7. ELEMENTARNE FUNKCIJE

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "7. ELEMENTARNE FUNKCIJE"

Transcript

1 Geodetski fkultet dr. sc. J. e-rkić Predvj iz Mtemtike 7. ELEMENTRNE FUNKIJE Među fukcijm koje su de formulom vžu ulogu imju tkozve elemetre fukcije. Pozvje svojstv elemetrih fukcij omogućit će lkše svldvje grdiv mtemtičke lize i rješvje mogih zdtk tehičke prirode. Rzmotrit ćemo ko prvo osove elemetre fukcije. Osove elemetre fukcije su:. poliomi. rciole fukcije. ekspoecijle fukcije. logritmske fukcije. opć potecij 6. trigoometrijske fukcije 7. ciklometrijske fukcije. Elemetre fukcije su fukcije koje se mogu doiti iz osovih elemetrih fukcij pomoću kočog roj ritmetičkih opercij ( - :) i kočog roj kompozicij elemetrih fukcij. Osim vedeih osovih ordit ćemo i sljedeće elemetre fukcije: 8. hiperole fukcije 9. re fukcije. lgerske fukcije su oe elemetre fukcije koje su de pomoću kompozicije rciolih fukcij potecirj s rciolim ekspoetom i s četri osove rčuske opercije. Trscedete fukcije su oe elemetre fukcije koje isu lgerske. Tu spdju ekspoecijle logritmske trigoometrijske ciklometrijske hiperole i re fukcije. Poliomi Poliomi su fukcije olik p L N i R i K i koeficijeti člov poliom poliom tog stupj p : R R p poliom ultog stupj tj. kostt 68

2 Geodetski fkultet dr. sc. J. e-rkić Predvj iz Mtemtike Pod ultočkom fukcije ul tj. f. Nultočke poliom f podrzumijevmo roj z koji fukcij poprim vrijedost p su oe vrijedosti od z koje je p ez dokz vodimo ek svojstv poliom: L. - Dv poliom po vrijli idetičo su jedk ko i smo ko su koeficijeti jedko visokih potecij međusoo jedki. - Svki se poliom -tog stupj može rstviti u produkt od lierih fktor: p ( )( ) L( ) gdje su ultočke tog poliom koje mogu iti reli i kompleksi rojevi. ko su eki od jh međusoo jedki govorimo o višestrukim ultočkm. Z komplekse ultočke vrijedi d dolze u pru tj. ko je i ultočk poliom od je i kojugiro kompleksi roj i ultočk tog poliom i im istu višestrukost. Primjer: Fktorizcij poliom. p ) ) p ( ) ( ) ( )( ) ( )( )( i)( i) Rciole fukcije Rciole fukcije su fukcije olik f P gdje su P Qm Q m zjedičkih ultočk. i poliomi stupj odoso m koji emju < m prv rciol fukcij m dijeljejem rojik s zivikom fukciju možemo pisti u oliku poliom i prve rciole fukcije. Dome: Skup svih relih rojev osim ultočk poliom Q u ziviku. Kodome: R Nultočke fukcije su ultočke poliom u rojiku tj. rješej jeddže. m P Nultočke poliom u ziviku zivmo polovim rciole fukcije. Prem tome d li se rdi o jedostrukoj ili višestrukoj ultočki fukcije (polu) govorimo o ultočki (polu) prvog ili višeg red. Osim tog ultočke (polovi) fukcije mogu iti prog i eprog red oviso o tome dli im je krtost pr ili epr roj. 69

3 Geodetski fkultet dr. sc. J. e-rkić Predvj iz Mtemtike P Kko skicirti grf rciole fukcije f? Qm. Odrediti ultočke fukcije f. U okolii ultočke prog (eprog) red fukcij e mijej (mijej) predzk.. Odrediti polove fukcije f i u jim crtti vertikle prvce koje zovemo vertiklim simptotm fukcije.u okolii pol prog (eprog) red fukcij e mijej (mijej) predzk. Grfovi ekih rciolih fukcij: H L H L H L - - H L Rstv prcijle rzlomke Rstviti rciolu fukciju f P prcijle rzlomke zči prikzti je ko Qm i ( ) gdje je ( ) ( ) lier fktor ( ) kvdrti fktor s egtivom diskrimitom zroj jedostvih rciolih fukcij pr. poliom Q. m 7

4 Geodetski fkultet dr. sc. J. e-rkić Predvj iz Mtemtike Primjer: Rstvlje prcijle rzlomke. ) ( ) 6 6 fl sustv triju jeddži s tri epozice: 6 fl rješeje sustv: 7 9 fl rstv prcijle rzlomke: 7 9. ) D D D D D fl sustv četiriju jeddži s četiri epozice: D D D fl rješeje sustv: D fl rstv prcijle rzlomke:. Ekspoecijle fukcije Fukciju olik f > zovemo ekspoecijlom fukcijom ze. 7

