PREGLED DEFINICIJA I FORMULA ZA 2. KOLOKVIJ IZ MATEMATIKE 1 (pomagalo dozvoljeno na kolokviju)

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "PREGLED DEFINICIJA I FORMULA ZA 2. KOLOKVIJ IZ MATEMATIKE 1 (pomagalo dozvoljeno na kolokviju)"

Transcript

1 PREGLED DEFINICIJA I FORMULA ZA KOLOKVIJ IZ MATEMATIKE (pomglo dozvoljeo kolokviju) Opći pojmovi: I REALNE FUNKCIJE JEDNE REALNE VARIJABLE Nek su X, Y R Rel fukcij f : X Y je svko pridruživje koje svkom elemetu skup X pridružuje točo jed elemet skup Y Skup X ziv se prirodo područje defiicije (dome) fukcije f, skup Y područje vrijedosti (kodome) fukcije f Svk rel fukcij je potpuo određe zdvjem skupov X i Y, te propis kojim se elemetim skup X pridružuju elemeti skup Y Dvije rele fukcije su jedke ko istovremeo imju jedke domee, jedke kodomee i jedke propise pridruživj Rel fukcij f je ijekcij ko vrijedi implikcij: (f ( ) = f ( )) ( = ) Rel fukcij f je surjekcij ko z svki Y postoji brem jed X tkv d je = f () Rel fukcij f je bijekcij ko je istovremeo i ijekcij i surjekcij Iverz rele bijekcije f : X Y je rel fukcij f : Y X tkv d je (f f )() = (f f )() = Propis iverz bijekcije f se može odrediti sljedećim lgoritmom: Kork Zpisti = f () Kork Iz prethode jedkosti izrziti pomoću Dobivei izrz je propis iverz f Grf rele fukcije f je skup Γ( f ) := {(, f ()): X} O se običo predočv u prvokutom koorditom sustvu u rvii tko d se os pscis ose vrijedosti ezvise vrijble, os ordit ose vrijedosti f () Rvisk krivulj K je grf eke rele fukcije ko i smo ko svki prvc uspored s osi ordit siječe krivulju K u jviše jedoj točki Grf iverz bijekcije f može se dobiti zrcljejem grf bijekcije f s obzirom prvc = Rel fukcij f : X Y je omeđe odozdo ko postoji brem jed m R tkv d z svki X vrijedi f () m Rel fukcij f : X Y je omeđe odozgo ko postoji brem jed M R tkv d z svki X vrijedi f () M Rel fukcij f : X Y je omeđe ko je omeđe i odozdo i odozgo Rel fukcij f : X Y je rstuć ko z sve, X vrijedi: ( < ) (f ( ) f ( )) Rel fukcij f : X Y je strogo rstuć ko z sve, X vrijedi: ( < ) (f ( ) < f ( )) Rel fukcij f : X Y je pdjuć ko z sve, X vrijedi: ( < ) (f ( ) f ( )) Rel fukcij f : X Y je strogo pdjuć ko z sve, X vrijedi: ( < ) (f ( ) > f ( )) Svk strogo rstuć, odoso strogo pdjuć fukcij je ijekcij (Obrt tvrdj ije toč) Rel fukcij f : X Y je pr ko z svki X istovremeo vrijede tvrdje: o ( ) X; o f ( ) = f () Rel fukcij f : X Y je epr ko z svki X istovremeo vrijede tvrdje: o ( ) X; o f ( ) = f () Niti jed pr fukcij ije ijekcij Grf svke pre rele fukcije je oso simetrič s obzirom os orditu (os ) Grf svke epre rele fukcije je cetrlo simetrič s obzirom ishodište prvokutog koorditog sustv u rvii Rel fukcij f : X Y je periodič ko postoji brem jed P R tkv d z svki X istovremeo vrijede tvrdje: o ( + P) X; o f ( + P) = f () Broj P ziv se period fukcije f Njmji strogo pozitiv period T (ko postoji) fukcije f ziv se temelji period Nultočk rele fukcije f : X Y je svki X tkv d je f () = (uz uvjet Y) Nultočk se grfički iterpretir ko sjecište grf fukcije i osi psis (osi ) Poliomi i rciole fukcije: Nek su N,,, R Poliom stupj je fukcij p : R R defiir s k k k = p( ) : = = + + ziv se vodeći koeficijet, slobodi čl poliom p Z = dobiv se kostt fukcij, z = lier fukcij, z = kvdrt fukcij, z = kub fukcij Poliom p tkv d z svki R vrijedi p() = zivmo ulpoliom Svki poliom eprog stupj im brem jedu ultočku Poliom stupj koji im brem + rzličitih ultočk užo je ulpoliom Krtost pojedie ultočke je ukup broj pojvljivj te ultočke u popisu svih ultočk poliom stupj (povljj ultočk su dozvolje) Osovi poučk lgebre: Nek je p poliom stupj s kompleksim koeficijetim Td jeddžb p() = im brem jedo rješeje koje pripd skupu C (Općeito, svki poliom stupj s kompleksim koeficijetim im točo e užo međusobo rzličitih kompleksih ultočk) S je ozče opercij kompozicije fukcij: (f g)() := f [g()] Rstuće i pdjuće fukcije jedim imeom zivmo mootoe fukcije Strogo rstuće i strogo pdjuće fukcije jedim imeom zivmo strogo mootoe fukcije mrsc Boj Kovčić, predvč

