ЗАДАЧИ ЗА УВЕЖБУВАЊЕ НА ТЕМАТА ГЕОМЕТРИСКИ ТЕЛА 8 ОДД.
|
|
- Έλλη Σπηλιωτόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ЗАДАЧИ ЗА УВЕЖБУВАЊЕ НА ТЕМАТА ГЕОМЕТРИСКИ ТЕЛА 8 ОДД.
2 ВО ПРЕЗЕНТАЦИЈАТА ЌЕ ПРОСЛЕДИТЕ ЗАДАЧИ ЗА ПРЕСМЕТУВАЊЕ ПЛОШТИНА И ВОЛУМЕН НА ГЕОМЕТРИСКИТЕ ТЕЛА КОИ ГИ ИЗУЧУВАМЕ ВО ОСНОВНОТО ОБРАЗОВАНИЕ. СИТЕ ЗАДАЧИ СЕ ПОДЕЛЕНИ ВО ДВЕ НИВОА. ИМ ПРЕПОРАЧУВАМ НА УЧЕНИЦИТЕ НАЈПРВИН ДА ГИ РЕШАТ ЗАДАЧИТЕ ОД ПРВОТО НИВО, А ПОТОА ДА ПРЕМИНАТ НА ЗАДАЧИТЕ ОД ВТОРОТО НИВО. УСПЕШНА РАБОТА!!!
3 1 НИВО ПРИЗМА 1. КОЛКУ ЛИТРИ ВОДА СОБИРА КОЦКА СО РАБ А) 8 СМ Б) 0,5 М
4 2. ПРЕСМЕТАЈ ПЛОШТИНА И ВОЛУМЕН НА КВАДАР СО ДИМЕНЗИИ 5СМ; 0,6 DМ И 12СМ.
5 3. ПРЕСМЕТАЈ ПЛОШТИНА И ВОЛУМЕН НА ПРАВИЛНА ТРИАГОЛНА ПРИЗМА СО ОСНОВЕН РАБ 4DМ И ВИСИНА 8 DМ.
6 4. ПРЕСМЕТАЈ ПЛОШТИНА И ВОЛУМЕН НА ПРАВИЛНА ЧЕТИРИАГОЛНА ПРИЗМА СО ОСНОВЕН РАБ 5DМ И ВИСИНА 12 СМ.
7 5. ПРЕСМЕТАЈ ПЛОШТИНА И ВОЛУМЕН НА ПРАВИЛНА ШЕСТАГОЛНА ПРИЗМА СО ОСНОВЕН РАБ 8DМ И ВИСИНА 15 СМ.
8 ПИРАМИДА 6. ПРЕСМЕТАЈ ПЛОШТИНА НА ПРАВИЛНА ТРИАГОЛНА ПИРАМИДА СО ОСНОВЕН РАБ 10СМ И АПОТЕМА 13СМ.
9 7. ПРЕСМЕТАЈ ПЛОШТИНА НА ПРАВИЛНА ЧЕТИРИАГОЛНА ПИРАМИДА СО ОСНОВЕН РАБ 12СМ И АПОТЕМА 10СМ.
10 8. ПРЕСМЕТАЈ ПЛОШТИНА НА ПРАВИЛНА ШЕСТАГОЛНА ПИРАМИДА СО ОСНОВЕН РАБ 10СМ И АПОТЕМА 15СМ
11 9. ПРЕСМЕТАЈ ВОЛУМЕН НА ПРАВИЛНА ТРИАГОЛНА ПИРАМИДА СО ОСНОВЕН РАБ 12СМ И ВИСИНА 20СМ.
12 10. ПРЕСМЕТАЈ ВОЛУМЕН НА ПРАВИЛНА ЧЕТИРИАГОЛНА ПИРАМИДА СО ОСНОВЕН РАБ 9СМ И ВИСИНА 15СМ
13 ЦИЛИНДАР 11. ПРЕСМЕТАЈ ПЛОШТИНА И ВОЛУМЕН НА ЦИЛИНДАР СО РАДИУС 8 СМ И ВИСИНА 2,5DМ.
14 12. ПРЕСМЕТАЈ ПЛОШТИНА И ВОЛУМЕН НА РАМНОСТРАН ЦИЛИНДАР СО РАДИУС 10 СМ.
15 13. ПРЕСМЕТАЈ ПЛОШТИНА И ВОЛУМЕН НА РАМНОСТРАН ЦИЛИНДАР СО ВИСИНА 2DМ.
16 14. РАМНОСТРАН ЦИЛИНДАР ИМА ВОЛУМЕН 54Π. КОЛКУ ИЗНЕСУВА РАДИУСОТ НА ЦИЛИНДАРОТ?
17 15. ЦИЛИНДАР СО РАДИУС 1,2 DМ ИМА ВИСИНА 16 СМ.КОЛКУ ИЗНЕСУВА НЕГОВАТА БОЧНА ПЛОШТИНА?
18 КОНУC 16. ПРЕСМЕТАЈ ПЛОШТИНА И ВОЛУМЕН НА КОНУС СО РАДИУС 5 СМ И ГЕНЕРАТРИСА 13 СМ.
19 17. ПРЕСМЕТАЈ ПЛОШТИНА И ВОЛУМЕН НА РАМНОСТРАН КОНУС СО РАДИУС 2,4 DМ.
20 18. ПРЕСМЕТАЈ БОЧНА ПЛОШТИНА НА КОНУС СО РАДИУС 42 СМ И ГЕНЕРАТРИСА 45 СМ.
21 19. РАМНОСТРАН КОНУС ИМА ПЛОШТИНА cm ПРЕСМЕТАЈ ГО РАДИУСОТ НА КОНУСОТ
22 20. ПРЕСМЕТАЈ ПЛОШТИНА И ВОЛУМЕН НА РАМНОСТРАН КОНУС СО ГЕНЕРАТРИСА 3,4 DМ
23 ТОПКА 21. ПРЕСМЕТАЈ ПЛОШТИНА И ВОЛУМЕН НА ТОПКА АКО НЕЈЗИНИОТ ДИЈАМЕТАР Е 12 СМ.
24 22. ПРЕСМЕТАЈ ПЛОШТИНА НА ТОПКА АКО ПЛОШТИНАТА НА ЕДЕН НЕЈЗИН ГОЛЕМ КРУГ Е 2 314cm
25 23. ПРЕСМЕТАЈ ПЛОШТИНА И ВОЛУМЕН НА ТОПКА АКО НЕЈЗИНИОТ РАДИУС Е 6 СМ.