5 Geodetski fkultet dr. sc. J. e-rkić Predvj iz Mtemtike Svojstv ekspoecijlih fukcij:. Dome: R;. Skup vrijedosti: Skup svih pozitivih relih rojev tj. R ; f f f tj. ;. ( ). ( f f : f ) tj.. f tj. ; 6. ; 7. ijekcij s R R ; 8. > f je strogo rstuć fukcij; 9. < < f je strogo pdjuć fukcij. ; Grfovi ekih ekspoecijlih fukcij: e J N J N Logritmske fukcije Iverzu fukciju ekspoecujle fukcije ze i ozčvmo f log >. Vrijedi: log g f log ( f ) tj. > ( g ) tj. log R. Svojstv logritmskih fukcij: g zovemo logritmskom fukcijom i z jihove kompozicije:. Dome: Skup svih pozitivih relih rojev tj. R ;. Skup vrijedosti: R; f f f log log log > ;. ( tj. ). f f - f tj. log log log > ;. f () tj. log ; 7

6 Geodetski fkultet dr. sc. J. e-rkić Predvj iz Mtemtike 6. f ( ) f tj. log log > ; 7. ijekcij s R R; 8. > f je strogo rstuć fukcij; 9. < < f je strogo pdjuć fukcij; log. log > >. log Ovu vezu logritm po rzličitim zm ćemo dokzti. Iz i log log i. Td je log log ( ) log log. tj. log log log odoso log odkle slijedi tvrdj. log. Iz prethode dokze jedkosti z slijedi Neke specijle ze: log. log ko je z pišemo log umjesto log i zovemo dekdski logritm. ko je z e pišemo l umjesto log i zovemo prirodi logritm. Vez dekdskih i prirodih logritm (prem.): l log l M l log e.... l l M l 989 Grfovi ekih logritmskih fukcij: e l log log log l l l Opć potecij Općom potecijom zivmo fukciju c f e e c l cl > c R. f : R R 7

7 Geodetski fkultet dr. sc. J. e-rkić Predvj iz Mtemtike N primjer: Grfovi fukcij i K. N. Grfovi fukcij N ko iverzih fukcij od. Trigoometrijske fukcije Sius Ozk: si si : R Grf: [ ] si π π π π π π 7

8 Geodetski fkultet dr. sc. J. e-rkić Predvj iz Mtemtike Svojstv:. si si tj. si je epr fukcij ( π ). si si k k Z tj. si je periodič fukcij s periodom π. si je surjektiv fukcij Kosius Ozk: cos cos : R Grf: [ ] cos π π π π π π Svojstv:. cos cos tj. cos je pr fukcij ( π ). cos cos k k Z tj. si je periodič fukcij s periodom π. cos je surjektiv fukcij. Tges Ozk: tg si tg cos cos π tg : R \ kπ k Z R Grf: tg π π π π π π Svojstv:. tg tg tj. tg je epr fukcij ( π ). tg tg k k Z tj. tg je periodič fukcij s periodom π. 7

9 Geodetski fkultet dr. sc. J. e-rkić Predvj iz Mtemtike Kotges Ozk: ctg cos ctg si si ctg R \ kπ k Z R Grf: : { } ctg π π π π π π π Svojstv:. ctg ctg tj. ctg je epr fukcij ( π ). ctg ctg k k Z tj. ctg je periodič fukcij s periodom π. Još ek vž svojstv trigoometrijskih fukcij.. si ± si cos ± cos si cos ± cos cos ± si si tg ± tg tg ( ± ) m tgtg ctg ctg m ctg( ± ) ctg ± ctg. si cos. si si cos cos cos si. 6. si si cos ( ) cos ( ) 7. cos cos cos ( ) cos ( ) 8. si cos si( ) si( ) 9. si si si cos. si si cos si dicioe formule 76

10 Geodetski fkultet dr. sc. J. e-rkić Predvj iz Mtemtike. cos cos cos cos. cos cos si si iklometrijske fukcije rkussius Promtrmo restrikciju fukcije f si itervl π π Si si π π : [ ]. π π : Fukcij Si je strogo rstuć ijekcij. Defiirmo jeu iverzu fukciju s: π π [ ] rcsi Si :. Grf fukcije rcsi π π Dkle si rcsi rcsi( si ) π π. Npome: Uočimo d je fukcij f si strogo mooto svkom od itervl π π kπ kπ k Z i d se svki od jih preslikv itervl [ ]. Dkle svkom i se od jih mogl defiirti pripd iverz fukcij i sve i te fukcije ile međusoo rzličite. 77

11 Geodetski fkultet dr. sc. J. e-rkić Predvj iz Mtemtike rkuskosius Promtrmo restrikciju fukcije f cos itervl [ π ] : os cos [ ]: [ π ] [ π ]. Fukcij os je strogo pdjuć ijekcij. Defiirmo jeu iverzu fukciju s: [ ] [ ] rccos os π :. Grf fukcije rccos π π Dkle [ ] cos rccos rccos cos π. Vrijedi pome ko i u prethodom slučju. rkustges Promtrmo restrikciju fukcije f tg itervl π π Tg tg π π R :. π π : Fukcij Tg je strogo rstuć ijekcij. Defiirmo jeu iverzu fukciju s: :. rctg Tg R π π Grf fukcije rctg πê πê 78