2 PREGLED DEFINICIJA I FORMULA ZA KOLOKVIJ IZ MATEMATIKE (pomglo dozvoljeo kolokviju) Ako su,, sv (e užo međusobo rzličit) rješej jeddžbe p() = u skupu C, od vrijedi rstv: Z svki z C vrijedi ekvivlecij: ( p( z) ) ( p( z) ) p( ) = ( ) = ( ) ( ) = = k k = Bèzoutov poučk: Nek su svi koeficijeti poliom p cijeli brojevi, vodeći koeficijet Ako jeddžb p() = im rješeje Z, od (Ekvivleto, svi kdidti z cjelobroje ultočke poliom s cjelobrojim koeficijetim i vodećim koeficijetom su djelitelji slobodog čl tog poliom) p Nek su svi koeficijeti poliom p cijeli brojevi Ako je = (pri čemu su p Z i q N tkvi d je NZD( p, q ) = ) rješeje q jeddžbe p() =, od istodobo q i p Algebrske opercije s poliomim svode se lgebrske opercije s potecijm Poliom p je djeljiv poliomom q ko je svk ultočk poliom q ujedo i ultočk poliom p, pri čemu krtost te ultočke z poliom q mor biti jviše jedk krtosti te ultočke z poliom p Nek su m, N tkvi d je m < Nek su p poliom stupj m čiji je skup ultočk N, te p poliom stupj čiji je skup ultočk N Prv rciol fukcij je rel fukcij f defiir propisom p( ) f ( ) = p ( ) (*) Njezio prirodo područje defiicije je R\N Skup svih ultočk fukcije f jedk je N \N Pol rciole fukcije f je svki elemet skup N Red pol (k) jedk je krtosti pripde ultočke z poliom p Pol red k je uklojiv ko je pripd ultočk (krtosti točo k) ujedo i ultočk poliom p s krtosti brem k U suprotom, pol je euklojiv Neprv rciol fukcij je fukcij f defiir propisom (*) pri čemu vrijedi m Tkv fukcij uvijek se može pisti ko zbroj poliom (stupj m ) i prve rciole fukcije Prirodo područje defiicije, ultočke i polovi pritom se određuju ko i kod prve rciole fukcije Hrmoijsk fukcij Nek su A, ω i ϕ rele kostte tkve d su A, ω > Hrmoijsk fukcij je fukcij f : R R defiir propisom f () = A si(ω + ϕ) Vrijedost A ziv se mplitud, vrijedost ω kruž frekvecij, vrijedost ϕ fzi pomk fukcije f Njezi temelji period jedk je k ϕ T =, skup svih ultočk N( f ) = : k Z Krkterističe točke svke hrmoijske fukcije jeziu osovu ω ω ϕ ϕ segmetu, T ω ω su ϕ ϕ T ϕ T ϕ T ϕ T =,, T = +, A, T = +,, T = +, A i T = + T, ω ω ω ω ω Superpozicij hrmoijskih fukcij f () = A si(ω + ϕ ) i f () = A si(ω + ϕ ) s istom kružom frekvecijom ω je hrmoijsk fukcij f () = A si(ω + ϕ), pri čemu je ϕ A siϕ + A siϕ = rctg A cosϕ + A cosϕ A = A + A + A A cos( ϕ ϕ ) (Predzk veličie A jedk je predzku izrz A cos ϕ + A cos ϕ ) Npomee:) Ako vrijedi A < i/li ω <, fukcij se svodi gorji oblik primjeom idetitet si( ) = ( ) si i si( ) = si ) Ako je f() = A cos(ω + ϕ), fukcij se svodi gorji oblik primjeom idetitet cos = si + ili cos = si Simbol čitti: dijeli Dkle, zči d je djeljiv s bez osttk Ozku NZD čitti: jveći zjedički djelitelj mrsc Boj Kovčić, predvč