26 ДОКОЛКУ УСПЕШНО ГИ РЕШИ ЗАДАЧИТЕ ОД НИВО 1 МОЖЕШ ДА ПРЕМИНЕШ НА ЗАДАЧИТЕ ОД НИВО 2. СО СРЕЌА!!!
27 2 НИВО ПРИЗМА 1. РАБОВИТЕ НА ЕДЕН КВАДАР СЕ ВО РАЗМЕР 3:4:5. ПРЕСМЕТАЈ ГО ВОЛУМЕНОТ АКО НЕГОВАТА 94cm ПЛОШТИНА Е. 2
28 2. ПЛОШТИНАТА НА ЕДНА КОЦКА Е 294cm.ПРЕСМЕТАЈ ГИ РАБОТ И ДИЈАГОНАЛАТА НА КОЦКАТА. 2
29 3. ДАДЕНА Е ПРАВА ПРИЗМА СО ВИСИНА 15 СМ. ДА СЕ ПРЕСМЕТА ВОЛУМЕНОТ АКО НЕЈЗИНАТА ОСНОВА Е РОМБ СО ДИЈАГОНАЛИ 8 СМ И 6 СМ.
30 4. ПРАВА ПРИЗМА СО ВИСИНА 10 СМ ИМА ЗА ОСНОВА ПРАВОАГОЛЕН ТРИАГОЛНИК СО КАТЕТИ 6СМ И 4СМ. ДА СЕ ПРЕСМЕТА ПЛОШТИНА И ВОЛУМЕН НА ТАА ПРИЗМА.
31 5. КОЛКУ Е ВИСОКА ПРАВИЛНА ШЕСТАГОЛНА ПРИЗМА СО ОСНОВЕН РАБ 6 СМ И ВОЛУМЕН cm
32 ПИРАМИДА 6. ПРЕСМЕТАЈ ПЛОШТИНА НА ПРАВИЛНА ТРИАГОЛНА ПИРАМИДА СО ОСНОВЕН РАБ 10СМ И БОЧЕН РАБ 13СМ.
33 7. ПРЕСМЕТАЈ ПЛОШТИНА НА ПРАВИЛНА ЧЕТИРИАГОЛНА ПИРАМИДА СО ОСНОВЕН РАБ 12СМ И БОЧЕН РАБ 10СМ.
34 8. ПРЕСМЕТАЈ ПЛОШТИНА НА ПРАВИЛНА ШЕСТАГОЛНА ПИРАМИДА СО ВИСИНА 3 DМ И АПОТЕМА 6СМ.
35 9. ОСНОВАТА НА ЕДНА ПИРАМИДА Е ПРАВОАГОЛНИК СО СТРАНИ 9 СМ И 12 СМ А СЕКОЈ БОЧЕН РАБ ИМА 12,5 СМ. ПРЕСМЕТАЈ ГИ ВОЛУМЕНОТ И ПЛОШТИНАТА НА ПИРАМИДАТА.
36 10. ПРАВИЛНА ЧЕТИРИАГОЛНА ПИРАМИДА ИМА ОСНОВЕН РАБ 20 СМ И ВОЛУМЕН ПРЕСМЕТАЈ ГИ ВИСИНАТА И ПЛОШТИНАТА НА ПИРАМИДАТА.
37 ЦИЛИНДАР 11. ВИСИНАТА НА ЦИЛИНДАРОТ Е 6 СМ, А НЕГОВАТА БОЧНА ПОВРШИНА МОЖЕДА СЕ РАЗВИЕ ВО ПРАВОАГОЛНИК СО ДИЈАГОНАЛА 10 СМ.ДА СЕ ПРЕСМЕТА ПЛОШТИНА И ВОЛУМЕН НА ЦИЛИНДАРОТ.
38 12. ДИЈАГОНАЛАТА НА ОСНИОТ ПРЕСЕК НА ЕДЕН ЦИЛИНДАР ШТО Е ВИСОК 8 СМ ИЗНЕСУВА 10 СМ. ПРЕСМЕТАЈ ПЛОШТИНА И ВОЛУМЕН НА ЦИЛИНДАРОТ.
39 13. ПРЕСМЕТАЈ ПЛОШТИНА И ВОЛУМЕН НА ЦИЛИНДАР СО БОЧНА ПЛОШТИНА И ВИСИНА 15 СМ.
40 14. РАМНОСТРАН ЦИЛИНДАР ИМА ПЛОШТИНА 1350 ОПРЕДЕЛИ ГО НЕГОВИОТ ВОЛУМЕН.
41 . 15. КОЛКУ ЛИТРИ ВОДА СОБИРА ЕДНО БУРЕ ВО ФОРМА НА ЦИЛИНДАР СО ПЛОШТИНА НА ОСНОВАТА И ВИСИНА 1m 3000cm 2
42 КОНУС 16. ОСНИОТ ПРЕСЕК НА ЕДЕН КОНУС ИМА ПЛОШТИНА 18,48cm А ВИСИНАТА Е 5,6 СМ.ПРЕСМЕТАЈ ГО ВОЛУМЕНОТ. 2
43 17. ВОЛУМЕН НА КОНУС СО ВИСИНА 20СМ Е cm ПЛОШТИНАТА НА КОНУСОТ..ПРЕСМЕТАЈ ЈА
44 18. ПРАВОАГОЛЕН ТРИАГОЛНИК СО КАТЕТИ 5 СМ И 12 СМ РОТИРА ОКОЛУ ПОГОЛЕМАТА КАТЕТА.ДА СЕ ПРЕСМЕТА ПЛОШТИНА И ВОЛУМЕН НА ДОБИЕНОТО ТЕЛО.
45 19. ДА СЕ ПРЕСМЕТА ПЛОШТИНА И ВОЛУМЕН НА КОНУС АКО БОЧНАТА ПЛОШТИНА ИЗНЕСУВА И РАДИУС 7 СМ. 175 cm 2
46 20. ПЕРИМЕТАРОТ НА ОСНОВАТА НА ЕДЕН КОНУС Е 314ММ А ГЕНЕРАТРИСАТА Е 13 СМ ДА СЕ НАЈДЕ ПЛОШТИНА И ВОЛУМЕН.
47 ТОПКА 21.ПРЕСМЕТАЈ ВОЛУМЕН НА ЕДНА 314cm ТОПКА СО ПЛОШТИНА. 2
48 22. ВО КОЦКА СО РАБ 6 СМ Е СТАВЕНА ТОПКА КОЈА ГИ ДОПИРА СИТЕ ЅИДОВИ НА КОЦКАТА.КОЛКАВА Е ПЛОШТИНАТА НА ТОПКАТА?