12 Geodetski fkultet dr. sc. J. e-rkić Predvj iz Mtemtike Dkle tg rctg R rctg tg π π. rkuskotges Promtrmo restrikciju fukcije f ctg itervl ( π ) : tg ctg ( ): ( π ) R. π Fukcij tg je strogo pdjuć ijekcij. Defiirmo jeu iverzu fukciju s: ( ) rc ctg tg R π :. Grf fukcije rcctg π Dkle ctg ( rcctg) R rcctg ctg π ) (. πê Hiperole fukcije Sius hiperoli Kosius hiperoli Ozk: sh Ozk: ch e e e e sh sh R R ch ch : R : [ ) Svojstv: Svojstv:. sh. ch. sh sh. ch ch ( ) tj. sh je epr fukcij tj. ch je pr fukcij. sh je strogo rstuć ijekcij.. ch strogo rste itervlu [ ) ch strogo pd itervlu ( ]. ch je surjektiv fukcij. 79

13 Geodetski fkultet dr. sc. J. e-rkić Predvj iz Mtemtike Grf fukcije sh : Grf fukcije ch : Tges hiperoli Kotges hiperoli Ozk: th Ozk: cth sh e e ch e e th cth ch e e sh e e th R cth : R \ R \ : {} [ ] Svojstv: Svojstv: ( ) h( ) cth. th th. ct tj. th je pr fukcij tj. cth je pr fukcij. th je strogo rstuć ijekcij.. cth je strogo pdjuć ijekcij. Grf fukcije th : Grf fukcije cth : Još ek svojstv hiperolih fukcij sh ± sh ch ± ch sh. dicioe formule ch( ± ) ch ch ± sh sh th ± th. th( ± ) ± thth 8

14 Geodetski fkultet dr. sc. J. e-rkić Predvj iz Mtemtike. cth( ) ± cth cth ± cth ± cth. ch sh. sh sh ch ch ch sh 6. th 7. th th cth 8. cth cth 9. sh sh ch( ) ch( ). ch ch ch( ) ch( ) re fukcije re fukcije su iverze fukcije hiperolih fukcij. re sius hiperoli Ozk: rsh rsh sh - : RöR Grf fukcije rsh : Izvod formule z rsh ko iverze fukcije od sh: e e e e sh e e e e e ( e ) ± ± 8

15 Geodetski fkultet dr. sc. J. e-rkić Predvj iz Mtemtike Logritmirjem posljedje jedkosti i odirom pozitivog predzk zog područj defiicije fukcije l slijedi ( l ) tj. rsh l( ) re kosius hiperoli. Ozk: rch f ch ije ijektiv (ijektiv) fukcij p ćemo promtrtu jeu Fukcij restrikciju itervl [ ) : h ch [ ) :[ ) [ ) Fukcij h je strogo rstuć ijekcij. Defiirmo jeu iverzu fukciju:. rch h :[ ) [ ). Grf fukcije rch : Izvod formule z rch ko iverze fukcije od h: e e e e h e e e e e ( e ) ± ± 8

16 Geodetski fkultet dr. sc. J. e-rkić Predvj iz Mtemtike Logritmirjem posljedje jedkosti i odirom pozitivog predzk zog područj defiicije fukcije h - tj. e e slijedi l tj. rch l. logo z h ch ( ] ( ] [ ) rch h :[ ) ( ] s rch l( ) : možemo defiirti jeu iverzu fukciju. re tges hiperoli Ozk: rth th : R ö (- ) rth th - : (- ) R Grf fukcije rth : Izvod formule z rth ko iverze fukcije od th: sh e e e e ch e e e e th e e ( ) ( ) e e e e e e e Logritmirjem posljedje jedkosti slijedi 8

17 Geodetski fkultet dr. sc. J. e-rkić Predvj iz Mtemtike l tj. rth l l re kotges hiperoli Ozk: rcth cth : R \{} ö R \[- ] rcth cth - : R \[- ]ö R \{} Izvod formule z rcth ko iverze fukcije od cth: <. ch e e e e sh e e e e cth e e e e e e e e e Logritmirjem posljedje jedkosti slijedi l tj. rcth l l >. Grf fukcije rcth : 8

PREGLED DEFINICIJA I FORMULA ZA 2. KOLOKVIJ IZ MATEMATIKE 1 (pomagalo dozvoljeno na kolokviju)

PREGLED DEFINICIJA I FORMULA ZA 2. KOLOKVIJ IZ MATEMATIKE 1 (pomagalo dozvoljeno na kolokviju) PREGLED DEFINICIJA I FORMULA ZA KOLOKVIJ IZ MATEMATIKE (pomglo dozvoljeo kolokviju) Opći pojmovi: I REALNE FUNKCIJE JEDNE REALNE VARIJABLE Nek su X, Y R Rel fukcij f : X Y je svko pridruživje koje svkom

Διαβάστε περισσότερα

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike 1 8. NIZOVI

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike 1 8. NIZOVI Geodetski fkultet, dr sc J Beb-Brkić Predvj iz Mtemtike 8 NIZOVI Pojm iz Nek je N skup prirodih brojev Prem ekom prvilu svki broj iz N zmijeimo ekim brojem:,,,, R Št smo dobili? Budući d je svkom elemetu

Διαβάστε περισσότερα

= + injekcija. Rješenje 022 Kažemo da funkcija f ima svojstvo injektivnosti ili da je ona injekcija ako vrijedi

= + injekcija. Rješenje 022 Kažemo da funkcija f ima svojstvo injektivnosti ili da je ona injekcija ako vrijedi Zdtk 0 (Anstzij, gimnzij) Provjeri je li funkcij f log( 5) + + injekcij Rješenje 0 Kžemo d funkcij f im svojstvo injektivnosti ili d je on injekcij ko vrijedi f ( ) f ( ) Dkle, funkcij je injekcij ko rzličitim