3 PREGLED DEFINICIJA I FORMULA ZA KOLOKVIJ IZ MATEMATIKE (pomglo dozvoljeo kolokviju) Ekspoecijl i logritmsk fukcij Nek je > rel kostt Fukciju f : R, + defiiru propisom f () = zivmo ekspoecijl fukcij (s bzom ) T fukcij je odozdo omeđe bijekcij koj em ultočk, ije iti pr iti epr iti periodičk Z < < fukcij je strogo pdjuć, dok je z > fukcij strogo rstuć Z = dobiv se kostt fukcij f () =, z svki R Npome: Fukcij f () = b + c, gdje su >,, te b, c im horizotlu simptotu = c Iverz ekspoecijle fukcije s bzom je fukcij g :, + R defiir propisom g () = log T fukcij ziv se logritmsk fukcij (s bzom ) O je eomeđe bijekcij koj im točo jedu ultočku = Fukcij ije iti pr iti epr iti periodičk Z < < fukcij je strogo pdjuć, z > fukcij je strogo rstuć Z = dobiv se fukcij dekdskog logritm (g() = log ), z = e = 7888 dobiv se fukcij prirodog logritm (f () = l ) Hiperbole i re fukcije Nziv Ozk Propis kosius hiperboli ch e + e (lčic) sius hiperboli sh e e tges hiperboli th sh e + e ili ch e e kotges hiperboli cth ch e e ili sh e + e re kosius hiperboli rch l + re sius hiperboli rsh ( ) ( + + ) l re tges hiperboli rth + l re kotges hiperboli rcth + l Osovi idetiteti: ch ± sh = e ± ch sh = cth = th = + ch( ) ch sh sh( ) = sh ch th 5 th( ) = + th cth + cth( ) = cth 7 ch( ± ) = ch ch ± sh sh 8 sh( ± ) = sh ch ± ch sh th ± th 9 th( ± ) = ± th th ± cth cth cth( ± ) = cth ± cth mrsc Boj Kovčić, predvč

4 PREGLED DEFINICIJA I FORMULA ZA KOLOKVIJ IZ MATEMATIKE (pomglo dozvoljeo kolokviju) Formule iz lgebre Osovi lgebrski idetiteti: ( ± ) = ± + ( ± ) = ± + ± ( ) ( + ) = ± = ( ± ) ( + ) II DODATAK Osov svojstv ekspoecijle i logritmske fukcije: = m m+ = = m m = m m 5 ( ) = m = 7 m = m m Formul z rješeje kvdrte jeddžbe b ± b c + b + c = :, = Vièteove formule z rješej kvdrte jeddžbe b c + b + c = : + =, = log = log = log ( ) = log + log log = log log 5 log ( ) = log log ( ) = log log 7 log b = log b Formule iz trigoometrije 5 : Osove trigoometrijske relcije: cos + si siα cosα =, tg α =, ctg α = cosα siα Trigoometrij prvokutog trokut: b b siα = cos β =, cosα = si β =, tg α = ctg β =, ctg α = tg β = c c b Izrčuvje svih vrijedosti trigoometrijskih fukcij pomoću vrijedosti jede od jih: fukcij si cos tg ctg si cos ± cos si tg ± si ctg si si ± si ± ± tg ± + tg ± + tg cos ± cos cos cos tg ± + ctg ctg ± + ctg ctg 5 Sve ozke u trokutu su stdrde mrsc Boj Kovčić, predvč

5 PREGLED DEFINICIJA I FORMULA ZA KOLOKVIJ IZ MATEMATIKE (pomglo dozvoljeo kolokviju) Toče vrijedosti trigoometrijskih fukcij ekih krkterističih kutov ( := e postoji) kut ( ) kut (rd) si cos tg ctg Predzci trigoometrijskih fukcij u pojediim kvdrtim: Pretvorb stupjev u rdije: = rd 8 8 Pretvorb rdij u stupjeve: rd = Adicijske formule: si( ± ) = si cos ± cos si cos( ± ) = cos cos si si tg ± tg tg( ± ) = tg tg ctg ctg ctg( ± ) = ctg ± ctg I II III IV si + + cos + + tg + + ctg + + Formule redukcije: si ± = cos tg ± = ctg cos ± = si ctg ± = tg si ± = si tg ± = ± ctg ( ) ( ) ( ) ( ) Formule z trigoometrijske fukcije dvostrukog i polovičog rgumet: cos ± = cos ctg ± = ± tg tg cos + tg + cos( ) + cos( ) = = + tg + cos( ) cos( ) [ ] [ ] si( ) = si cos = si = ± si = cos( ) cos = + cos( ) tg cos cos( ) = cos si = cos = ± tg ctg tg cos cos si tg( ) = tg = ± = = tg + cos si + cos ctg tg + cos + cos si ctg( ) = = ctg = ± = = ctg tg cos si cos mrsc Boj Kovčić, predvč 5

6 PREGLED DEFINICIJA I FORMULA ZA KOLOKVIJ IZ MATEMATIKE (pomglo dozvoljeo kolokviju) Formule pretvorbe: umošk trigoometrijskih fukcij u jihov zbroj: si cos = [ si( + ) + si( ) ] cos cos = [ cos( + ) + cos( ) ] si si = [ cos( ) cos( + ) ] zbroj trigoometrijskih fukcij u jihov umožk: + si( + ) si + si = si cos tg + tg = cos cos + si( ) si si = cos si tg tg = cos cos + si( + ) cos + cos = cos cos ctg + ctg = si si + si( ) cos cos = si si ctg ctg = si si Toče vrijedosti ciklometrijskih fukcij z eke krkterističe vrijedosti: rcsi rccos 5 rctg rcctg 5 + pripremio: mrsc Boj Kovčić, predvč mrsc Boj Kovčić, predvč

7. ELEMENTARNE FUNKCIJE

7. ELEMENTARNE FUNKCIJE Geodetski fkultet dr. sc. J. e-rkić Predvj iz Mtemtike 7. ELEMENTRNE FUNKIJE Među fukcijm koje su de formulom vžu ulogu imju tkozve elemetre fukcije. Pozvje svojstv elemetrih fukcij omogućit će lkše svldvje

