика Медицински Факултет Универзитет Св. Кирил и Методиj, Скопjе

Διαβάστε περισσότερα

МИКРОЕКОНОМСКИ И МАКРОЕКОНОМСКИ ДЕТЕРМИНАНТИ НА ПРОФИТАБИЛНОСТА НА ОСИГУРИТЕЛНИОТ СЕКТОР СЛУЧАЈОТ НА МАКЕДОНИЈА Тања Дрвошанова- Елисковска

МИКРОЕКОНОМСКИ И МАКРОЕКОНОМСКИ ДЕТЕРМИНАНТИ НА ПРОФИТАБИЛНОСТА НА ОСИГУРИТЕЛНИОТ СЕКТОР СЛУЧАЈОТ НА МАКЕДОНИЈА Тања Дрвошанова- Елисковска МИКРОЕКОНОМСКИ И МАКРОЕКОНОМСКИ ДЕТЕРМИНАНТИ НА ПРОФИТАБИЛНОСТА НА ОСИГУРИТЕЛНИОТ СЕКТОР СЛУЧАЈОТ НА МАКЕДОНИЈА Тања Дрвошанова- Елисковска 8 / 2 9 / 2 0 1 3 Апстракт Целта на овој труд е запознавање со

Διαβάστε περισσότερα

Физичка хемија за фармацевти

Физичка хемија за фармацевти Добредојдовте на наставата по предметот Физичка хемија за фармацевти Проф.д-р Зоран Кавраковски Проф.д-р Руменка Петковска Доц.д-р Наталија Наков zoka@ff.ukim.edu.mk mk rupe@ff.ukim.edu.mk natalijan@ff.ukim.edu.mk

Διαβάστε περισσότερα