Διαβάστε περισσότερα

PREGLED MINIMALNIH ZNANJA IZ MATEMATIKE ZA ZANIMANJA:

PREGLED MINIMALNIH ZNANJA IZ MATEMATIKE ZA ZANIMANJA: PREGLED MINIMALNIH ZNANJA IZ MATEMATIKE ZA ZANIMANJA: elektrotehičr tehičr z rčulstvo tehičr z elektroiku tehičr z električe strojeve s primijejeim rčulstvom. rzred BROJEVI - rčuske opercije s prirodim,

Διαβάστε περισσότερα

FOURIEROVI REDOVI I INTEGRALI

FOURIEROVI REDOVI I INTEGRALI FOURIEROVI REDOVI I INEGRALI Pri rješvju rzličitih ižijerskih prole koriste se periodičke fukcije. Pojvljuju se pod terio periodičke fukcije, u ovu skupiu spdju trigooetrijske fukcije, sius i kosius, koje

Διαβάστε περισσότερα

2.6 Nepravi integrali

2.6 Nepravi integrali 66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [,

Διαβάστε περισσότερα

DETERMINANTE I MATRICE

DETERMINANTE I MATRICE Gimzij: Lucij Vrji Mturl rdj: ETERMINANTE I MATRICE Izrdio: iko Koruić, učeik 4 G Metor: Mile Broić, profesor U Zgreu, 0 siječj 996 SARŽAJ I UVO II ETERMINANTE etermite drugog red etermite trećeg red 3

Διαβάστε περισσότερα

Uvođenje pojma određenog integrala u srednjoškolskoj nastavi matematike 1

Uvođenje pojma određenog integrala u srednjoškolskoj nastavi matematike 1 Uvođeje pojm određeog itegrl u sredjoškolskoj stvi mtemtike 1 1. Uvod Iv Božić 2, Tomislv Šikić 3 S pojmom itegrl i itegrlim rčuom učeici se prvi put susreću u četvrtom rzredu sredje škole. S ozirom d

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1 Nizovi 5 a = 5 +3+ + 6 a = 3 00 + 00 3 +5 7 a = +)+) ) 3 3 8 a = 3 +3+ + +3 9 a = 3 5 0 a = 43/ ++ 5 3/ +5+ a = + + a = + ) 3 a = + + + 4 a = 3 3 + 3 ) 5 a = +++ 6 a = + ++ 3 a = +)!++)! +3)! a = ) +3

Διαβάστε περισσότερα

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor I. VEKTORI d. sc. Min Rodić Lipnović 009./010. 1 Pojm vekto A B dužin A B usmjeen (oijentin) dužin (n se koj je točk početn, koj kjnj) A B vekto - kls ( skup ) usmjeenih dužin C D E F AB je epeentnt vekto

Διαβάστε περισσότερα

I N Ţ E N J E R S K A M A T E M A T I K A 1

I N Ţ E N J E R S K A M A T E M A T I K A 1 I N Ţ E N J E R S K A M A T E M A T I K A Quod ert demostrdum. [ Što je treblo dokzti. Skrćeo: Q.e.d.] LATINSKI PREVOD EUKLIDOVIH RIJEČI. P r e d v j z š e s t u s e d m i u s t v e u kdemskoj 8/9. odii

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

R A D N I M A T E R I J A L I

R A D N I M A T E R I J A L I Krmen Rivier R A D N I M A T E R I J A L I M A T E M A T I K A II. dio SPLIT 7. IV. FUNKCIJE 4.. POTREBNO PREDZNANJE 4.. REALNE FUNKCIJE JEDNE VARIJABLE 4.. INTERPOLACIJA 7 4.. NEKE OSNOVNE ELEMENTARNE

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

1. ELEMENTI LOGIKE I TEORIJE SKUPOVA IZJAVE, VEZNICI, KVANTIFIKATORI

1. ELEMENTI LOGIKE I TEORIJE SKUPOVA IZJAVE, VEZNICI, KVANTIFIKATORI Geodetsi fultet, dr. sc. J. eb-rić Predvj iz Mtemtie. ELEMETI LOGIKE I TEORIJE KUPOV IZJVE, VEZICI, KVTIFIKTORI eolio riječi o mtemtičoj logici. Upotrebljvt ćemo pojmove mtemtiče logie li se ećemo jom

Διαβάστε περισσότερα

A MATEMATIKA Zadana je z = x 3 y + 1

A MATEMATIKA Zadana je z = x 3 y + 1 A MATEMATIKA (.5.., treći kolokvij). Zdn je z 3 + os. () Izrčunjte ngib plohe u pozitivnom smjeru -osi. (b) Izrčunjte ngib pod ) u točki T(, ). () Izrčunjte z u T(, ). (5 bodov). Zdn je z 3 ln. () Izrčunjte

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Trigonometrijske funkcije

Trigonometrijske funkcije 9 1. Trigoometrijske fukcije 1.1. Ako je α + β π,izračuaj 1 + tg α)1 + tg β). 4 1.. Izračuaj zbroj log a tg 1 + log a tg +...+ log a tg 89. 1.3. Izračuaj 40 0 si 0 bez uporabe tablica ili račuala. 1.4.