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL PREGLED DEFINICIJA I FORMULA ZA PISANI DIO ISPITA IZ MATEMATIKE 2

ELEKTROTEHNIČKI ODJEL PREGLED DEFINICIJA I FORMULA ZA PISANI DIO ISPITA IZ MATEMATIKE 2 PREGLED DEFINICIJA I FORMULA ZA PISANI DIO ISPIA IZ MAEMAIKE PREGLED DEFINICIJA I FORMULA ZA PISANI DIO ISPIA IZ MAEMAIKE SADRŽAJ. INEGRALNI RAČUN I PRIMJENE..... Priitiv fukcij i eodređei itegrl.....

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 2. ARITMETICKI I GEOMETRIJSKI NIZ, RED, BINOMNI POUCAK. a n ti clan aritmetickog niza

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 2. ARITMETICKI I GEOMETRIJSKI NIZ, RED, BINOMNI POUCAK. a n ti clan aritmetickog niza Mte Vijug: Rijesei zdci iz mtemtike z sredju skolu. ARITMETICKI I GEOMETRIJKI NIZ, RED, BINOMNI POUCAK. Aritmeticki iz Opci oblik ritmetickog iz: + - d Gdje je: prvi cl ritmetickog iz ti cl ritmetickog

Διαβάστε περισσότερα

Skripta za usmeni ispit iz IM1

Skripta za usmeni ispit iz IM1 Skript z usmei ispit iz IM T Pojmovi (logičkog) iskz i predikt Defiicij: Sud ili iskz je deklrtiv izjv koj u pogledu istiitosti zdovoljv dv pricip: sud je ili istiit ili eistiit (pricip iskljucej treceg)

Διαβάστε περισσότερα

= + injekcija. Rješenje 022 Kažemo da funkcija f ima svojstvo injektivnosti ili da je ona injekcija ako vrijedi

= + injekcija. Rješenje 022 Kažemo da funkcija f ima svojstvo injektivnosti ili da je ona injekcija ako vrijedi Zdtk 0 (Anstzij, gimnzij) Provjeri je li funkcij f log( 5) + + injekcij Rješenje 0 Kžemo d funkcij f im svojstvo injektivnosti ili d je on injekcij ko vrijedi f ( ) f ( ) Dkle, funkcij je injekcij ko rzličitim

Διαβάστε περισσότερα

Matematika - usmeni dio ispita Pitanja i rješenja

Matematika - usmeni dio ispita Pitanja i rješenja Mtemtik - usmei dio ispit itj i rješej. itgori poučk c vrijedi smo z prvokuti trokut Dokz: potoji mogo dokz itgoriog poučk/teorem, 69 dokz možete ći ovdje: HTUhttp://www.cut-the-kot.org/pthgors/ UTH Geometrijski

Διαβάστε περισσότερα

2.6 Nepravi integrali

2.6 Nepravi integrali 66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [,

Διαβάστε περισσότερα

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor I. VEKTORI d. sc. Min Rodić Lipnović 009./010. 1 Pojm vekto A B dužin A B usmjeen (oijentin) dužin (n se koj je točk početn, koj kjnj) A B vekto - kls ( skup ) usmjeenih dužin C D E F AB je epeentnt vekto

Διαβάστε περισσότερα

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike 1 8. NIZOVI

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike 1 8. NIZOVI Geodetski fkultet, dr sc J Beb-Brkić Predvj iz Mtemtike 8 NIZOVI Pojm iz Nek je N skup prirodih brojev Prem ekom prvilu svki broj iz N zmijeimo ekim brojem:,,,, R Št smo dobili? Budući d je svkom elemetu

Διαβάστε περισσότερα

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i Sdržj 4 INTEGRALI 64 4. Neodredeni integrl........................ 64 4. Integrirnje supstitucijom.................... 68 4. Prcijln integrcij....................... 7 4.4 Odredeni integrl i rčunnje površine

Διαβάστε περισσότερα

PREGLED MINIMALNIH ZNANJA IZ MATEMATIKE ZA ZANIMANJA:

PREGLED MINIMALNIH ZNANJA IZ MATEMATIKE ZA ZANIMANJA: PREGLED MINIMALNIH ZNANJA IZ MATEMATIKE ZA ZANIMANJA: elektrotehičr tehičr z rčulstvo tehičr z elektroiku tehičr z električe strojeve s primijejeim rčulstvom. rzred BROJEVI - rčuske opercije s prirodim,

Διαβάστε περισσότερα

UNIVERZITET U SARAJEVU ELEKTROTEHNIČKI FAKULTET SARAJEVO

UNIVERZITET U SARAJEVU ELEKTROTEHNIČKI FAKULTET SARAJEVO UNIVERZITET U SARAJEVU ELEKTROTEHNIČKI FAKULTET SARAJEVO -------------------------------------------------------------------------------------------------------------------------- Srjevo, 5... I S P I