49 ЗАДОВОЛСТВОТО Е НАЈГОЛЕМО АКО УСПЕЕМЕ ДА РЕШИМЕ ПОВЕЌЕ ОД ОНА ШТО ГО ОЧЕКУВАВМЕ САМИ ОД СЕБЕ. ОБИДЕТЕ СЕ!!! АКО СТИГНАВТЕ ДО ТУКА ТОГАШ И ОВА НЕМА ДА ПРЕТСТАВУВА ПРОБЛЕМ. НАПРЕЧЕН ПРЕСЕК НА КАНАЛ ДОЛГ 2 КМ ИМА ФОРМА НА РАМНОКРАК ТРАПЕЗ СО ОСНОВИ 6М И 10 М,А КРАК 2,9М. КОЛКУ МЕТРИ КУБНИ ЗЕМЈА СЕ ИСФРЛЕНИ ПРИ НЕГОВОТО КОПАЊЕ?
50 ПРЕЗЕНТАЦИЈАТА ЈА ИЗРАБОТИ ПРОФ.СНЕЖАНА ЗЛАТКОВСКА ООУ ИЛИНДЕН КРИВА ПАЛАНКА
10. Математика. Прашање. Обратен размер на размерот е: Геометриска средина x на отсечките m и n е:
Обратен размер на размерот е: Геометриска средина x на отсечките m и n е: За две геометриски фигури што имаат сосема иста форма, а различни или исти големини велиме дека се: Вредноста на размерот е: Односот
Од точката С повлечени се тангенти кон кружницата. Одреди ја големината на AOB=?
Задачи за вежби тест плоштина на многуаголник 8 одд На што е еднаков збирот на внатрешните агли кај n-аголник? 1. Одреди ја плоштината на паралелограмот, според податоците дадени на цртежот 2. 3. 4. P=?
ЛУШПИ МЕМБРАНСКА ТЕОРИЈА
Вежби ЛУШПИ МЕМБРАНСКА ТЕОРИЈА РОТАЦИОНИ ЛУШПИ ТОВАРЕНИ СО РОТАЦИОНО СИМЕТРИЧЕН ТОВАР ОСНОВНИ ВИДОВИ РОТАЦИОНИ ЛУШПИ ЗАТВОРЕНИ ЛУШПИ ОТВОРЕНИ ЛУШПИ КОМБИНИРАНИ - СФЕРНИ - КОНУСНИ -ЦИЛИНДРИЧНИ - СФЕРНИ
МАТЕМАТИКА - НАПРЕДНО НИВО МАТЕМАТИКА НАПРЕДНО НИВО. Време за решавање: 180 минути. јуни 2012 година
ШИФРА НА КАНДИДАТОТ ЗАЛЕПИ ТУКА ДРЖАВНА МАТУРА МАТЕМАТИКА - НАПРЕДНО НИВО МАТЕМАТИКА НАПРЕДНО НИВО Време за решавање: 180 минути јуни 2012 година Шифра на ПРВИОТ оценувач Запиши тука: Шифра на ВТОРИОТ
37. РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА 2013 основни училишта 18 мај VII одделение (решенија на задачите)
37. РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА 03 основни училишта 8 мај 03 VII одделение (решенија на задачите) Задача. Во еден пакет хартија која вообичаено се користи за печатење, фотокопирање и сл. има N = 500
46. РЕГИОНАЛЕН НАТПРЕВАР ПО ФИЗИКА април II година (решенија на задачите)
46 РЕГИОНАЛЕН НАТПРЕВАР ПО ФИЗИКА 03 0 април 03 година (решенија на задачите Задача Tочкаст полнеж е поставен во темето на правиот агол на правоаголен триаголник како што е прикажано на слика Јачината
М-р Јасмина Буневска ОСНОВИ НА ПАТНОТО ИНЖЕНЕРСТВО
УНИВЕРЗИТЕТ СВ. КЛИМЕНТ ОХРИДСКИ - БИТОЛА ТЕХНИЧКИ ФАКУЛТЕТ - БИТОЛА - Отсек за сообраќај и транспорт - ДОДИПЛОМСКИ СТУДИИ - ECTS М-р Јасмина Буневска ОСНОВИ НА ПАТНОТО ИНЖЕНЕРСТВО ПРИЛОГ ЗАДАЧИ ОД ОПРЕДЕЛУВАЊЕ
3. ПРЕСМЕТКА НА КРОВ НА КУЌА СО ТРИГОНОМЕТРИЈА
3. ПРЕСМЕТКА НА КРОВ НА КУЌА СО ТРИГОНОМЕТРИЈА Цел: Учениците/студентите да се запознаат со равенки за пресметка на: агли, периметар, плоштина, волумен на триаголна призма, како од теоретски аспект, така
НАПРЕГАЊЕ ПРИ ЧИСТО СМОЛКНУВАЊЕ
Факултет: Градежен Предмет: ЈАКОСТ НА МАТЕРИЈАЛИТЕ НАПРЕГАЊЕ ПРИ ЧИСТО СМОЛКНУВАЊЕ Напрегање на смолкнување е интензитет на сила на единица површина, што дејствува тангенцијално на d. Со други зборови,
Анализа на триаголници: Упатство за наставникот
Анализа на триаголници: Упатство за наставникот Цел:. Што мислиш? Колку многу триаголници со основа a=4см и висина h=3см можеш да нацрташ? Линк да Видиш и Направиш Mathcast за Што мислиш? Нацртај точка
а) Определување кружна фреквенција на слободни пригушени осцилации ωd ωn = ω б) Определување периода на слободни пригушени осцилации
Динамика и стабилност на конструкции Задача 5.7 За дадената армирано бетонска конструкција од задачата 5. и пресметаните динамички карактеристики: кружна фреквенција и периода на слободните непригушени
Решенија на задачите за I година LII РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА ЗА УЧЕНИЦИТЕ ОД СРЕДНИТЕ УЧИЛИШТА ВО РЕПУБЛИКА МАКЕДОНИЈА 16 мај 2009.
LII РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА ЗА УЧЕНИЦИТЕ ОД СРЕДНИТЕ УЧИЛИШТА ВО РЕПУБЛИКА МАКЕДОНИЈА 16 мај 009 I година Задача 1. Топче се пушта да паѓа без почетна брзина од некоја висина над површината на земјата.
46. РЕГИОНАЛЕН НАТПРЕВАР ПО ФИЗИКА април III година. (решенија на задачите)
46. РЕГИОНАЛЕН НАТПРЕВАР ПО ФИЗИКА 3 април 3 III година (решенија на задачите) Задача. Хеликоптер спасува планинар во опасност, спуштајќи јаже со должина 5, и маса 8, kg до планинарот. Планинарот испраќа
ЈАКОСТ НА МАТЕРИЈАЛИТЕ
диј е ИКА ски ч. 7 ч. Универзитет Св. Кирил и Методиј Универзитет Машински Св. факултет Кирил и Скопје Методиј во Скопје Машински факултет МОМ ТЕХНИЧКА МЕХАНИКА професор: доц. др Виктор Гаврилоски. ТОРЗИЈА
7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде
математик за VIII разред основне школе 4. Прво наћи дужину апотеме. Како је = 17 cm то је тражена површина P = 18+ 4^cm = ^4+ cm. 14. Основа четворостране пирамиде је ромб чије су дијагонале d 1 = 16 cm,
ИСПИТ ПО ПРЕДМЕТОТ ВИСОКОНАПОНСКИ МРЕЖИ И СИСТЕМИ (III година)
Septemvri 7 g ИСПИТ ПО ПРЕДМЕТОТ ВИСОКОНАПОНСКИ МРЕЖИ И СИСТЕМИ (III година) Задача 1. На сликата е прикажан 4 kv преносен вод со должина L = 18 km кој поврзува ЕЕС со бесконечна моќност и една електрична
DRAFT ЗАДАЧИ ЗА ВЕЖБАЊЕ АКСИЈАЛНО НАПРЕГАЊЕ
Градежен факултет Скопје Катедра за Техничка механика и јакост на материјалите Предмет: Јакост на материјалите http://ktmjm.gf.ukim.edu.mk 27.11.2008 ЗАДАЧИ ЗА ВЕЖБАЊЕ АКСИЈАЛНО НАПРЕГАЊЕ 1. Апсолутно
45 РЕГИОНАЛЕН НАТПРЕВАР ПО ФИЗИКА 2012 II година (решенија на задачите)
45 РЕГИОНАЛЕН НАТПРЕВАР ПО ФИЗИКА 1 II година (решенија на задачите) 1 Координатите на два точкасти полнежи q 1 = + 3 µ C и q = 4µ C, поставени во xy рамнината се: x 1 = 3, 5cm; y 1 =, 5cm и x = cm; y
Проф. д-р Ѓорѓи Тромбев ГРАДЕЖНА ФИЗИКА. Влажен воздух 3/22/2014
Проф. д-р Ѓорѓи Тромбев ГРАДЕЖНА ФИЗИКА Влажен воздух 1 1 Влажен воздух Влажен воздух смеша од сув воздух и водена пареа Водената пареа во влажниот воздух е претежно во прегреана состојба идеален гас.
ВЕРОЈАТНОСТ И СТАТИСТИКА ВО СООБРАЌАЈОТ 3. СЛУЧАЈНИ ПРОМЕНЛИВИ
Предавање. СЛУЧАЈНИ ПРОМЕНЛИВИ. Еднодимензионална случајна променлива При изведување на експеримент, случајниот настан може да има многу различни реализации. Ако ги знаеме можните реализации и ако ја знаеме
Кои од наведениве процеси се физички, а кои се хемиски?
Кои од наведениве процеси се физички, а кои се хемиски? I. фотосинтеза II. вриење на алкохол III. топење на восок IV. горење на бензин V. скиселување на виното а) физички:ниту едно хемиски: сите б) физички:
10.3. Запремина праве купе
0. Развијени омотач купе је исечак чији је централни угао 60, а тетива која одговара том углу је t. Изрази површину омотача те купе у функцији од t. 0.. Запремина праве купе. Израчунај запремину ваљка
АКСИЈАЛНО НАПРЕГАЊЕ Катедра за техничка механика и јакост на материјалите
УНИВЕРЗИТЕТ Св. КИРИЛ иметодиј ГРАДЕЖЕН ФАКУЛТЕТ СКОПЈЕ Катедра за техничка механика и јакост на материјалите http://ktmjm.gf.ukim.edu.mk АКСИЈАЛНО НАПРЕГАЊЕ 17.02.2015 АКСИЈАЛНО НАПРЕГАЊЕ КОГА??? АКСИЈАЛНО
РЕШЕНИЈА Државен натпревар 2017 ТЕОРИСКИ ПРОБЛЕМИ. K c. K c,2
РЕШЕНИЈА Државен натпревар 07 ЗА КОМИСИЈАТА Вкупно поени:_50 од теор: 5 од експ: 5_ Прегледал: М. Буклески, В. Ивановски ТЕОРИСКИ ПРОБЛЕМИ (Запишете го начинот на решавање и одговорот на предвиденото место
Предизвици во моделирање
Предизвици во моделирање МОРА да постои компатибилност на јазлите од мрежата на КЕ на спојот на две површини Предизвици во моделирање Предизвици во моделирање Предизвици во моделирање Предизвици во моделирање
Регулација на фреквенција и активни моќности во ЕЕС
8 Регулација на фреквенција и активни моќности во ЕЕС 8.1. Паралелна работа на синхроните генератори Современите електроенергетски системи го напојуваат голем број на синхрони генератори кои работат паралелно.
45 РЕГИОНАЛЕН НАТПРЕВАР ПО ФИЗИКА 2012 III година (решенија на задачите)
45 РЕГИОНАЛЕН НАТПРЕВАР ПО ФИЗИКА III година (решенија на задачите Рамнострана стаклена призма чиј агол при врвот е = 6 поставена е во положба на минимална девијација за жолтата светлина Светлината паѓа
XXV РЕГИОНАЛЕН НАТПРЕВАР ПО МАТЕМАТИКА
XXV РЕГИОНАЛЕН НАТПРЕВАР ПО МАТЕМАТИКА за учениците од основното образование 31.03.007 година IV одделение 1. Во полињата на дадената лента допиши природни броеви во празните полиња, така што производот
σ d γ σ M γ L = ЈАКОСТ 1 x A 4М21ОМ02 АКСИЈАЛНИ НАПРЕГАЊА (дел 2) 2.6. СОПСТВЕНА ТЕЖИНА КАКО АКСИЈАЛНА СИЛА Напонска состојаба
4МОМ0 ЈАКОСТ АКСИЈАЛНИ НАПРЕГАЊА (дел ) наставник:.6. СОПСТВЕНА ТЕЖИНА КАКО АКСИЈАЛНА СИЛА Напонска состојаба γ 0 ( специфична тежина) 0 ak() G γ G ΣX0 ak() G γ ak ( ) γ Аксијалната сила и напонот, по
ЗБИРКА ОДБРАНИ РЕШЕНИ ЗАДАЧИ ПО ФИЗИКА
УНИВЕРЗИТЕТ "СВ КИРИЛ И МЕТОДИЈ" СКОПЈЕ ФАКУЛТЕТ ЗА ЕЛЕКТРОТЕХНИКА И ИНФОРМАЦИСКИ ТЕХНОЛОГИИ Верка Георгиева Христина Спасевска Маргарита Гиновска Ласко Баснарков Лихнида Стојановска-Георгиевска ЗБИРКА
Ваљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ:
Ваљак ВАЉАК P=B + M V= B H B= r p M=rp H Pосн.пресека = r H. Површина омотача ваљка је π m, а висина ваљка је два пута већа од полупрчника. Израчунати запремину ваљка. π. Осни пресек ваљка је квадрат површине
( ) ( ) ( ) ( ) ( ) ( )
Мерни мостови и компензатори V. Мерни мостови и компензатори V.. Мерни мостови. Колкава е вредноста на отпорот измерен со Томпсоновиот мост ако се: Ω,, Ω 6 и Ω. Колкава процентуална грешка ќе се направи
ТАРИФЕН СИСТЕМ ЗА ДИСТРИБУЦИЈА
ТАРИФЕН СИСТЕМ ЗА ДИСТРИБУЦИЈА Тарифен систем за ДС на ЕВН Македонија 2014 година (rke.org.mk) Надоместок за користење на дистрибутивниот систем плаќаат сите потрошувачи, корисници на дистрибутивниот сите
МЕХАНИКА НА ФЛУИДИ (AFI, TI, EE)
Zada~i za program 2 po predmetot МЕХАНИКА НА ФЛУИДИ (AFI, TI, EE) Предметен наставник: Проф. д-р Методија Мирчевски Асистент: Виктор Илиев (rok za predavawe na programot - 07. i 08. maj 2010) (во термини
ЗБИРКА ЗАДАЧИ ПО ПРЕДМЕТОТ ТЕХНИКА НА ВИСОК НАПОН II
УНИВЕРЗИТЕТ "Св. КИРИЛ И МЕТОДИЈ" - СКОПЈЕ ФАКУЛТЕТ ЗА ЕЛЕКТРОТЕХНИКА И ИНФОРМАЦИСКИ ТЕХНОЛОГИИ ИНСТИТУТ ЗА ПРЕНОСНИ ЕЛЕКТРОЕНЕРГЕТСКИ СИСТЕМИ Ристо Ачковски, Александра Крколева ЗБИРКА ЗАДАЧИ ПО ПРЕДМЕТОТ
НЕКОИ АЛГОРИТМИ ЗА РЕШАВАЊЕ НА ЗАДАЧАТА НА ПАТУВАЧКИОТ ТРГОВЕЦ
МАТЕМАТИЧКИ ОМНИБУС, 1 (2017), 101 113 НЕКОИ АЛГОРИТМИ ЗА РЕШАВАЊЕ НА ЗАДАЧАТА НА ПАТУВАЧКИОТ ТРГОВЕЦ Ирена Стојковска 1 Задачата на патувачкиот трговец е комбинаторна оптимизациона задача со едноставна
КОМПЕНЗАЦИЈА НА РЕАКТИВНА МОЌНОСТ
Сите потрошувачи за својата работа ангажираат активна моќност, а некои од нив и реактивна моќност во ЕЕС извори на активната моќност се генераторите, синхроните компензатори, синхроните мотори, кондензаторските
56. РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА 2013 Скопје, 11 мај I година (решенија на задачите)
56. РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА 03 Скопје, мај 03 I година (решенија на задачите) Задача. Експресен воз го поминал растојанието помеѓу две соседни станици, кое изнесува, 5 km, за време од 5 min. Во
ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце
РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ ТРАПЕЗ Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце Ментор :Криста Ђокић, наставник математике Власотинце, 2011. године Трапез
Практикум по Општа и неорганска хемија
Универзитет Св. Кирил и Методиј - Скопје Фармацевтски факултет, Скопје Институт за применета хемија и фармацевтски анализи Практикум по Општа и неорганска хемија студиска програма Лабораториски биоинжинер
КОМПЛЕКСНИ БРОЈЕВИ. Формуле: 1. Написати комплексне бројеве у тригонометријском облику. II. z i. II. z
КОМПЛЕКСНИ БРОЈЕВИ z ib, Re( z), b Im( z), z ib b b z r b,( ) : cos,si, tg z r(cos i si ) r r k k z r (cos i si ), z r (cos i si ) z r (cos i si ), z r (cos i si ) z z r r (cos( ) i si( )), z z r (cos(
Практикум по неорганска хемија, применета во фармација
Универзитет Св. Кирил и Методиј - Скопје Фармацевтски факултет, Скопје Институт за применета хемија и фармацевтски анализи Практикум по неорганска хемија, применета во фармација студиска програма Магистер
МЕХАНИКА 1 МЕХАНИКА 1
диј е ИКА Универзитет Св. Кирил и Методиј Универзитет Машински Св. факултет Кирил -и Скопје Методиј во Скопје Машински факултет 3М21ОМ01 ТЕХНИЧКА МЕХАНИКА професор: доц. д-р Виктор Гаврилоски 1. ВОВЕДНИ
СТАНДАРДНИ НИСКОНАПОНСКИ СИСТЕМИ
НН трифазни мрежи се изведуваат со три или четири спроводника мрежите со четири спроводника можат да преминат во мрежи со пет спроводника, но со оглед што тоа во пракса се прави во објектите (кај потрошувачите),
ГРОМОБРАНСКА ЗАШТИТА
M ANA G E MEN T SYS T EM Скопје, Коле Неделковски 22 тел./факс: 3 118 333 E-mail: iskra.atg@mt.net.mk ГРОМОБРАНСКА ЗАШТИТА СО РАНОСТАРТУВАЧКИ ГРОМОБРАН ERICO SI C E R T I F I E D ISO 9001:2000 ВОВЕД Заштитата
Прашање двоцифрениот завршеток (последните две цифри) е деливи со 4 прости броеви збирот се одзема собирокот = =7500
Прашање 1 Кога ќе поделиме два еднакви броја (различни од нула) се добива количник: 1 2 Еден број е делив со 4 ако: двоцифрениот завршеток (последните две цифри) е деливи со 4 Броевите што имаат само два
ШЕМИ ЗА РАСПОРЕДУВАЊЕ НА ПРОСТИТЕ БРОЕВИ
МАТЕМАТИЧКИ ОМНИБУС, (07), 9 9 ШЕМИ ЗА РАСПОРЕДУВАЊЕ НА ПРОСТИТЕ БРОЕВИ Весна Целакоска-Јорданова Секој природен број поголем од што е делив самo со и сам со себе се вика прост број. Запишани во низа,
1.2. Сличност троуглова
математик за VIII разред основне школе.2. Сличност троуглова Учили смо и дефиницију подударности два троугла, као и четири правила (теореме) о подударности троуглова. На сличан начин наводимо (без доказа)
ПРИЈЕМНИ ИСПИТ. Јун 2003.
Природно-математички факултет 7 ПРИЈЕМНИ ИСПИТ Јун 00.. Одредити све вредности параметра m за које су оба решења једначине x x + m( m 4) = 0 (a) реална; (b) реална и позитивна. Решење: (а) [ 5, + (б) [
Доц. д-р Наташа Ристовска
Доц. д-р Наташа Ристовска Класификација според структура на скелет Алифатични Циклични Ароматични Бензеноидни Хетероциклични (Повторете ги хетероцикличните соединенија на азот, петчлени и шестчлени прстени,
ТРОУГАО. права p садржи теме C и сече страницу. . Одредити највећи угао троугла ако је ABC
ТРОУГАО 1. У троуглу АВС израчунати оштар угао између: а)симетрале углова код А и В ако је угао код А 84 а код С 43 б)симетрале углова код А и В ако је угао код С 40 в)између симетрале угла код А и висине
6.3. Паралелограми. Упознајмо још нека својства паралелограма: ABD BCD (УСУ), одакле је: а = c и b = d. Сл. 23
6.3. Паралелограми 27. 1) Нацртај паралелограм чији је један угао 120. 2) Израчунај остале углове тог четвороугла. 28. Дат је паралелограм (сл. 23), при чему је 0 < < 90 ; c и. c 4 2 β Сл. 23 1 3 Упознајмо
МАТЕМАТИЧКИ ЛИСТ 2017/18. бр. LII-3
МАТЕМАТИЧКИ ЛИСТ 07/8. бр. LII- РЕЗУЛТАТИ, УПУТСТВА ИЛИ РЕШЕЊА ЗАДАТАКА ИЗ РУБРИКЕ ЗАДАЦИ ИЗ МАТЕМАТИКЕ . III разред. Обим правоугаоника је 6cm + 4cm = cm + 8cm = 0cm. Обим троугла је 7cm + 5cm + cm =
Водич за аудиториски вежби по предметот Биофизика
Универзитет Св. Кирил и Методиј Скопје Медицински Факултет Доцент Др. Томислав Станковски Асист. Мр. Душко Лукарски, спец.мед.нук.физ Водич за аудиториски вежби по предметот Биофизика Магистри по фармација
Душан Чакмаков. Веројатност
Душан Чакмаков Веројатност Интерна скрипта, Машински факултет Скопје, 04 ii Содржина. Вовед.... Случајни настани и веројатност... 5.. Простор на случајни настани... 5.. Аксиоми на веројатност... 9.3. Класичен
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2011/2012. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО
56. РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА 2013 Скопје, 11 мај IV година (решенија на задачите)
56. РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА 03 Скопје, мај 03 IV година (решенија на задачите) Задача. Птица со маса 500 лета во хоризонтален правец и не внимавајќи удира во вертикално поставена прачка на растојание
ФРАКТАЛИ: ДЕФИНИЦИЈА, КОНСТРУКЦИЈА, СВОЈСТВА И ПРИМЕНА. Елена Хаџиева 1 Јован Петкоски 2 1. ВОВЕД
МАТЕМАТИЧКИ ОМНИБУС, 3 (2018), 21 41 http://im-pmf.weebly.com/matematicki-omnibus-kniga-3.html ФРАКТАЛИ: ДЕФИНИЦИЈА, КОНСТРУКЦИЈА, СВОЈСТВА И ПРИМЕНА Елена Хаџиева 1 Јован Петкоски 2 1. ВОВЕД Една од воведните
4.3 Мерен претворувач и мерен сигнал.
4.3 Мерен претворувач и мерен сигнал. 1 2 Претворањето на процесната величина во мерен сигнал се изведува со помош на мерен претворувач. Може да се каже дека улогата на претворувачот е претворање на енергијата
I. Теорија на грешки
I. Теорија на грешки I.. Вовед. Еден отпорник со назначена вредност од 000 Ω, измерен е со многу точна постапка и добиена е вредност од 000,9Ω. Да се одреди номиналната вредност на, конвенционално точната
налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm
1 Два тачкаста наелектрисања 1 400 p и 100p налазе се у диелектрику релативне диелектричне константе ε на међусобном растојању ( 1cm ) као на слици 1 Одредити силу на наелектрисање 3 100p када се оно нађе:
Изомерија. Видови на изомерија
Изомерија Видови на изомерија Изомерија Изомери се соединенија кои имаат иста молекулска формула, а различни својства (физички и/или хемиски). Различните својства се должат на различната молекулска структура.
MEHANIKA NA FLUIDI. IV semestar, 6 ECTS Вонр. проф. d-r Zoran Markov. 4-Mar-15 1
MEHANIKA NA FLUIDI IV semestar, 6 ECTS Вонр. проф. d-r Zoran Markov 1 СОДРЖИНА 1. Вовед во механиката на флуидите 2. Статика на флуидите 3. Кинематика на струењата 4. Динамика на идеален флуид 5. Некои
РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА
РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА 006. Задатак. Одредити вредност израза: а) : за, и 69 0, ; б) 9 а) Како је за 0 и 0 дати израз идентички једнак изразу,, : : то је за дате вредности,
ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА
ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА 1. Допуни шта недостаје: а) 5m = dm = cm = mm; б) 6dm = m = cm = mm; в) 7cm = m = dm = mm. ПОЈАМ ПОВРШИНЕ. Допуни шта недостаје: а) 10m = dm = cm = mm ; б) 500dm = a
Примена на Matlab за оптимизација на режимите на работа на ЕЕС
6. СОВЕТУВАЊЕ Охрид, 4-6 октомври 2009 Мирко Тодоровски Ристо Ачковски Јовица Вулетиќ Факултет за електротехника и информациски технологии, Скопје Примена на Matlab за оптимизација на режимите на работа
ИНТЕРПРЕТАЦИЈА на NMR спектри. Асс. д-р Јасмина Петреска Станоева
ИНТЕРПРЕТАЦИЈА на NMR спектри Асс. д-р Јасмина Петреска Станоева Нуклеарно магнетна резонанца Нуклеарно магнетна резонанца техника на молекулска спектроскопија дава информација за бројот и видот на атомите
3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни
ТАЧКА. ПРАВА. РАВАН Талес из Милета (624 548. пре н. е.) Еуклид (330 275. пре н. е.) Хилберт Давид (1862 1943) 3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни Настанак геометрије повезује
6.5 Површина круга и његових делова
7. Тетива је једнака полупречнику круга. Израчунај дужину мањег одговарајућег лука ако је полупречник 2,5 сm. 8. Географска ширина Београда је α = 44 47'57", а полупречник Земље 6 370 km. Израчунај удаљеност
Остава на монети од археолошкиот локалитет Баргала II (каталог)
Остава на монети од археолошкиот локалитет Баргала II (каталог) Билјана Јовановска Републички завод за заштита на спомениците на културата - Скопје Трајче Нацев Завод за заштита на спомениците на културата
ЗБИРКА ЗАДАЧИ ПО ТЕОРИЈА НА ДВИЖЕЊЕТО НА МОТОРНИТЕ ВОЗИЛА
УНИВЕРЗИТЕТ СВ. КИРИЛ И МЕТОДИЈ ВО СКОПЈЕ МАШИНСКИ ФАКУЛТЕТ СКОПЈЕ МИЛАН ЌОСЕВСКИ ЗБИРКА ЗАДАЧИ ПО ТЕОРИЈА НА ДВИЖЕЊЕТО НА МОТОРНИТЕ ВОЗИЛА Z v t T Gt Tt 0 Rt Rat Rvt rd Tvt Tat Xt e Zt X Скопје, 2016
ПРИМЕНЕТИ МЕТОДИ НА ИСТРАЖУВАЊЕ НА ПОЈАВИ И НАОЃАЛИШТА НА ЗЛАТО ВО Р. МАКЕДОНИЈА
ПРИМЕНЕТИ МЕТОДИ НА ИСТРАЖУВАЊЕ НА ПОЈАВИ И НАОЃАЛИШТА НА ЗЛАТО ВО Р. МАКЕДОНИЈА Виолета Стефанова *, Виолета Стојанова * Апстракт Во овој труд се опфатени методите на проспекција на појавите на злато,
ОБЛАСТИ: 1) Тачка 2) Права 3) Криве другог реда
ОБЛАСТИ: ) Тачка ) Права Jov@soft - Март 0. ) Тачка Тачка је дефинисана (одређена) у Декартовом координатном систему са своје две коодринате. Примери: М(5, ) или М(-, 7) или М(,; -5) Jov@soft - Март 0.
ПЕТТО СОВЕТУВАЊЕ. Охрид, 7 9 октомври ДМС Софтвер "WINDOWS" за дистибутивните системи
ПЕТТО СОВЕТУВАЊЕ Охрид, 7 9 октомври 2007 Оливер Мирчевски, дипл.ел.инж Влатко Манев дипл.ел.инж Неоком А.Д., Скопје М-р Бранислав Брбаклиќ, дипл. инг. ДМС Група, Нови Сад Вон.Проф. Д-р Весна Борозан Факултет
Број јуни 2015, среда година LXXI
Број 100 17 јуни 2015, среда година LXXI www.slvesnik.com.mk contact@slvesnik.com.mk СОДРЖИНА Стр. 3142. Одлука за доделување на концесија за експлоатација на минерална суровина песок и чакал на Друштвото
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2011/2012. година ТЕСТ 1 МАТЕМАТИКА УПУТСТВО
УСЛОВИ НА ПАРИТЕТ ВО МЕЃУНАРОДНИТЕ ФИНАНСИИ И ПРЕДВИДУВАЊЕ НА ДЕВИЗНИОТ КУРС. Parity Conditions in International Finance & Currency Forecasting
УСЛОВИ НА ПАРИТЕТ ВО МЕЃУНАРОДНИТЕ ФИНАНСИИ И ПРЕДВИДУВАЊЕ НА ДЕВИЗНИОТ КУРС Parity Conditions in International Finance & Currency Forecasting Вовед Менаџерите на меѓународните компании, инвеститори, увозници
ОСНОВИ НА ДРВЕНИ КОНСТРУКЦИИ 3. СТАБИЛНОСТ НА КОНСТРУКТИВНИТЕ ЕЛЕМЕНТИ
ОСНОВИ НА ДРВЕНИ КОНСТРУКЦИИ 3. СТАБИЛНОСТ НА КОНСТРУКТИВНИТЕ ЕЛЕМЕНТИ Општо Елементите на дрвените конструкции мора да се пресметаат така да се докаже дека конструкцијата во целина со доволна сигурност
5. Динамика на конструкции
Динамика на конструкции. Динамика на конструкции Задача. За дадната армирано бтонска конструкција да с опрдли кружната фрквнција ω приодата на слободнит нпригушни осцилации Т n на основниот тон. Модулот
2.3. Решавање линеарних једначина с једном непознатом
. Решимо једначину 5. ( * ) + 5 + Провера: + 5 + 0 5 + 5 +. + 0. Број је решење дате једначине... Реши једначину: ) +,5 ) + ) - ) - -.. Да ли су следеће једначине еквивалентне? Провери решавањем. ) - 0
ЕВН ЕЛЕКТРОСТОПАНСТВО НА МАКЕДОНИЈА
20140300978 ЕВН ЕЛЕКТРОСТОПАНСТВО НА МАКЕДОНИЈА ИЗМЕНИ И ДОПОЛНУВАЊЕ НА МРЕЖНИ ПРАВИЛА ЗА ДИСТРИБУЦИЈА НА ЕЛЕКТРИЧНА ЕНЕРГИЈА ( СЛУЖБЕН ВЕСНИК НА РЕПУБЛИКА МАКЕДОНИЈА БР. 87/12) Член 1 Во мрежните правила
ДРВОТО КАКО МАТЕРИЈАЛ ЗА
ГРАДЕЖЕН ФАКУЛТЕТ-СКОПЈЕ Катедра за бетонски и дрвени конструкции ДРВОТО КАКО МАТЕРИЈАЛ ЗА ГРАДЕЖНИ КОНСТРУКЦИИ Доцент д-р Тони Аранѓеловски ОСНОВИ НА ДРВЕНИ КОНСТРУКЦИИ СТРУКТУРА НА ДРВОТО Дрвото е биолошки,
г) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве
в) дијагонала dd и страница aa квадрата dd = aa aa dd = aa aa = није рац. бр. нису самерљиве г) страница aa и пречник RR описаног круга правилног шестоугла RR = aa aa RR = aa aa = 1 јесте рац. бр. јесу
Ветерна енергија 3.1 Вовед
3 Ветерна енергија 3.1 Вовед Енергијата на ветерот е една од првите форми на енергија која ја користел човекот. Уште старите Египќани ја користеле за задвижување на своите бродови и ветерни мелници. Ваквиот
У Н И В Е Р З И Т Е Т С В. К И Р И Л И М Е Т О Д И Ј В О С К О П Ј Е
У Н И В Е Р З И Т Е Т С В. К И Р И Л И М Е Т О Д И Ј В О С К О П Ј Е А Р Х И Т Е К Т О Н С К И Ф А К У Л Т Е Т П Р И Н Ц И П И Н А С Т А Т И К А Т А Вонр. проф. д-р Ана Тромбева-Гаврилоска Вонр. проф.
Универзитет св.кирил и Методиј-Скопје Природно Математички факултет. Семинарска работа. Предмет:Атомска и нуклеарна физика. Тема:Фотоелектричен ефект
Универзитет св.кирил и Методиј-Скопје Природно Математички факултет Семинарска работа Предмет:Атомска и нуклеарна физика Тема:Фотоелектричен ефект Изработил Саздова Ирена ментор проф.д-р Драган Јакимовски
Методина гранични елементи за инженери
Методина гранични елементи за инженери доц. д-р Тодорка Самарџиоска Градежен факултет УКИМ -Скопје Типовина формулации со гранични елементи директна формулација: Интегралната равенка е формулирана во врска
6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре
0 6.. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре У обичном говору се често каже да су неки предмети симетрични. Примери таквих објеката, предмета, геометријских
Математика Тест 3 Кључ за оцењивање
Математика Тест 3 Кључ за оцењивање ОПШТЕ УПУТСТВО ЗА ОЦЕЊИВАЊЕ Кључ за оцењивање дефинише начин на који се оцењује сваки поједини задатак. У општим упутствима за оцењивање дефинисане су оне ситуације
ПРЕОДНИ ПРОЦЕСИ ПРИ ВКЛУЧУВАЊЕ НА КОНДЕНЗАТОРСКИТЕ БАТЕРИИ КАЈ ЕЛЕКТРОЛАЧНАТА ПЕЧКА
8. СОВЕТУВАЊЕ Охрид, 4 септември Бранко Наџински Илија Хаџидаовски Макстил АД ПРЕОДНИ ПРОЦЕСИ ПРИ ВКЛУЧУВАЊЕ НА КОНДЕНЗАТОРСКИТЕ БАТЕРИИ КАЈ ЕЛЕКТРОЛАЧНАТА ПЕЧКА КУСА СОДРЖИНА Во овој труд е разгледан
С О Д Р Ж И Н А
Број 29 Год. LXVI Понеделник, 1 март 2010 Цена на овој број е 380 денари www.slvesnik.com.mk contact@slvesnik.com.mk С О Д Р Ж И Н А Стр. 502. Правилник за начинот и мерењето на изложеноста на професионално
Заземјувачи. Заземјувачи
Заземјувачи Заземјување претставува збир на мерки и средства кои се превземаат со цел да се обезбедат нормални услови за работа на системот и безбедно движење на луѓе и животни во близина на објектот.
БИОФИЗИКА Биомеханика. Доцент Др. Томислав Станковски
БИОФИЗИКА Биомеханика Доцент Др. Томислав Станковски За интерна употреба за потребите на предметот Биофизика Катедра за Медицинска Физика Медицински Факултет Универзитет Св. Кирил и Методиj, Скопjе Септември
ТЕХНИЧЕСКИ ПАРАМЕТРИ ПРЕДИ ДА СЕ ОБЪРНЕТЕ КЪМ СЕРВИЗА
4. Никога не потапяйте уреда във вода или друга течност и не позволявайте вода да проникне до електрическата част на уреда, докато го почиствате! 5. Не използвайте абразивни предмети или разтворители!
Решенија на задачите за III година LII РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА ЗА УЧЕНИЦИТЕ ОД СРЕДНИТЕ УЧИЛИШТА ВО РЕПУБЛИКА МАКЕДОНИЈА 16 мај 2009
LII РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА ЗА УЧЕНИЦИТЕ ОД СРЕДНИТЕ УЧИЛИШТА ВО РЕПУБЛИКА МАКЕДОНИЈА 6 мај 9 III година Задача. Микроскоп е составен од објектив со фокусно растојание, c и окулар со фокусно растојание,8c.
Тест за I категорија, Државен натпревар по хемија, 16 мај
Шифра: ЗА КОМИСИЈАТА Поени од прашања: од задачи: Вкупно: Прегледал: I. ТЕСТ СО ПОВЕЌЕ ПОНУДЕНИ ОДГОВОРИ ОД КОИ САМО ЕДЕН Е ТОЧЕН (Се одговара со заокружување на само еден од понудените одговори под A,
6.7. Делтоид. Делтоид је четвороугао који има два пара једнаких суседних страница.
91.*Конструиши трапез у размери 1:200, ако је дато: = 14 m, = 6 m, = 8 m и β = 60. 92.*Ливада има облик трапеза. Нацртај је у размери 1:2000, ако су јој основице 140 m и 95 m, један крак 80 m, и висина
ЕЛЕКТРОМАГНЕТНА АНАЛИЗА И ПРЕСМЕТКА НА ЕЛЕКТРОМАГНЕТНА СИЛА КАЈ МОДЕЛ НА СИНХРОН ЛИНЕАРЕН МОТОР ПО МЕТОД НА КОНЕЧНИ ЕЛЕМЕНТИ
6. СОВЕТУВАЊЕ Охрид, 4-6 октомври 2009 Мирка Попниколова Радевска Благоја Арапиноски Технички Факултет, Битола Драган Видановски ЕЛЕМ, Подружница РЕК Битола ЕЛЕКТРОМАГНЕТНА АНАЛИЗА И ПРЕСМЕТКА НА ЕЛЕКТРОМАГНЕТНА
Теорија електричних кола
др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола i i i Милка Потребић др Милка Потребић, ванредни професор,
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 013/014. година ТЕСТ