Διαβάστε περισσότερα

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo GRANIČNE VREDNOSTI FUNKCIJA zdci II deo U sledećim zdcim ćemo korisii poznu grničnu vrednos: li i mnje vrijcije n i 0 n ( Zdci: ) Odredii sledeće grnične vrednosi: Rešenj: 4 ; 0 g ; 0 cos v) ; g) ; 4 ;

Διαβάστε περισσότερα

Kinematika materijalne toke. 2. Prirodni koordinatni sustav. 1. Vektorski nain definiranja gibanja. Krivocrtno gibanje materijalne toke

Kinematika materijalne toke. 2. Prirodni koordinatni sustav. 1. Vektorski nain definiranja gibanja. Krivocrtno gibanje materijalne toke Kioco gibje meijle oke Kiemik meijle oke. dio ) Zje kiocog gibj b) Bi i ubje Položj meijle oke u skom euku eme možemo defiii slijedee ie:. Vekoski i defiij gibj (). Piodi i defiij gibj s s (). Vekoski

Διαβάστε περισσότερα

4.1 Elementarne funkcije

4.1 Elementarne funkcije . Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

Mališa Žižoviæ Olivera Nikoliæ

Mališa Žižoviæ Olivera Nikoliæ Mliš Žižoviæ Oliver Nikoliæ UNIVERZITET SINGIDUNUM Prof. dr Mliš Žižović Prof. dr Oliver Nikolić KVANTITATIVNE METODE Šesto izmejeo i dopujeo izdje Beogrd,. KVANTITATIVNE METODE Autori: Prof. dr Mliš Žižović

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Geodetski akultet, dr sc J Beban-Brkić Predavanja iz Matematike 9 GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Granična vrijednost unkcije kad + = = Primjer:, D( )

Διαβάστε περισσότερα

ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla.

ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla. Mnogougo oji im četii stnice nziv se četvoougo. ČETVOROUGAO D δ δ γ C A α β B β Z svi četvoougo vži im je zi unutšnji i spoljšnji uglov isti i iznosi 0 0 α β γ δ 0 0 α β γ δ 0 0 Njpe žemo četvoouglovi

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE OŠTROG UGLA

TRIGONOMETRIJSKE FUNKCIJE OŠTROG UGLA TRIGONOMETRIJSKE FUNKCIJE OŠTROG UGLA Trignmetrij je prvitn predstvlj lst mtemtike kje se vil izrčunvnjem nepzntih element trugl pmću pzntih. Sm njen nziv ptiče d dve grčke reči TRIGONOS- št znči trug

Διαβάστε περισσότερα

MJERA I INTEGRAL završni ispit 4. srpnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!)

MJERA I INTEGRAL završni ispit 4. srpnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (ukupo 8 bodova) MJERA I INTEGRAL završi ispit 4. srpja 216. (Kjige, bilježice, dodati papiri i kalkulatori isu dozvoljei!) (a) (2 boda) Defiirajte p za ekspoete p [1, +. (b) (6 bodova) Dokažite da

Διαβάστε περισσότερα

METODA SEČICE I REGULA FALSI

METODA SEČICE I REGULA FALSI METODA SEČICE I REGULA FALSI Zadatak: Naći ulu fukcije f a itervalu (a,b), odoso aći za koje je f()=0. Rešeje: Prvo, tražimo iterval (a,b) a kome je fukcija eprekida, mootoa i važi: f(a)f(b)

Διαβάστε περισσότερα

Nacionalni centar za vanjsko vrednovanje obrazovanja MATEMATIKA

Nacionalni centar za vanjsko vrednovanje obrazovanja MATEMATIKA Ncioli cetr z vjsko vredovje orzovj MATEMATIKA viš rzi KNJIŽICA FORMULA VIŠA VIŠA RAZINA RAZINA Kopleks roj: i i Mtetik Kopleks roj: Kopleks roj: i z i i z i i z R Kjižic forul VIŠA (cos RAZINA si Kopleks

Διαβάστε περισσότερα

PIRAMIDA I ZARUBLJENA PIRAMIDA. - omotač se sastoji od bočnih strana(najčešće jednakokraki trouglovi), naravno trostrana piramida u omotaču

PIRAMIDA I ZARUBLJENA PIRAMIDA. - omotač se sastoji od bočnih strana(najčešće jednakokraki trouglovi), naravno trostrana piramida u omotaču PIRAMIDA I ZARULJENA PIRAMIDA Slično ko i kod pizme i ovde ćemo njpe ojniti oznke... - oeležvmo dužinu onovne ivice - oeležvmo dužinu viine pimide - oeležvmo dužinu viine očne tne ( potem) - oeležvmo dužinu

Διαβάστε περισσότερα

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx.