Διαβάστε περισσότερα

REPETITORIJ MATEMATIKE za studente elektrotehnike

REPETITORIJ MATEMATIKE za studente elektrotehnike REPETITORIJ MATEMATIKE z studente elektrotehnike Bojn Kovčić Luk Mrohnić Tihn Strmečki Tehničko veleučilište u Zgrebu Predgovor Ovj priručnik nmijenjen je studentim 1. godine stručnih studij elektrotehnike

Διαβάστε περισσότερα

Nacionalni centar za vanjsko vrednovanje obrazovanja MATEMATIKA

Nacionalni centar za vanjsko vrednovanje obrazovanja MATEMATIKA Ncioli cetr z vjsko vredovje orzovj MATEMATIKA viš rzi KNJIŽICA FORMULA VIŠA VIŠA RAZINA RAZINA Kopleks roj: i i Mtetik Kopleks roj: Kopleks roj: i z i i z i i z R Kjižic forul VIŠA (cos RAZINA si Kopleks

Διαβάστε περισσότερα

A MATEMATIKA Zadana je z = x 3 y + 1

A MATEMATIKA Zadana je z = x 3 y + 1 A MATEMATIKA (.5.., treći kolokvij). Zdn je z 3 + os. () Izrčunjte ngib plohe u pozitivnom smjeru -osi. (b) Izrčunjte ngib pod ) u točki T(, ). () Izrčunjte z u T(, ). (5 bodov). Zdn je z 3 ln. () Izrčunjte

Διαβάστε περισσότερα

FOURIEROVI REDOVI I INTEGRALI

FOURIEROVI REDOVI I INTEGRALI FOURIEROVI REDOVI I INEGRALI Pri rješvju rzličitih ižijerskih prole koriste se periodičke fukcije. Pojvljuju se pod terio periodičke fukcije, u ovu skupiu spdju trigooetrijske fukcije, sius i kosius, koje

Διαβάστε περισσότερα

I N Ţ E N J E R S K A M A T E M A T I K A 1

I N Ţ E N J E R S K A M A T E M A T I K A 1 I N Ţ E N J E R S K A M A T E M A T I K A Quod ert demostrdum. [ Što je treblo dokzti. Skrćeo: Q.e.d.] LATINSKI PREVOD EUKLIDOVIH RIJEČI. P r e d v j z š e s t u s e d m i u s t v e u kdemskoj 8/9. odii

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Trigonometrijske funkcije

Trigonometrijske funkcije 9 1. Trigoometrijske fukcije 1.1. Ako je α + β π,izračuaj 1 + tg α)1 + tg β). 4 1.. Izračuaj zbroj log a tg 1 + log a tg +...+ log a tg 89. 1.3. Izračuaj 40 0 si 0 bez uporabe tablica ili račuala. 1.4.

Διαβάστε περισσότερα

Mališa Žižoviæ Olivera Nikoliæ

Mališa Žižoviæ Olivera Nikoliæ Mliš Žižoviæ Oliver Nikoliæ UNIVERZITET SINGIDUNUM Prof. dr Mliš Žižović Prof. dr Oliver Nikolić KVANTITATIVNE METODE Šesto izmejeo i dopujeo izdje Beogrd,. KVANTITATIVNE METODE Autori: Prof. dr Mliš Žižović

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

R A D N I M A T E R I J A L I

R A D N I M A T E R I J A L I Krmen Rivier R A D N I M A T E R I J A L I M A T E M A T I K A II. dio SPLIT 7. IV. FUNKCIJE 4.. POTREBNO PREDZNANJE 4.. REALNE FUNKCIJE JEDNE VARIJABLE 4.. INTERPOLACIJA 7 4.. NEKE OSNOVNE ELEMENTARNE

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

1 Ekstremi funkcija više varijabli

1 Ekstremi funkcija više varijabli 1 Ekstremi funkcij više vrijbli Definicij ekstrem funkcije: Funkcij u = f(x 1, x 2,, x n ) im u točki T ( 1, 2,, n ) A) LOKALNI MINIMUM f( 1, 2,, n ) ko z svku točku T vrijedi nejednkost: T ( 1 + dx 1,

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

DETERMINANTE I MATRICE

DETERMINANTE I MATRICE Gimzij: Lucij Vrji Mturl rdj: ETERMINANTE I MATRICE Izrdio: iko Koruić, učeik 4 G Metor: Mile Broić, profesor U Zgreu, 0 siječj 996 SARŽAJ I UVO II ETERMINANTE etermite drugog red etermite trećeg red 3

Διαβάστε περισσότερα

Uvođenje pojma određenog integrala u srednjoškolskoj nastavi matematike 1

Uvođenje pojma određenog integrala u srednjoškolskoj nastavi matematike 1 Uvođeje pojm određeog itegrl u sredjoškolskoj stvi mtemtike 1 1. Uvod Iv Božić 2, Tomislv Šikić 3 S pojmom itegrl i itegrlim rčuom učeici se prvi put susreću u četvrtom rzredu sredje škole. S ozirom d

Διαβάστε περισσότερα

2 Skupovi brojeva 17. m n N. (m + n) + k = m + (n + k) - asocijativnost sabiranja. m + n = n + m - komutativnost sabiranja