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx. Odred eni integrli Osnovne osobine odred enog integrl: fx), fx) fx) b c fx), fx) + c fx), 4 ) b αfx) + βgx) α fx) + β gx), 5 fx) F x) b F b) F ), gde je F x) fx), 6 Ako je f prn funkcij fx) f x), x R ),

Διαβάστε περισσότερα

Metode rješavanja izmjeničnih krugova

Metode rješavanja izmjeničnih krugova Strnic: V - u,i u(t) i(t) etode rešvn izmeničnih kruov uf(t) konst if(t)konst etod konturnih stru etod npon čvorov hevenin-ov teorem Norton-ov teorem illmn-ov teorem etod superpozicie t Strnic: V - zdtk

Διαβάστε περισσότερα

REALNA FUNKCIJA realnom funkcijom n realnih nezavisno-promjenljivih

REALNA FUNKCIJA realnom funkcijom n realnih nezavisno-promjenljivih REALNA FUNKCIJA Fukciju f čiji je skup vrijedosti V podskup skupa R realih brojeva zovemo realom fukcijom. Ako je, pritom, oblast defiisaosti D eki podskup skupa R uređeih -torki realih brojeva, kažemo

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

KUPA I ZARUBLJENA KUPA

KUPA I ZARUBLJENA KUPA KUPA I ZAUBLJENA KUPA KUPA Povšin bze B Povšin omotč M P BM to jet P B to jet S O o kupe Oni peek Obim onog peek O op Povšin onog peek P op Pimen pitgoine teoeme vnotn jednkotn kup je on kod koje je, p

Διαβάστε περισσότερα

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike OSNOVNI TEOREMI DIFERENCIJALNOG RAČUNA

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike OSNOVNI TEOREMI DIFERENCIJALNOG RAČUNA Geodetski akultet dr s J Beba-Brkić Predavaja iz Matematike OSNOVNI TEOREMI DIFERENCIJALNOG RAČUNA Teoremi koje ćemo avesti u ovom poglavlju su osovi teoremi koji osiguravaju ispravost primjea diereijalog

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

1 Ekstremi funkcija više varijabli

1 Ekstremi funkcija više varijabli 1 Ekstremi funkcij više vrijbli Definicij ekstrem funkcije: Funkcij u = f(x 1, x 2,, x n ) im u točki T ( 1, 2,, n ) A) LOKALNI MINIMUM f( 1, 2,, n ) ko z svku točku T vrijedi nejednkost: T ( 1 + dx 1,

Διαβάστε περισσότερα

1 Neprekidne funkcije na kompaktima

1 Neprekidne funkcije na kompaktima Neprekide fukcije a kompaktima.. Teorem. Neka je K kompakta podskup metričkog prostora X, a f : X Y eprekido preslikavaje u metrički prostor Y. Tada je slika f(k) kompakta skup u Y..2. Zadatak. Neka su

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

I N Ž E N J E R S K A M A T E M A T I K A 1

I N Ž E N J E R S K A M A T E M A T I K A 1 54 I N Ž E N J E R S K A M A T E M A T I K A Repetitio est mter studiorum. [Povljje je mj učej / zj.] (LATINSKA IZREKA) P r e d v j u V s e d m i c i.. Pojm i osov svojstv griče vrijedosti iz Pojmovi iz

Διαβάστε περισσότερα

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike DERIVACIJA

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike DERIVACIJA Geodetski akultet dr sc J Beban-Brkić Predavanja iz Matematike DERIVACIJA Pojam derivacije Glavne ideje koje su vodile do današnjeg shvaćanja derivacije razvile su se u 7 stoljeću kada i započinje razvoj

Διαβάστε περισσότερα

Rje²enje doma e zada e 2. Inºenjerska matematika 1

Rje²enje doma e zada e 2. Inºenjerska matematika 1 Uiverzitet u Sarajevu Elektrotehi ki fakultet Rje²eje doma e zada e Iºejerska matematika Haru iljak Decembar 009. Zad. U sljede em izrazu izvr²ite sve aza ee operacije u skupu kompleksih brojeva: cis π

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

1.PRIZMA ( P=2B+M V=BH )

1.PRIZMA ( P=2B+M V=BH ) .RIZMA ( =+M = ).Izrčunti površinu i zpreminu kvr čij je ijgonl ug 0m, užine osnovnih ivi su m i m. D 0m m b m,? D 00 b 00 8 8 b b 87 87 0 87 8 87 b 87 87 87 8 87. Ivie kvr onose se ko :: ijgonl je ug.oreiti

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

Dru{tvo matemati~ara Srbije. Republi~ki seminar 2011, Novi Sad, Srbija. Pripremawe u~enika osnovnih {kola za takmi~ewa iz matematike

Dru{tvo matemati~ara Srbije. Republi~ki seminar 2011, Novi Sad, Srbija. Pripremawe u~enika osnovnih {kola za takmi~ewa iz matematike Dru{tvo mtemti~r Srije Repuli~ki seminr 0, Novi Sd, Srij Pripremwe u~enik osnovnih {kol z tkmi~ew iz mtemtike \or e Brli}, Mtemti~ki institut SANU, Beogrd, Srij Zdrvko Cvetkovski, Evropski univerzitet,

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA

OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA OSNOVE TRIGONOMETRIJE PRVOKUTNOG TROKUT - DEFINIIJ TRIGONOMETRIJSKIH FUNKIJ - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKIJ KUTOV OD - PRIMJEN N PRVOKUTNI TROKUT - PRIMJEN U PLNIMETRIJI 4.1. DEFINIIJ TRIGONOMETRIJSKIH

Διαβάστε περισσότερα

NEKE POVRŠI U. Površi koje se najčešće sreću u zadacima su: 1. Elipsoidi. 2. Hiperboloidi. 3. Paraboloidi. 4. Konusne površi. 5. Cilindrične površi