2 Skupovi brojeva 17. m n N. (m + n) + k = m + (n + k) - asocijativnost sabiranja. m + n = n + m - komutativnost sabiranja Skupovi brojeva 17 Skupovi brojeva.1 Skup prirodih brojeva Skup N prirodih brojeva čie brojevi 1,,3,... Nad skupom prirodih brojeva defiisae su operacije sabiraja (+) i možeja ( ), čiji je rezultat takože

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA

OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA OSNOVE TRIGONOMETRIJE PRVOKUTNOG TROKUT - DEFINIIJ TRIGONOMETRIJSKIH FUNKIJ - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKIJ KUTOV OD - PRIMJEN N PRVOKUTNI TROKUT - PRIMJEN U PLNIMETRIJI 4.1. DEFINIIJ TRIGONOMETRIJSKIH

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

Integralni raqun. F (x) = f(x)

Integralni raqun. F (x) = f(x) Mterijl pripremio Benjmin Linus U mterijlu su e definicije, teoreme, dokzi teorem (rđenih n predvƭu i primeri. Dodo sm i neke done primere d bih ilustrovo prikznu teoriju. Integrlni rqun Definicij. Nek

Διαβάστε περισσότερα

NEKE POVRŠI U. Površi koje se najčešće sreću u zadacima su: 1. Elipsoidi. 2. Hiperboloidi. 3. Paraboloidi. 4. Konusne površi. 5. Cilindrične površi

NEKE POVRŠI U. Površi koje se najčešće sreću u zadacima su: 1. Elipsoidi. 2. Hiperboloidi. 3. Paraboloidi. 4. Konusne površi. 5. Cilindrične površi NEKE POVŠI U Pvrši kje se njčešće sreću u dcim su:. Elipsidi. Hiperlidi. Prlidi 4. Knusne pvrši 5. Cilindrične pvrši. Elipsidi Osnvn jednčin elipsid ( knnsk) je : + + = c, i c su dsečci n, i si. Presek

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

1 Pojam funkcije. f(x)

1 Pojam funkcije. f(x) Pojam funkcije f : X Y gde su X i Y neprazni skupovi (X - domen, Y - kodomen) je funkcija ako ( X)(! Y )f() =, (za svaki element iz domena taqno znamo u koji se element u kodomenu slika). Domen funkcije

Διαβάστε περισσότερα

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 2.2 Srednje vrijednosti aritmetička sredina, medijan, mod Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 1 2.2.1 Aritmetička sredina X je numerička varijabla. Aritmetička sredina od (1) je broj:

Διαβάστε περισσότερα

4.1 Elementarne funkcije

4.1 Elementarne funkcije . Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1 Nizovi 5 a = 5 +3+ + 6 a = 3 00 + 00 3 +5 7 a = +)+) ) 3 3 8 a = 3 +3+ + +3 9 a = 3 5 0 a = 43/ ++ 5 3/ +5+ a = + + a = + ) 3 a = + + + 4 a = 3 3 + 3 ) 5 a = +++ 6 a = + ++ 3 a = +)!++)! +3)! a = ) +3

Διαβάστε περισσότερα

Kinematika materijalne toke. 2. Prirodni koordinatni sustav. 1. Vektorski nain definiranja gibanja. Krivocrtno gibanje materijalne toke

Kinematika materijalne toke. 2. Prirodni koordinatni sustav. 1. Vektorski nain definiranja gibanja. Krivocrtno gibanje materijalne toke Kioco gibje meijle oke Kiemik meijle oke. dio ) Zje kiocog gibj b) Bi i ubje Položj meijle oke u skom euku eme možemo defiii slijedee ie:. Vekoski i defiij gibj (). Piodi i defiij gibj s s (). Vekoski

Διαβάστε περισσότερα

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx.

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx. Odred eni integrli Osnovne osobine odred enog integrl: fx), fx) fx) b c fx), fx) + c fx), 4 ) b αfx) + βgx) α fx) + β gx), 5 fx) F x) b F b) F ), gde je F x) fx), 6 Ako je f prn funkcij fx) f x), x R ),

Διαβάστε περισσότερα

4 Funkcije. 4.1 Pojam funkcije

4 Funkcije. 4.1 Pojam funkcije 4 Funkcije 4.1 Pojam unkcije Neka su i neprazni skupovi i pravilo koje svakom elementu skupa pridružuje točno jedan element skupa. Tada se uredena trojka (,, ) naziva preslikavanje ili unkcija sa skupa

Διαβάστε περισσότερα

Definicija: Beskonačni niz realnih brojeva je funkcija a : N R. Umjesto zapisa a(1), a(2),,a(n), može se koristiti zapis a 1,

Definicija: Beskonačni niz realnih brojeva je funkcija a : N R. Umjesto zapisa a(1), a(2),,a(n), može se koristiti zapis a 1, Defiicija: Beskoači iz realih brojeva je fukcija a : N R i Umjesto zapisa a(), a(),,a(), može se koristiti zapis a, a,,a, Broj a zove se opći čla iza, a cijeli iz se kratko ozačuje (a ). Niz je : -rastući

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,

Διαβάστε περισσότερα

Niz i podniz. Definicija Svaku funkciju a : N S zovemo niz u S. Za n N pišemo a(n) = a n i nazivamo n-tim članom niza.

Niz i podniz. Definicija Svaku funkciju a : N S zovemo niz u S. Za n N pišemo a(n) = a n i nazivamo n-tim članom niza. 2. NIZOVI 1 / 78 Niz i podiz 2 / 78 Niz i podiz Defiicija Svaku fukciju a : N S zovemo iz u S. Za N pišemo a() = a i azivamo -tim člaom iza. Ozaka za iz je (a ) N ili (a ) ili samo (a ). Kodomea iza može

Διαβάστε περισσότερα

Izrada Domaće zadaće 4

Izrada Domaće zadaće 4 Uiverzitet u Sarajevu Elektrotehički fakultet Predmet: Ižejerska matematika I Daa: 76006 Izrada Domaće zadaće Zadatak : Izračuajte : si( ) (cos( )) L 0 a) primjeom L'Hospitalovog pravila; b) izravom upotrebom

Διαβάστε περισσότερα

Granične vrednosti realnih nizova

Granične vrednosti realnih nizova Graiče vredosti realih izova Fukcija f : N R, gde je N skup prirodih brojeva a R skup realih brojeva, zove se iz realih brojeva ili reala iz. Opšti čla iza f je f(), N, i običo se obeležava sa f, dok se

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu. ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije Glava 1 Realne funkcije realne promen ive 1.1 Elementarne funkcije Neka su dati skupovi X i Y. Ukoliko svakom elementu skupa X po nekom pravilu pridruimo neki, potpuno odreeni, element skupa Y kaemo da

Διαβάστε περισσότερα

1.PRIZMA ( P=2B+M V=BH )

1.PRIZMA ( P=2B+M V=BH ) .RIZMA ( =+M = ).Izrčunti površinu i zpreminu kvr čij je ijgonl ug 0m, užine osnovnih ivi su m i m. D 0m m b m,? D 00 b 00 8 8 b b 87 87 0 87 8 87 b 87 87 87 8 87. Ivie kvr onose se ko :: ijgonl je ug.oreiti

Διαβάστε περισσότερα

ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla.

ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla. Mnogougo oji im četii stnice nziv se četvoougo. ČETVOROUGAO D δ δ γ C A α β B β Z svi četvoougo vži im je zi unutšnji i spoljšnji uglov isti i iznosi 0 0 α β γ δ 0 0 α β γ δ 0 0 Njpe žemo četvoouglovi

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

1. Trigonometrijske funkcije

1. Trigonometrijske funkcije . Trigonometrijske funkcije . Trigonometrijske funkcije.. Ponovimo Brojevna kružnica Kružnicu k polumjera smjestimo u koordinatnu ravninu tako da joj je središte u ishodištu. Na kružnicu k prislonimo brojevni

Διαβάστε περισσότερα

Algebarske operacije

Algebarske operacije Algebrske opercije Poglvlje m e l e 11 Potecije 1 Algebrski izrzi w w r t h e w w w w m e l e r t h e Ciljevi: - rčuti s potecijm cjelobrojog ekspoet - prepozti i rbiti formule z kvdrt biom i rzliku kvdrt

Διαβάστε περισσότερα

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo GRANIČNE VREDNOSTI FUNKCIJA zdci II deo U sledećim zdcim ćemo korisii poznu grničnu vrednos: li i mnje vrijcije n i 0 n ( Zdci: ) Odredii sledeće grnične vrednosi: Rešenj: 4 ; 0 g ; 0 cos v) ; g) ; 4 ;

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

mogućih vrijednosti rs3. Za m, n N, mn+1 m 2 +n 2 m2 + n 2 mn + 1 je kvadrat prirodnog broja.

mogućih vrijednosti rs3. Za m, n N, mn+1 m 2 +n 2 m2 + n 2 mn + 1 je kvadrat prirodnog broja. r1. Neka je n fiksan prirodan broj. Neka je k bilo koji prirodan broj ne veći od n i neka je S skup nekih k različitih prostih brojeva. Ivica i Marica igraju naizmjenično sljedeću igru. Svako od njih bira

Διαβάστε περισσότερα

I N Ž E N J E R S K A M A T E M A T I K A 1

I N Ž E N J E R S K A M A T E M A T I K A 1 54 I N Ž E N J E R S K A M A T E M A T I K A Repetitio est mter studiorum. [Povljje je mj učej / zj.] (LATINSKA IZREKA) P r e d v j u V s e d m i c i.. Pojm i osov svojstv griče vrijedosti iz Pojmovi iz

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

Rje²enje doma e zada e 2. Inºenjerska matematika 1

Rje²enje doma e zada e 2. Inºenjerska matematika 1 Uiverzitet u Sarajevu Elektrotehi ki fakultet Rje²eje doma e zada e Iºejerska matematika Haru iljak Decembar 009. Zad. U sljede em izrazu izvr²ite sve aza ee operacije u skupu kompleksih brojeva: cis π

Διαβάστε περισσότερα

MJERA I INTEGRAL završni ispit 4. srpnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!)

MJERA I INTEGRAL završni ispit 4. srpnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (ukupo 8 bodova) MJERA I INTEGRAL završi ispit 4. srpja 216. (Kjige, bilježice, dodati papiri i kalkulatori isu dozvoljei!) (a) (2 boda) Defiirajte p za ekspoete p [1, +. (b) (6 bodova) Dokažite da

Διαβάστε περισσότερα

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum 27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.

Διαβάστε περισσότερα

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate

Διαβάστε περισσότερα

5. PARCIJALNE DERIVACIJE

5. PARCIJALNE DERIVACIJE 5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x

Διαβάστε περισσότερα

3. poglavlje (korigirano) F U N K C I J E

3. poglavlje (korigirano) F U N K C I J E . Funkcije (sa svim korekcijama) 5. poglavlje (korigirano) F U N K C I J E U ovom poglavlju: Elementarne unkcije Inverzne unkcije elementarnih unkcija Domena složenih unkcija Inverz složenih unkcija Ispitivanje

Διαβάστε περισσότερα

1 Neprekidne funkcije na kompaktima

1 Neprekidne funkcije na kompaktima Neprekide fukcije a kompaktima.. Teorem. Neka je K kompakta podskup metričkog prostora X, a f : X Y eprekido preslikavaje u metrički prostor Y. Tada je slika f(k) kompakta skup u Y..2. Zadatak. Neka su

Διαβάστε περισσότερα

a C 1 ( ) = = = m.

a C 1 ( ) = = = m. Zdtk 4 (Petr, gimzij) Dvije tke leće, koverget jkosti + dpt i diverget jkosti 5 dpt, slijepljee su zjedo Predmet se lzi 5 cm ispred kovergete leće Odredite gdje je slik predmet ješeje 4 C = + m -, C =

Διαβάστε περισσότερα

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Geodetski akultet, dr sc J Beban-Brkić Predavanja iz Matematike 9 GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Granična vrijednost unkcije kad + = = Primjer:, D( )

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

METODA SEČICE I REGULA FALSI

METODA SEČICE I REGULA FALSI METODA SEČICE I REGULA FALSI Zadatak: Naći ulu fukcije f a itervalu (a,b), odoso aći za koje je f()=0. Rešeje: Prvo, tražimo iterval (a,b) a kome je fukcija eprekida, mootoa i važi: f(a)f(b)

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +

Διαβάστε περισσότερα

9. PREGLED ELEMENTARNIH FUNKCIJA

9. PREGLED ELEMENTARNIH FUNKCIJA 9. PREGLED ELEMENTARNIH FUNKCIJA Pod elementarnim funkcijama najčešće ćemo podrazumijevati realne funkcije realne varijable Detaljnije ćemo u Matematici II analizirati funkcije koje se najčešće koriste

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

KUPA I ZARUBLJENA KUPA

KUPA I ZARUBLJENA KUPA KUPA I ZAUBLJENA KUPA KUPA Povšin bze B Povšin omotč M P BM to jet P B to jet S O o kupe Oni peek Obim onog peek O op Povšin onog peek P op Pimen pitgoine teoeme vnotn jednkotn kup je on kod koje je, p

Διαβάστε περισσότερα

Elektrostatika. 1. zadatak. Uvodni pojmovi. Rješenje zadatka. Za pločasti kondenzator vrijedi:

Elektrostatika. 1. zadatak. Uvodni pojmovi. Rješenje zadatka. Za pločasti kondenzator vrijedi: tnic:iii- lektosttik lektično polje n gnici v ielektik. Pločsti konenzto. Cilinični konenzto. Kuglsti konenzto. tnic:iii-. ztk vije mete ploče s zkom ko izoltoom ile su spojene n izvo npon, ztim ospojene

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

0 = 5x 20 => 5x = 20 / : 5 => x = 4.

0 = 5x 20 => 5x = 20 / : 5 => x = 4. Zadatak 00 (Denis, ekonomska škola) U kojoj točki pravac s jednadžbom = 8 siječe os? Rješenje 00 Svaka točka koja pripada osi ima koordinate T(0, ). Budući da točka pripada i pravcu = 8, uvrstit ćemo njezine

Διαβάστε περισσότερα

2. Rotacija krutog tijela. Kinematika krutog tijela. 11. dio. Kinematika krutog tijela. 1. Translacija krutog tijela. a) Krivocrtna b) Pravocrtna

2. Rotacija krutog tijela. Kinematika krutog tijela. 11. dio. Kinematika krutog tijela. 1. Translacija krutog tijela. a) Krivocrtna b) Pravocrtna Kod kruog ijel udljeosu bilo kojih diju ok ijel osje ijekom gibj epromijeje. Kiemik kruog ijel 11. dio Kiemik gibj: ) kruog šp b) krue ploe c) kruog ijel. Rzlikujemo: ) slobodo ijelo b) eslobodo ijelo

Διαβάστε περισσότερα