NEKE POVRŠI U. Površi koje se najčešće sreću u zadacima su: 1. Elipsoidi. 2. Hiperboloidi. 3. Paraboloidi. 4. Konusne površi. 5. Cilindrične površi NEKE POVŠI U Pvrši kje se njčešće sreću u dcim su:. Elipsidi. Hiperlidi. Prlidi 4. Knusne pvrši 5. Cilindrične pvrši. Elipsidi Osnvn jednčin elipsid ( knnsk) je : + + = c, i c su dsečci n, i si. Presek

Διαβάστε περισσότερα

SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA

SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA Sinusn terem glsi: Strnie trugl prprinlne su sinusim njim nsprmnih uglv. R sinβ sinγ Odns dužine strni i sinus nsprmng ugl trugl je knstnt i jednk je dužini

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

Analitička geometrija i linearna algebra

Analitička geometrija i linearna algebra 1. VEKTORI POJAM VEKTORA Svakodnevno se susrećemo s veličinama za čije je određivanje potrean samo jedan roj. Na primjer udaljenost, površina, volumen,. Njih zovemo skalarnim veličinama. Međutim, postoje

Διαβάστε περισσότερα

MATEMATIČKA ANALIZA II

MATEMATIČKA ANALIZA II MATEMATIČKA ANALIZA II primjeri i zadaci Ilja Gogić, Ate Mimica 6. siječja. Sadržaj Derivacija 5. Tehika deriviraja............................... 5. Derivacija iverzih i implicito zadaih fukcija..............

Διαβάστε περισσότερα

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum 27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.

Διαβάστε περισσότερα

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

Beskonačni redovi 1.1 BROJEVNI REDOVI. Beskonačni brojevni red (numerički red, red sa konstantnim članovima) predstavlja sumu u :

Beskonačni redovi 1.1 BROJEVNI REDOVI. Beskonačni brojevni red (numerički red, red sa konstantnim članovima) predstavlja sumu u : Besoči redovi. BROJEVNI REDOVI Besoči brojevi red umeriči red, red s osttim človim predstvlj sumu u : svih člov eog besočog brojevog iz { } Zbirove u u u u. s u, s u u, K, s u. zivmo prcijli zbirovi. Kžemo

Διαβάστε περισσότερα

1 Pojam funkcije. f(x)

1 Pojam funkcije. f(x) Pojam funkcije f : X Y gde su X i Y neprazni skupovi (X - domen, Y - kodomen) je funkcija ako ( X)(! Y )f() =, (za svaki element iz domena taqno znamo u koji se element u kodomenu slika). Domen funkcije

Διαβάστε περισσότερα

Matematka 1 Zadaci za drugi kolokvijum

Matematka 1 Zadaci za drugi kolokvijum Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()

Διαβάστε περισσότερα

Skup svih mogućih ishoda datog opita, odnosno skup svih elementarnih događaja se najčešće obeležava sa E. = {,,,... }

Skup svih mogućih ishoda datog opita, odnosno skup svih elementarnih događaja se najčešće obeležava sa E. = {,,,... } VEROVTNOĆ - ZDI (I DEO) U računu verovatnoće osnovni pojmovi su opit i događaj. Svaki opit se završava nekim ishodom koji se naziva elementarni događaj. Elementarne događaje profesori različito obeležavaju,

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu. ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Isticanje kroz velike otvore

MEHANIKA FLUIDA. Isticanje kroz velike otvore MEANIKA FLUIDA Isticnje krz velike tvre 1.zdtk. Krz veliki ptvr u bčn zidu rezervr blik rvnkrkg trugl snve i keficijent prtk µ, ističe vd. Odrediti prtk krz tvr k su pznte veličine 1 i (v.sl.). Eleentrni

Διαβάστε περισσότερα

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate

Διαβάστε περισσότερα

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO Matematičke metode u marketingu Multidimenzionalno skaliranje Lavoslav Čaklović PMF-MO 2016 MDS Čemu služi: za redukciju dimenzije Bazirano na: udaljenosti (sličnosti) među objektima Problem: Traži se

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA. školska 2013./2014. godina TEST MATEMATIKA UPUTE ZA RAD

ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA. školska 2013./2014. godina TEST MATEMATIKA UPUTE ZA RAD ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA školsk 0./04. godin TEST MATEMATIKA UPUTE ZA RAD Test koji trebš riješiti im 0 zdtk. Z rd je predviđeno 0 minut. Zdtke ne morš rditi prem redoslijedu

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

Elektrostatika. 1. zadatak. Uvodni pojmovi. Rješenje zadatka. Za pločasti kondenzator vrijedi:

Elektrostatika. 1. zadatak. Uvodni pojmovi. Rješenje zadatka. Za pločasti kondenzator vrijedi: tnic:iii- lektosttik lektično polje n gnici v ielektik. Pločsti konenzto. Cilinični konenzto. Kuglsti konenzto. tnic:iii-. ztk vije mete ploče s zkom ko izoltoom ile su spojene n izvo npon, ztim ospojene

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ 2 ΑΝΑΛΥΣΗΣ/ ΥΠΟΛΟΓΙΣΜΟΣ ΑΟΡΙΣΤΩΝ ΟΛΟΚΛΗΡΩΜΑΤΩΝ ΑΣΚΗΣΕΙΣ., (γ) sin 5xdx sin x cos x. x + x + 1 dx.. 2x 1 2 2

ΦΥΛΛΑΔΙΟ 2 ΑΝΑΛΥΣΗΣ/ ΥΠΟΛΟΓΙΣΜΟΣ ΑΟΡΙΣΤΩΝ ΟΛΟΚΛΗΡΩΜΑΤΩΝ ΑΣΚΗΣΕΙΣ., (γ) sin 5xdx sin x cos x. x + x + 1 dx.. 2x 1 2 2 ΦΥΛΛΑΔΙΟ ΑΝΑΛΥΣΗΣ/00- ΥΠΟΛΟΓΙΣΜΟΣ ΑΟΡΙΣΤΩΝ ΟΛΟΚΛΗΡΩΜΑΤΩΝ ΑΣΚΗΣΕΙΣ Να υπολογιστούν τα ολοκληρώματα 6 d (α) d, (β), (γ) si 5d si cos, d (δ) cos cos cos 5d, (ε), (στ) d 5 6 (α) Έχουμε =, οπότε θα είναι: 6

Διαβάστε περισσότερα

Integral i mjera. Braslav Rabar. 13. lipnja 2007.

Integral i mjera. Braslav Rabar. 13. lipnja 2007. Itegral i mjera Braslav Rabar 13. lipja 2007. Def 1 Neka je X skup tada familiju F podskupova od X zovemo σ-algebra a X ako je X uutra te je zatvorea a komplemetiraje i prebrojive uije tada urede par (X,

Διαβάστε περισσότερα

Uvod Newton-Leibnizova formula Glavne metode integriranja. Integrali. Franka Miriam Brückler

Uvod Newton-Leibnizova formula Glavne metode integriranja. Integrali. Franka Miriam Brückler Integrli Frnk Mirim Brückler Antiderivcije Koj je vez izmedu x 2 i 2x? Antiderivcije Koj je vez izmedu x 2 i 2x? Antiderivcij (primitivn funkcij) zdne funkcije f : I R (gdje je I otvoren intervl) je svk

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

Granične vrednosti realnih nizova

Granične vrednosti realnih nizova Graiče vredosti realih izova Fukcija f : N R, gde je N skup prirodih brojeva a R skup realih brojeva, zove se iz realih brojeva ili reala iz. Opšti čla iza f je f(), N, i običo se obeležava sa f, dok se

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

Procjena parametara. Zadatak 4.1 Neka je X 1, X 2,..., X n slučajni uzorak iz populacije s konačnim očekivanjem µ i varijancom σ 2.

Procjena parametara. Zadatak 4.1 Neka je X 1, X 2,..., X n slučajni uzorak iz populacije s konačnim očekivanjem µ i varijancom σ 2. 4 Procjea parametara Neka je X slučaja varijabla čiju distribuciju proučavamo. Defiicija: Slučaji uzorak duljie za X je iz od ezavisih i jedako distribuiraih slučajih varijabli X 1, X,..., X koje imaju

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Funkcije Materijali za nastavu iz Matematike 1

Funkcije Materijali za nastavu iz Matematike 1 Funkcije Materijali za nastavu iz Matematike 1 Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 76 Definicija funkcije Funkcija iz skupa X u skup Y je svako pravilo f po kojemu se elementu x X

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo:

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: 2 Skupovi Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: A B def ( x)(x A x B) Kažemo da su skupovi A i

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

Matematička logika. novembar 2012

Matematička logika. novembar 2012 Predikatska logika 1 Matematička logika Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Serbia novembar 2012 1 različiti nazivi: predikatska logika, logika prvog

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a.

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a. Determinante Determinanta A deta je funkcija definirana na skupu svih kvadratnih matrica, a poprima vrijednosti iz skupa skalara Osim oznake deta za determinantu kvadratne matrice a 11 a 12 a 1n a 21 a

Διαβάστε περισσότερα

4 Funkcije. 4.1 Pojam funkcije

4 Funkcije. 4.1 Pojam funkcije 4 Funkcije 4.1 Pojam unkcije Neka su i neprazni skupovi i pravilo koje svakom elementu skupa pridružuje točno jedan element skupa. Tada se uredena trojka (,, ) naziva preslikavanje ili unkcija sa skupa

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14.

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14. Pojmo:. Vektor se F (transacja). oment se (rotacja) Dnamka krutog tjea. do. oment tromost masa. Rad krutog tjea A 5. Knetka energja k 6. oment kona gbanja 7. u momenta kone gbanja momenta se f ( ) Gbanje

Διαβάστε περισσότερα

Formule iz Matematike II. Mandi Orlić Tin Perkov

Formule iz Matematike II. Mandi Orlić Tin Perkov Formule iz Mtemtike II Mndi Orlić Tin Perkov INTEGRALI NEODREDENI INTEGRALI Svojstv 1. (f(x) ± g(x)) = ± g(x) 2. = Tblic integrl f(x) F(x) + C x + C x x +1 +1 + C 1 x ln x + C 1 x+b ln x + b + C e x e

Διαβάστε περισσότερα

5. poglavlje (korigirano) DERIVACIJA FUNKCIJA

5. poglavlje (korigirano) DERIVACIJA FUNKCIJA 5 Derivacija funkcija (sa svim korekcijama) 8 5 poglavlje (korigirano) DERIVACIJA FUNKCIJA U ovom poglavlju: Derivacija po definiciji, tablica deriviranja Derivacija zbroja, razlike, produkta i kvocijenta

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα