Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike 1 8. NIZOVI

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike 1 8. NIZOVI"

Transcript

1 Geodetski fkultet, dr sc J Beb-Brkić Predvj iz Mtemtike 8 NIZOVI Pojm iz Nek je N skup prirodih brojev Prem ekom prvilu svki broj iz N zmijeimo ekim brojem:,,,, R Št smo dobili? Budući d je svkom elemetu skup N pridruže smo jed elemet skup R, zključujemo d se rdi o fukciji s N u R Defiicij Niz je fukcij f : N R f ( f M f - prvi čl iz - drugi čl iz - ti ili opći čl iz N Ozk: ili smo Primjeri: Nek je formulom (fukcijom f zd iz relih brojev Npisti prvih ekoliko člov iz Rješeje: f (, 5 f, f (, ( :,,,,, K K,, K 4 5 Npisti ekoliko prvih člov iz ko je opći čl: ( :,,,, K b b b : c c ( c : + d d d : 85

2 Geodetski fkultet, dr sc J Beb-Brkić Predvj iz Mtemtike e e ( e : + f f ( f : + g g ( g : Odrediti opći čl iz ko je prvih ekoliko člov iz:, 4, 7, 0,, b,, 7, 4,, Npome: Pomoću ekoliko zdih početih člov iz sm iz ije jedozčo određe, li se može pretpostviti jegov opći čl Grfički prikz iz či Budući d je iz fukcij, promtrmo prove (, f grfu zde fukcije, f N G f {( } Grfički prikz iz iz primjer : f :,,,,, K K,, 4 5 ; K fhl, tj skup točk rvie koji pripd či Prikz iz brojevom prvcu: f :,,,,, K K,, 4 5 ; K

3 Geodetski fkultet, dr sc J Beb-Brkić Predvj iz Mtemtike Ogrđei izovi, mootoi izovi ( Nek je zd iz relih brojev Što čie jegovi človi? ö Podskup skup relih brojev Pitmo se d li je tj skup brojev ogrđe (omeđe Defiicij (ogrđeost Z iz relih brojev ( N ko M,m R, m M, N Td je: M gorj ogrd iz (, m doj ogrd iz kžemo d je ogrđe ko je skup {,, K,,K } Defiicij (mootoost Niz ( relih brojev je rstući ko je +, N Niz ( relih brojev je pdjući ko je +, N Alogo, Niz ( relih brojev je strogo rstući ko je < +, N Niz ( relih brojev je strogo pdjući ko je > +, N Sve su to mootoi izovi + Z mootoe rstuće izove vrijedi + 0, odoso + Z mootoe pdjuće izove vrijedi + 0, odoso Zdtk Ispitti mootoost sljedećih izov zdih općim člom: b b c c ( ogrđe, tj Defiicije Svku fukciju f S R, S {,,,} : K zovemo kočim izom u R Okoli relog broj je svki otvorei itervl relih brojev koji sdrži tj broj (N primjer, ekoliko okoli broj : (0,, (09,, - okoli broj A je otvorei itervl ( A,A +, R, > 0 87

4 Geodetski fkultet, dr sc J Beb-Brkić Predvj iz Mtemtike Rel broj A je gomilište iz mogo člov tog iz N ko svk - okoli broj A sdrži beskočo 4 A-e A A+e koco mogo Grič vrijedost ili limes iz Defiicij Postoji li točk A tkv d se u svkoj jezioj - okolii lze gotovo svi človi iz (, kžemo d je iz ( koverget i d je A limes ili gric tog iz Pišemo: lim A, Čitmo: Limes od, kd teži u beskočo, je A Vrijedi: Ako je iz koverget, od je limes tog iz jegovo jedio gomilište Defiicij Broj A zovemo gričom vrijedošću ili limesom iz ( ko z svki pozitiv broj, d z sve člove iz, ideksi kojih su veći od možemo ći tkv prirod broj 0 A < 0, vrijedi Ako broj A postoji iz zovemo kovergetim Defiicij zpis formulom: > N > A < ( 0( 0 ( 0 Primjer Provjer kovergecije iz Nek je d iz s općim člom, tj ( :,,,,, K K,, K 4 5 (Vidi grfički prikz sti 86 Odberimo eki (po volji mli pozitivi broj ( > 0 Uvijek postoje človi iz čij je udljeost od broj mj od tog broj N primjer, Uzmimo fl svi sljedeći človi iz, +, +, Ksu udljeosti mjoj od 00 od broj 00 88

5 Geodetski fkultet, dr sc J Beb-Brkić Predvj iz Mtemtike Pišemo: lim 000 Divergeti izovi su izovi koji isu kovergeti Niz je diverget u užem smislu, ko je ispujeo:, itd lim + ili lim Niz je diverget u širem smislu ko je diverget ije diverget u užem smislu + N primjer, iz s općim člom, ( :000,,,,, KK, divergir u širem smislu jer im dv gomilišt, 0 i Svojstv kovergetih izov Teorem Koverget iz im smo jed limes, tj ko je lim A i lim B, td je A B Dokz Pretpostvimo d je ispujeo: A B i 0 A B > lim A > A < lim B > B < Ozčimo: mx{, } 0 Budući d gorje dvije jedkosti vrijede z > 0, slijedi A B A + B A + B A + B < + A B <, što je emoguće Dkle, A B Teorem Koverget iz je ogrđe : A B Dokz ( je koverget iz lim A Odberimo li 0, tkv d je > A <, tj 0 A < < fl A < < A+ ( 89

6 Geodetski fkultet, dr sc J Beb-Brkić Predvj iz Mtemtike Ozčimo: K mx{,,, 0 } K, ( 0 K, K, KK, 0 K K K, K K, KK, K K (, tj 0 Ozčimo dlje: M mx{ K,A+ } i m mi{ K,A } Iz ( i ( slijedi: m M, N Teorem Ogrđe i mooto iz je koverget, što je i treblo dokzti Dokz Nek je mooto ogrđe iz uzlz Kko je iz ogrđe postoji jegov supremum i u svkoj okolii supremum im člov iz U protivom bi smi rub okolie bio supremum iz, i poovili bismo gorju tvrdju Ako u okolii supremum postoji jed čl iz, zbog uzlzosti iz su gotovo svi človi iz u toj okolii Dkle, u svkoj su okolii gotovo svi človi iz i iz je koverget, odkle slijedi d mu je limes supremum Alogo z silze izove, limes im je ifimum Teorem 4 (Teorem o sedviču Ako su izovi (, (b i (c tkvi d je b c z svki veći od ekog 0 i osim tog je je lim lim c, od kovergir i iz (b i lim lim b lim c Dokz Nek je lim lim c A Td, Odoso, ( 0(, N ( ( > A < > > c A < > < A< A < < A+ Ozčimo s mx{, } i > < c A< A < c < A+ Slijedi: > A < b c < A+, tj A < b < A+, tj ( > 0 > b A <, tj lim b A 90

7 Geodetski fkultet, dr sc J Beb-Brkić Predvj iz Mtemtike Teorem 5 (Rčuje s limesim Nek su i ( b kovergeti izovi relih brojev i ( ( lim ± b lim ± lim b A ± B ; ( lim( b lim lim b A B ( lim b lim lim b (4 lim lim A ; k ; lim A, B 0 i b 0, N; B k k (5 lim lim A, 0, A > 0, k R; (6 k k lim k lim A A, lim B Td je: b Dokz Dokzt ćemo smo prvo svojstvo, tj lim + b A + B, što piso formulom glsi ( N ( b ( A B > > + + < Po pretpostvci je lim A i lim b B lim A, > A <, ( ( z lim b B, > b B < (4 Ozčimo: mx{, } 0 ( z Iz ( i (4 slijedi: ( > 0 ( + b ( A+ B ( A + ( b B A + b B < + Neki vžiji limesi + + Dokžimo d je tko zdi iz koverget Niz s općim člom + ; ( :,,,KK o Ko prvo pokžimo d je iz strogo rstući Beroullijev ejedkost: ( α ( α m + mα, α >, m N m > + mα, α >,m> 9

8 Geodetski fkultet, dr sc J Beb-Brkić Predvj iz Mtemtike Stvimo: Slijedi: + α, m > > > o Niz s općim člom + je ogrđe Budući d je iz uzlz dovoljo je pokzti postojje gorje ogrde Beroullijev ejedkost z α i m + glsi: + + > (5 Rspišimo: + ( (6 Usporedbom (5 i (6 slijedi d je 4> +, > 0, p je iz i ogrđe Prem teoremu, iz je koverget Ozčimo jegov limes s e, tj ( e 78888K ; :,,,, K,, 4 Hrmoijski iz lim 0 K K 4, R; ( :,,,, K K,, K < lim 0 iz kovergir > iz divergir lim ( iz kovergir iz : -,, -,, divergir 4 4 ; ( :,,, 4, K K,, K lim lim + e, 9

9 Geodetski fkultet, dr sc J Beb-Brkić Predvj iz Mtemtike 4 5 ; ( :,,,, K K,, K lim Zdtk Izrčuti limese zdih izov, + b 5 b + 6 Aritmetički i geometrijski iz Aritmetički iz ili A-iz A-iz:,,, K,, K prvi čl iz + d, drugi čl iz + d d treći čl iz + M + d + ( d, -ti čl iz M d K K + K d diferecij ili rzlik, tj Dkle, svki čl A-iz jedk je ritmetičkoj sredii susjedih člov Sum prvih člov A-iz: + + K+ + + d + + d + K+ + d S ( ( K ( + + d +, tj Geometrijski iz ili G-iz b prvi čl iz b bq, drugi čl iz 9

10 Geodetski fkultet, dr sc J Beb-Brkić Predvj iz Mtemtike b b bq bq M b q b q treći čl iz, -ti čl iz M b b b b+ q K K K b b b b q kvocijet b b b, tj + b b b+ Dkle, svki čl G-iz jedk je geometrijskoj sredii susjedih člov Sum prvih člov G-iz: s b + b + K+ b b + bq+ bq + K+ bq q s q bq+ bq + bq + K + bq ( ( s s q s q b bq b q q s b q Sum svih člov G-iz: q Z q < s lims limb b q q 94

11 Geodetski fkultet, dr sc J Beb-Brkić Predvj iz Mtemtike 95

7. ELEMENTARNE FUNKCIJE

7. ELEMENTARNE FUNKCIJE Geodetski fkultet dr. sc. J. e-rkić Predvj iz Mtemtike 7. ELEMENTRNE FUNKIJE Među fukcijm koje su de formulom vžu ulogu imju tkozve elemetre fukcije. Pozvje svojstv elemetrih fukcij omogućit će lkše svldvje

Διαβάστε περισσότερα

1. ELEMENTI LOGIKE I TEORIJE SKUPOVA IZJAVE, VEZNICI, KVANTIFIKATORI

1. ELEMENTI LOGIKE I TEORIJE SKUPOVA IZJAVE, VEZNICI, KVANTIFIKATORI Geodetsi fultet, dr. sc. J. eb-rić Predvj iz Mtemtie. ELEMETI LOGIKE I TEORIJE KUPOV IZJVE, VEZICI, KVTIFIKTORI eolio riječi o mtemtičoj logici. Upotrebljvt ćemo pojmove mtemtiče logie li se ećemo jom

Διαβάστε περισσότερα

1 Ekstremi funkcija više varijabli

1 Ekstremi funkcija više varijabli 1 Ekstremi funkcij više vrijbli Definicij ekstrem funkcije: Funkcij u = f(x 1, x 2,, x n ) im u točki T ( 1, 2,, n ) A) LOKALNI MINIMUM f( 1, 2,, n ) ko z svku točku T vrijedi nejednkost: T ( 1 + dx 1,

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike OSNOVNI TEOREMI DIFERENCIJALNOG RAČUNA

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike OSNOVNI TEOREMI DIFERENCIJALNOG RAČUNA Geodetski akultet dr s J Beba-Brkić Predavaja iz Matematike OSNOVNI TEOREMI DIFERENCIJALNOG RAČUNA Teoremi koje ćemo avesti u ovom poglavlju su osovi teoremi koji osiguravaju ispravost primjea diereijalog

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Nizovi Redovi Redovi funkcija. Nizovi i redovi. Franka Miriam Brückler

Nizovi Redovi Redovi funkcija. Nizovi i redovi. Franka Miriam Brückler Nizovi i redovi Franka Miriam Brückler Nabrajanje brojeva poput ili 1, 2, 3, 4, 5,... 1, 2, 4, 8, 16,... obično se naziva nizom, bez obzira je li to nabrajanje konačno (do nekog zadnjeg broja, recimo 1,

Διαβάστε περισσότερα

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija Sadržaj: Nizovi brojeva Pojam niza Limes niza. Konvergentni nizovi Neki važni nizovi. Broj e. Limes funkcije Definicija esa Računanje esa Jednostrani esi Neprekinute funkcije i esi Definicija neprekinute

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike DERIVACIJA

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike DERIVACIJA Geodetski akultet dr sc J Beban-Brkić Predavanja iz Matematike DERIVACIJA Pojam derivacije Glavne ideje koje su vodile do današnjeg shvaćanja derivacije razvile su se u 7 stoljeću kada i započinje razvoj

Διαβάστε περισσότερα

Diferencijalni račun

Diferencijalni račun ni račun October 28, 2008 ni račun Uvod i motivacija Točka infleksije ni račun Realna funkcija jedne realne varijable Neka je X neprazan podskup realnih brojeva. Ako svakom elementu x X po postupku f pridružimo

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

DETERMINANTE I MATRICE

DETERMINANTE I MATRICE Gimzij: Lucij Vrji Mturl rdj: ETERMINANTE I MATRICE Izrdio: iko Koruić, učeik 4 G Metor: Mile Broić, profesor U Zgreu, 0 siječj 996 SARŽAJ I UVO II ETERMINANTE etermite drugog red etermite trećeg red 3

Διαβάστε περισσότερα

Υπολογισμός ορίου συνάρτησης όταν x ±

Υπολογισμός ορίου συνάρτησης όταν x ± 6 Υπολογισός ορίου συνάρτησης όταν ± Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Αν οι τιές ιας συνάρτησης αυξάνονται απεριόριστα όταν το αυξάνεται απεριόριστα, λέε ότι το όριο της συνάρτησης στο + είναι το + και γράφουε

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΠΕΡΙΓΡΑΦΗ TD 81/2 ΥΠΑΙΘΡΙΟΙ ΜΟΝΩΤΗΡΕΣ ΣΤΗΡΙΞΗΣ 400KV, ΚΥΛΙΝΔΡΙΚΟΙ ΣΥΜΠΑΓΟΥΣ ΠΥΡΗΝΟΣ ΜΕ ΕΞΩΤΕΡΙΚΑ ΜΕΤΑΛΛΙΚΑ ΕΞΑΡΤΗΜΑΤΑ ΕΦΑΡΜΟΓΗΣ

ΤΕΧΝΙΚΗ ΠΕΡΙΓΡΑΦΗ TD 81/2 ΥΠΑΙΘΡΙΟΙ ΜΟΝΩΤΗΡΕΣ ΣΤΗΡΙΞΗΣ 400KV, ΚΥΛΙΝΔΡΙΚΟΙ ΣΥΜΠΑΓΟΥΣ ΠΥΡΗΝΟΣ ΜΕ ΕΞΩΤΕΡΙΚΑ ΜΕΤΑΛΛΙΚΑ ΕΞΑΡΤΗΜΑΤΑ ΕΦΑΡΜΟΓΗΣ ΑΝΕΞΑΡΤΗΤΟΣ ΔΙΑΧΕΙΡΙΣΤΗΣ ΜΕΤΑΦΟΡΑΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ Α.Ε. ΔΝΕΜ/ ΤΟΜΕΑΣ ΠΡΟΔΙΑΓΡΑΦΩΝ & ΕΞΟΠΛΙΣΜΟΥ Υ/Σ - ΚΥΤ ΟΚΤΩΒΡΙΟΣ 2009 ΤΕΧΝΙΚΗ ΠΕΡΙΓΡΑΦΗ TD 81/2 ΥΠΑΙΘΡΙΟΙ ΜΟΝΩΤΗΡΕΣ ΣΤΗΡΙΞΗΣ 400KV, ΚΥΛΙΝΔΡΙΚΟΙ ΣΥΜΠΑΓΟΥΣ

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

1. NEODREÐENI INTEGRAL

1. NEODREÐENI INTEGRAL . NEODREÐENI INTEGRAL Pitnj: Je li dn reln funkcij f : A! R, A R, derivcij neke relne funkcije g : A! R? Riješiti jedndbu g = f, pri cemu se z dni f tri g. T jedndb ili nem rješenj ili ih im beskoncno

Διαβάστε περισσότερα

= ημ + 2 = ημ. ημ = 1 2. ημ =ημ 6. =2 + 6 ή =2 + 6 = 6. Η ταχύτητα του σώματος σε κάθε χρονική στιγμή δίνεται από την εξίσωση.

= ημ + 2 = ημ. ημ = 1 2. ημ =ημ 6. =2 + 6 ή =2 + 6 = 6. Η ταχύτητα του σώματος σε κάθε χρονική στιγμή δίνεται από την εξίσωση. Ταλαντώσεις Άσκηση 1 η Ένα σώμα εκτελεί απλή αρμονική ταλάντωση και την χρονική στιγμή =0 s βρίσκεται στην θέση =+ και έχει θετική ταχύτητα. Να γραφεί η εξίσωση κίνησης του. Για =0 s, =+, υ>0 =ημ+ 2 =ημ

Διαβάστε περισσότερα

OSNOVNI PRINCIPI PREBROJAVANJA. () 6. studenog 2011. 1 / 18

OSNOVNI PRINCIPI PREBROJAVANJA. () 6. studenog 2011. 1 / 18 OSNOVNI PRINCIPI PREBROJAVANJA () 6. studenog 2011. 1 / 18 TRI OSNOVNA PRINCIPA PREBROJAVANJA -vrlo često susrećemo se sa problemima prebrojavanja elemenata nekog konačnog skupa S () 6. studenog 2011.

Διαβάστε περισσότερα

ΚEΦΑΛΑΙΟ 1. Πίνακες. Από τα παραπάνω γίνεται αντιληπτό ότι κάθε γραµµή και στήλη ενός πίνακα A ορίζει µονοσήµαντα τη θέση κάθε στοιχείου A

ΚEΦΑΛΑΙΟ 1. Πίνακες. Από τα παραπάνω γίνεται αντιληπτό ότι κάθε γραµµή και στήλη ενός πίνακα A ορίζει µονοσήµαντα τη θέση κάθε στοιχείου A ΚEΦΑΛΑΙΟ Πίνακες Εστω και είναι το σώµα των πραγµατικών και των µιγαδικών αριθµών αντιστοίχως Στο εξής όταν γράφουµε F θα εννοούµε είτε το είτε το Ορισµός Eστω F = ή και m, Κάθε ορθογώνια διάταξη m A F

Διαβάστε περισσότερα

4.1 Elementarne funkcije

4.1 Elementarne funkcije . Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

Matematika 1. Marcela Hanzer. Department of Mathematics, University of Zagreb. Marcela Hanzer (Dept of Math, Uni Zagreb) Matematika 1 1 / 135

Matematika 1. Marcela Hanzer. Department of Mathematics, University of Zagreb. Marcela Hanzer (Dept of Math, Uni Zagreb) Matematika 1 1 / 135 Matematika 1 Marcela Hanzer Department of Mathematics, University of Zagreb Marcela Hanzer (Dept of Math, Uni Zagreb) Matematika 1 1 / 135 Skupovi; brojevi Skupovi osnovni pojam u matematici (ne svodi

Διαβάστε περισσότερα

γραπτή εξέταση στο μάθημα ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ

γραπτή εξέταση στο μάθημα ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ η εξεταστική περίοδος από //3 έως 7//3 γραπτή εξέταση στο μάθημα ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ Τάξη: Α Λκείο Τμήμα: Βαθμός: Ονοματεπώνμο: Καθηγητές: ΑΘΑΝΑΣΙΑΔΗΣ Φ. - ΚΟΖΥΒΑ Χ. Θ Ε Μ Α Α Στις παρακάτω ερωτήσεις να επιλέξετε

Διαβάστε περισσότερα

ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΜΙΝΑΡΙΟΥ ΠΙΣΤΟΠΟΙΗΣΗΣ ΤΥΠΟΣ ΠΙΣΤΟΠ.

ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΜΙΝΑΡΙΟΥ ΠΙΣΤΟΠΟΙΗΣΗΣ ΤΥΠΟΣ ΠΙΣΤΟΠ. 1 ΛΥΣΣΑΝΔΡΗ ΣΟΦΙΑ ΧΑΜΠΗΣ Α1 108400011 ΑΠΟΤΥΧΩΝ/ΟΥΣΑ ΑΠΟΤΥΧΩΝ/ΟΥΣΑ _ 2 ΓΙΑΝΝΙΟΣ ΝΙΚΟΛΑΟΣ ΜΙΧΑΗΛ Α1 108400021 ΑΠΟΤΥΧΩΝ/ΟΥΣΑ ΕΠΙΤΥΧΩΝ/ΟΥΣΑ _ 3 ΤΣΙΜΠΛΑΚΟΥ ΕΛΕΝΗ ΠΑΝΑΓΙΩΤΗΣ Α1 108400031 ΕΠΙΤΥΧΩΝ/ΟΥΣΑ ΕΠΙΤΥΧΩΝ/ΟΥΣΑ

Διαβάστε περισσότερα

f (x) = x x, x [ 1, 2]. Να βρείτε:

f (x) = x x, x [ 1, 2]. Να βρείτε: ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 9: ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ FERMAT [Ενότητες Η Έννοια του Τοπικού Ακροτάτου Προσδιορισμός των τοπικών Ακροτάτων πλην του Θεωρήματος Εύρεση Τοπικών Ακροτάτων

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

Μετρήσεις B.O.D. και C.O.D, σε διάφορα δείγματα αστικών λυμάτων του Βιολογικού Καθαρισμού Καβάλας

Μετρήσεις B.O.D. και C.O.D, σε διάφορα δείγματα αστικών λυμάτων του Βιολογικού Καθαρισμού Καβάλας αππ! ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡ^Ι'νΙ^ ^ ΚΑΒΠΥΔΣ Μετρήσεις B.O.D. και C.O.D, σε διάφορα δείγματα αστικών λυμάτων του Βιολογικού Καθαρισμού Καβάλας Πτυχιακή Εργασία Εισηγητής Καθηγητής ; Θωμάς Σπανός Σπουδάστρια

Διαβάστε περισσότερα

6. poglavlje (korigirano) PRIMJENA DERIVACIJA

6. poglavlje (korigirano) PRIMJENA DERIVACIJA 6 Primjea derivacija (sa svim korekcijama) 6 poglavlje (korigirao) PRIMJENA DERIVACIJA U ovom poglavlju: Tageta i ormala Stacioare točke ukcije Tablica mootoosti, ekstremi, koveksost i kokavost, ileksije

Διαβάστε περισσότερα

Algebarske operacije

Algebarske operacije Algebrske opercije Poglvlje m e l e 11 Potecije 1 Algebrski izrzi w w r t h e w w w w m e l e r t h e Ciljevi: - rčuti s potecijm cjelobrojog ekspoet - prepozti i rbiti formule z kvdrt biom i rzliku kvdrt

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

Funkcije Materijali za nastavu iz Matematike 1

Funkcije Materijali za nastavu iz Matematike 1 Funkcije Materijali za nastavu iz Matematike 1 Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 76 Definicija funkcije Funkcija iz skupa X u skup Y je svako pravilo f po kojemu se elementu x X

Διαβάστε περισσότερα

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Prva tačka u ispitivanju toka unkcije je odredjivanje oblasti deinisanosti, u oznaci Pre nego što krenete sa proučavanjem ovog ajla, obavezno pogledajte ajl ELEMENTARNE

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7. Το ορισµένο ολοκλήρωµα

ΚΕΦΑΛΑΙΟ 7. Το ορισµένο ολοκλήρωµα ΚΕΦΑΛΑΙΟ 7 Το ορισµένο ολοκλήρωµα Εισαγωγή Ο Ολοκληρωτικός Λογισµός γεννήθηκε από την ανάγκη ανάπτυξης µιας γενικής µεθόδου υπολογισµού όγκων εµαδών και κέντρων άρους Οι αρχές ολοκλήρωσης ανάγονται στη

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

ΟΜΑΔΕΣ ΑΣΚΗΣΕΩΝ 2015-2016

ΟΜΑΔΕΣ ΑΣΚΗΣΕΩΝ 2015-2016 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ Ι Σ. ΤΟΥΜΠΗΣ Οδηγίες (Διαβάστε τες!) 1. Περίληψη: ΟΜΑΔΕΣ ΑΣΚΗΣΕΩΝ 2015-2016 (αʹ) Υπάρχει μια ομάδα ασκήσεων για κάθε κεφάλαιο των σημειώσεων,

Διαβάστε περισσότερα

MATEMATIČKA ANALIZA 1 1 / 192

MATEMATIČKA ANALIZA 1 1 / 192 MATEMATIČKA ANALIZA 1 1 / 192 2 / 192 prof.dr.sc. Miljenko Marušić Kontakt: miljenko.marusic@math.hr Konzultacije: Utorak, 10-12 WWW: http://web.math.pmf.unizg.hr/~rus/ nastava/ma1/ma1.html 3 / 192 Sadržaj

Διαβάστε περισσότερα

1.1 Neodre deni integral

1.1 Neodre deni integral . Neodre deni integrl.. Površinski problem Uvod u površinski problem Iko većin rzmišlj o integrlu isključivo ko o obrtu izvod, osnove integrlnog rčun sežu mnogo dlje u prošlost od modernih vremen. Jedn

Διαβάστε περισσότερα

x M kazemo da je slijed ogranicen. Weierstrass-Bolzano-v teorem tvrdi da svaki ograniceni slijed ima barem jednu granicnu tocku.

x M kazemo da je slijed ogranicen. Weierstrass-Bolzano-v teorem tvrdi da svaki ograniceni slijed ima barem jednu granicnu tocku. 1. FUNKCIJE, LIMES, NEPREKINUTOST 1.1 Brojevi - slijed, interval, limes Slijed realnih brojeva je postava brojeva na primjer u obliku 1,,3..., nn, + 1... koji na realnoj osi imaju oznaceno mjesto odgovarajucom

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ - ΔΕΣΜΟΙ

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ - ΔΕΣΜΟΙ 2 ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ - ΔΕΣΜΟΙ ΠΕΡΙΕΧΟΜΕΝΑ 2.1 Ηλεκτρονική δομή των ατόμων 2.2 Κατάταξη των στοιχείων (Περιοδικός Πίνακας). Χρησιμότητα του Περιοδικού Πίνακα 2.3 Γενικά για το χημικό δεσμό- Παράγοντες που

Διαβάστε περισσότερα

9. PREGLED ELEMENTARNIH FUNKCIJA

9. PREGLED ELEMENTARNIH FUNKCIJA 9. PREGLED ELEMENTARNIH FUNKCIJA Pod elementarnim funkcijama najčešće ćemo podrazumijevati realne funkcije realne varijable Detaljnije ćemo u Matematici II analizirati funkcije koje se najčešće koriste

Διαβάστε περισσότερα

Društvo matematičara Srbije. Pripreme za Juniorske olimpijade školske 2007/2008. Matematička indukcija

Društvo matematičara Srbije. Pripreme za Juniorske olimpijade školske 2007/2008. Matematička indukcija Društvo matematičara Srbije Pripreme za Juiorske olimpijade školske 007/008 -Dord e Baralić Tel:063/706-706-6 e-mail:djolebar@ptt.yu Matematička idukcija Primer 1. Dokazati da je > za sve N. Ituitivo zamo

Διαβάστε περισσότερα

FUNKCIJE DVIJU VARIJABLI (ZADACI)

FUNKCIJE DVIJU VARIJABLI (ZADACI) FUNKCIJE DVIJU VARIJABLI (ZADACI) Rozarija Jak²i 5. travnja 03. UVOD U FUNKCIJE DVIJU VARIJABLI.. Domena funkcija dviju varijabli Jedno od osnovnih pitanja koje se moºe postaviti za realnu funkciju dvije

Διαβάστε περισσότερα

Ηλεκτρονική δομή των ατόμων - Περιοδικός πίνακας - Χημικοί δεσμοί

Ηλεκτρονική δομή των ατόμων - Περιοδικός πίνακας - Χημικοί δεσμοί Ηλεκτρονική δομή των ατόμων - Περιοδικός πίνακας - Χημικοί δεσμοί 25. Δίνονται τα στοιχεία 7 Ν, 19 Κ, 35 Βr. Να γράψετε την ηλεκτρονική δομή των ατόμων τους. 7Ν: Το άτομο του αζώτου έχει z = 7 άρα έχει

Διαβάστε περισσότερα

SVEUĆILIŠTE U RIJECI UČITELJSKI FAKULTET U RIJECI ODSJEK ZA UČITELJSKI STUDIJ U GOSPIĆU MATEMATIKA I. Skupovi, funkcije, brojevi

SVEUĆILIŠTE U RIJECI UČITELJSKI FAKULTET U RIJECI ODSJEK ZA UČITELJSKI STUDIJ U GOSPIĆU MATEMATIKA I. Skupovi, funkcije, brojevi SVEUĆILIŠTE U RIJECI UČITELJSKI FAKULTET U RIJECI ODSJEK ZA UČITELJSKI STUDIJ U GOSPIĆU MATEMATIKA I Skupovi, funkcije, brojevi mr.sc. TATJANA STANIN 009. Kratak pregled predavanja koja se izvode na učiteljskom

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Κεφάλαιο 5 Όριο και συνέχεια συνάρτησης

Κεφάλαιο 5 Όριο και συνέχεια συνάρτησης Κεφάλαιο 5 Όριο και συνέχεια συνάρτησης 5 Όριο συνάρτησης για єr Θεωρούµε την αραβολή = Θέλουµε να ροσδιορίσουµε την κλίση της εφατοµένης της στο σηµείο (, ) ηλαδή, θέλουµε να βρούµε την εφατοµένη της

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 1 ΕΡΩΤΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΓΥΜΝΑΣΙΟΥ Σε ποιες κατηγορίες αριθμών χωρίζονται οι φυσικοί αριθμοί; Χωρίζονται στους άρτιους (ζυγούς) και τους περιττούς (μονούς). Άρτιοι λέγονται οι φυσικοί αριθμοί που

Διαβάστε περισσότερα

Baza topologije. Definicija. Familija B podskupova od X je baza neke topologije na X ako: Topološki prostori. Baza topologije. tj.

Baza topologije. Definicija. Familija B podskupova od X je baza neke topologije na X ako: Topološki prostori. Baza topologije. tj. Opća topologija 24 Opća topologija 26 13. Baza topologije Baza topologije 2 TOPOLOŠKI PROSTORI I NEPREKIDNE FUNKCIJE Topološki prostori Baza topologije Uređajna topologija Produktna topologija na X Y Topologija

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 8: ΘΕΩΡΗΜΑ BOLZANO - ΠΡΟΣΗΜΟ ΣΥΝΑΡΤΗΣΗΣ - ΘΕΩΡΗΜΑ ΕΝΔΙΑΜΕΣΩΝ

ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 8: ΘΕΩΡΗΜΑ BOLZANO - ΠΡΟΣΗΜΟ ΣΥΝΑΡΤΗΣΗΣ - ΘΕΩΡΗΜΑ ΕΝΔΙΑΜΕΣΩΝ ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 8: ΘΕΩΡΗΜΑ BOLZANO - ΠΡΟΣΗΜΟ ΣΥΝΑΡΤΗΣΗΣ - ΘΕΩΡΗΜΑ ΕΝΔΙΑΜΕΣΩΝ Άσκηση. ΤΙΜΩΝ - ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ - ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΕΧΟΥΣ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

Χρηματοοικονομική Διοίκηση. 7η Εισήγηση Αποτίμηση και Απόδοση αξιογράφων

Χρηματοοικονομική Διοίκηση. 7η Εισήγηση Αποτίμηση και Απόδοση αξιογράφων Χρηματοοικονομική Διοίκηση 7η Εισήγηση Αποτίμηση και Απόδοση αξιογράφων 1 ΠΗΓΕΣ ΧΡΗΜΑΤΟΔΟΤΗΣΗΣ Έμμεση χρηματοδότηση: Τραπεζικά δάνεια, αμοιβαία κεφάλαια, εταιρίες επενδύσεων χαρτοφυλακίου και ασφαλιστικά

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΗΣ ΥΝΑΤΟΤΗΤΑΣ ΑΞΙΟΠΟΙΗΣΗΣ ΤΟΥ ΓΕΩΘΕΡΜΙΚΟΥ ΠΕ ΙΟΥ ΘΕΡΜΩΝ ΝΙΓΡΙΤΑΣ (Ν. ΣΕΡΡΩΝ)

ΜΕΛΕΤΗ ΤΗΣ ΥΝΑΤΟΤΗΤΑΣ ΑΞΙΟΠΟΙΗΣΗΣ ΤΟΥ ΓΕΩΘΕΡΜΙΚΟΥ ΠΕ ΙΟΥ ΘΕΡΜΩΝ ΝΙΓΡΙΤΑΣ (Ν. ΣΕΡΡΩΝ) ελτίο της Ελληνικής Γεωλογικής Εταιρίας τοµ. XXXVI, 2004 Πρακτικά 10 ου ιεθνούς Συνεδρίου, Θεσ/νίκη Απρίλιος 2004 Bulletin of the Geological Society of Greece vol. XXXVI, 2004 Proceedings of the 10 th

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

VJEŽBE IZ MATEMATIKE 1

VJEŽBE IZ MATEMATIKE 1 VJEŽBE IZ MATEMATIKE 1 Ivana Baranović Miroslav Jerković Lekcija 14 Rast, pad, konkavnost, konveksnost, točke infleksije i ekstremi funkcija Poglavlje 1 Rast, pad, konkavnost, konveksnost, to ke ineksije

Διαβάστε περισσότερα

ΜΕΤΑΒΟΛΗ ΕΠΙΦΑΝΕΙΑΚΩΝ ΙΔΙΟΤΗΤΩΝ ΦΥΣΙΚΩΝ ΚΑΙ ΣΥΝΘΕΤΙΚΩΝ ΥΦΑΣΜΑΤΩΝ ΜΕ ΠΛΑΣΜΑ ΧΑΜΗΛΗΣ ΚΑΙ ΑΤΜΟΣΦΑΙΡΙΚΗΣ ΠΙΕΣΗΣ

ΜΕΤΑΒΟΛΗ ΕΠΙΦΑΝΕΙΑΚΩΝ ΙΔΙΟΤΗΤΩΝ ΦΥΣΙΚΩΝ ΚΑΙ ΣΥΝΘΕΤΙΚΩΝ ΥΦΑΣΜΑΤΩΝ ΜΕ ΠΛΑΣΜΑ ΧΑΜΗΛΗΣ ΚΑΙ ΑΤΜΟΣΦΑΙΡΙΚΗΣ ΠΙΕΣΗΣ ΜΕΤΑΒΟΛΗ ΕΠΙΦΑΝΕΙΑΚΩΝ ΙΔΙΟΤΗΤΩΝ ΦΥΣΙΚΩΝ ΚΑΙ ΣΥΝΘΕΤΙΚΩΝ ΥΦΑΣΜΑΤΩΝ ΜΕ ΠΛΑΣΜΑ ΧΑΜΗΛΗΣ ΚΑΙ ΑΤΜΟΣΦΑΙΡΙΚΗΣ ΠΙΕΣΗΣ ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ Υποβληθείσα στο Τμήμα χημικών Μηχανικών Πανεπιστήμιο Πατρών Υπό ΚΩΣΤΟΠΟΥΛΟΥ

Διαβάστε περισσότερα

Να υπολογιστεί το εμβαδόν Ε του "ανοιχτού" χωρίου Ω, που ορίζεται από

Να υπολογιστεί το εμβαδόν Ε του ανοιχτού χωρίου Ω, που ορίζεται από ΚΕΦΑΛΑΙΟ Α. Χωρίο από C και Ασύμπτωτή τη Πρόβημα (Πάγια- Οριζόντια Ασύμπτωτη) Να υποογιστεί το εμβαδόν Ε του "ανοιχτού" χωρίου Ω, που ορίζεται από τη γραφική παράσταση C μια συνεχού συνάρτηση, την ευθεία

Διαβάστε περισσότερα

Κυρτότητα Σημεία καμπής συνάρτησης

Κυρτότητα Σημεία καμπής συνάρτησης 14 Κυρτότητα Σημεία καμπής συνάρτησης Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορισμοί Έστω μία συνάρτηση f συνεχής σε ένα διάστημα Δ και παραγωγίσιμη στο εσωτερικό του Δ Λέμε ότι : Η f στρέφει τα κοίλα προς τα πάνω

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

Öýëëá åñãáóßáò ãéá ôá ÌáèçìáôéêÜ

Öýëëá åñãáóßáò ãéá ôá ÌáèçìáôéêÜ ÅÕÁÃÃÅËIÁ ÄÅÓYÐÑÇ Öýëëá åñãáóßáò ãéá ôá ÌáèçìáôéêÜ Â Äçìïôéêïý ÅÊÄÏÓÅÉÓ ÐÁÐÁÄÏÐÏÕËÏÓ Σειρά: Τα εκπαιδευτικά μου βιβλία / Δημοτικό Ευαγγελία Δεσύπρη, Φύλλα εργασίας για τα Μαθηματικά Β Δημοτικού Υπεύθυνη

Διαβάστε περισσότερα

ΤΖΑΚΙΑ ΕΝΕΡΓΕΙΑΚΑ ΑΕΡΟΘΕΡΜΑ Φ 250 25,6 275 1,700 Φ 250 1,700 Φ 250 1,700 Φ 250 1,700 Φ 250 1,800 Φ 250 1,800 Υ: 1.75 B:0.59 Π: 0.

ΤΖΑΚΙΑ ΕΝΕΡΓΕΙΑΚΑ ΑΕΡΟΘΕΡΜΑ Φ 250 25,6 275 1,700 Φ 250 1,700 Φ 250 1,700 Φ 250 1,700 Φ 250 1,800 Φ 250 1,800 Υ: 1.75 B:0.59 Π: 0. ΚΑΜΙΝΑΔΑΣ Kw ΒΑΡΟΣ 1 B:0.59 150 25,6 275 1,700 2 3 4 5 ΣΤΡΟΓΓΥΛΟ Τ 90 B:0.73 B:0.76 Υ: 1.72 B:0.62 Π: 0.98 B:0.66 Π:1.06 150 150 24 20 20 20 288 295 305 1,700 1,700 1,700 1,800 ΤΖΑΚΙΑ ΕΝΕΡΓΕΙΑΚΑ ΑΕΡΟΘΕΡΜΑ

Διαβάστε περισσότερα

Αλληλεπίδραση ακτίνων-χ με την ύλη

Αλληλεπίδραση ακτίνων-χ με την ύλη Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων

Διαβάστε περισσότερα

Διευθύνοντα Μέλη του mathematica.gr

Διευθύνοντα Μέλη του mathematica.gr Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mathematica.gr. Η επιλογή και η ϕροντίδα του περιεχομένου γίνεται από τους Επιμελητές του http://www.mathematica.gr.

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΗ ΠΛΑΤΦΟΡΜΑ ΒΙΟΚΑΥΣΙΜΩΝ ΘΕΣΣΑΛΙΑΣ. Παρουσίαση του σχεδίου αναφοράς της καθοδηγητικής επιτροπής WG1. Βιομάζα

ΤΕΧΝΟΛΟΓΙΚΗ ΠΛΑΤΦΟΡΜΑ ΒΙΟΚΑΥΣΙΜΩΝ ΘΕΣΣΑΛΙΑΣ. Παρουσίαση του σχεδίου αναφοράς της καθοδηγητικής επιτροπής WG1. Βιομάζα ΤΕΧΝΟΛΟΓΙΚΗ ΠΛΑΤΦΟΡΜΑ ΒΙΟΚΑΥΣΙΜΩΝ ΘΕΣΣΑΛΙΑΣ Παρουσίαση του σχεδίου αναφοράς της καθοδηγητικής επιτροπής WG1 Βιομάζα Πρόεδρος Γεώργιος Ζανάκης (Pioneer Hellas) Αντιπρόεδρος καθ. Νικόλαος Δαναλάτος (ΠΘ)

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ o ΔΙΑΓΩΝΙΣΜΑ ΔΕΚΕΜΒΡΙΟΣ 0: ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις - 4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα

Διαβάστε περισσότερα

Na grafiku bi to značilo :

Na grafiku bi to značilo : . Ispitati tok i skicirati grafik funkcije + Oblast definisanosti (domen) Kako zadata funkcija nema razlomak, to je (, ) to jest R Nule funkcije + to jest Ovo je jednačina trećeg stepena. U ovakvim situacijama

Διαβάστε περισσότερα

P l+1 (cosa) P l 1 (cosa) 2δ l,0 1

P l+1 (cosa) P l 1 (cosa) 2δ l,0 1 Λεοντσ ίνης Στέφανος Ηλεκτομαγνητισ μός η Σειά Ασ κήσ εων 3 Το ηλεκτικό πεδίο έχει τη μοφή φ σ ε ˆr άα φ σ ε rr Tο δυναμικό σ ε σ φαιικές σ υντεταγμένες φ r, θ Al + B l r l+] l cosθ Για να είναι πεπεασ

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε. 2003

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε. 2003 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε. ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ο Θέµα Α. α) Έστω η συνάρτηση στο κάθε f δ) R τις τιµές του γ) Αν η συνάρτηση παραγωγίσιµη σε αυτό. Τότε ισχύει

Διαβάστε περισσότερα

έκτης: Βαθυπερατό φίλτρο Μετατοπιστής Βαθυπερατό φίλτρο

έκτης: Βαθυπερατό φίλτρο Μετατοπιστής Βαθυπερατό φίλτρο Ορθογωνική ιαµόρφωση Πλάτους (QAM) H πολυπλεξία ορθογωνικών φερόντων (quadraurearrier uliplexing) ή ορθογωνική διαµόρφωση πλάτους (quadraure-apliude odulaion, QAM) επιτρέπει σε δύο διαµορφωµένα DB να καταλάβουν

Διαβάστε περισσότερα

β) Το εμβαδόν του ορθογωνίου είναι το γινόμενο των διαστάσεών του. Οπότε E = xy. Επειδή α = α + ν 1ωδιαδοχικά για ν = 10 και ν = 6.

β) Το εμβαδόν του ορθογωνίου είναι το γινόμενο των διαστάσεών του. Οπότε E = xy. Επειδή α = α + ν 1ωδιαδοχικά για ν = 10 και ν = 6. 106 α) Να βρείτε για ποιες πραγματικές τιμές του y ισχύει: y 3 < 1 β) Αν x,y είναι τα μήκη των πλευρών ενός ορθογωνίου παραλληλογράμμου, με 1< x< 3 και < y < 4, τότε να βρείτε τα όρια μεταξύ των οποίων

Διαβάστε περισσότερα

MULTIPLICITETI PRESJEKA I RACIONALNOST RAVNINSKIH KRIVULJA

MULTIPLICITETI PRESJEKA I RACIONALNOST RAVNINSKIH KRIVULJA SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivan Krijan, Sara Muhvić MULTIPLICITETI PRESJEKA I RACIONALNOST RAVNINSKIH KRIVULJA Zagreb, 2013. Ovaj rad izraden je na Zavodu

Διαβάστε περισσότερα

Dekompozicija DFT. Brzi algoritmi na bazi radix-2. Brza Furijeova transofrmacija. Tačnost izračunavanja. Kompleksna FFT OASDSP 1: 7 FFT

Dekompozicija DFT. Brzi algoritmi na bazi radix-2. Brza Furijeova transofrmacija. Tačnost izračunavanja. Kompleksna FFT OASDSP 1: 7 FFT OASDSP : 7 FFT Dkompozicija DFT Brzi algoritmi a bazi radix- Brza Furijova trasofrmacija Tačost izračuavaja Komplksa FFT ovi Sad, Oktobar 5 straa OASDSP : 7 FFT Brza trasformacija : itrativa dkompozicija

Διαβάστε περισσότερα

Matematika. Viša razina. Marina Ninković, prof. Vesna Ovčina, prof. Zagreb, 2015.

Matematika. Viša razina. Marina Ninković, prof. Vesna Ovčina, prof. Zagreb, 2015. Matematika Viša razina Marina Ninković, prof. Vesna Ovčina, prof. Zagreb, 2015. Autor: Marina Ninković, prof. Vesna Ovčina, prof. Naslov: Matematika Viša razina Izdanje: 4. izdanje Urednica: Ana Belin,

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΠΟΛΥΤΕΣ ΤΙΜΕΣ Ο ρ ι σ μ ό ς

ΦΥΛΛΑΔΙΟ ΑΠΟΛΥΤΕΣ ΤΙΜΕΣ Ο ρ ι σ μ ό ς ΦΥΛΛΑΔΙΟ ΑΠΟΛΥΤΕΣ ΤΙΜΕΣ Ο ρ ι σ μ ό ς α 0 α = α α < 0 α = - α Ετσι από τον ορισμό : 5>0-5

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

ΠΡΟΜΗΘΕΙΕΣ Ε.Κ.Α.Β. Παράρτημα : Ε.Κ.Α.Β.- ΚΑΒΑΛΑΣ Ημερομηνία 17/06/2015 ΤΕΛΙΚΗ ΗΜΕΡΟΜΗΝΙΑ ΥΠΟΒΟΛΗΣ ΠΡΟΣΦΟΡΩΝ

ΠΡΟΜΗΘΕΙΕΣ Ε.Κ.Α.Β. Παράρτημα : Ε.Κ.Α.Β.- ΚΑΒΑΛΑΣ Ημερομηνία 17/06/2015 ΤΕΛΙΚΗ ΗΜΕΡΟΜΗΝΙΑ ΥΠΟΒΟΛΗΣ ΠΡΟΣΦΟΡΩΝ ΠΡΟΜΗΘΕΙΕΣ Ε.Κ.Α.Β. Παράρτημα : Ε.Κ.Α.Β.- ΚΑΒΑΛΑΣ Ημερομηνία 17/06/2015 ΣΤΟΙΧΕΙΑ ΕΝΤΟΛΗΣ/ ΔΙΑΚΗΡΥΞΗΣ ΠΡΟΜΗΘΕΙΑ (όνομα είδους ή υπηρεσίας) ΤΕΛΙΚΗ ΗΜΕΡΟΜΗΝΙΑ ΥΠΟΒΟΛΗΣ ΠΡΟΣΦΟΡΩΝ ΠΙΘΑΝΗ ΔΑΠΑΝΗ ΠΛΗΡΟΦΟΡΙΕΣ

Διαβάστε περισσότερα

Ακολουθία συνάρτηση με πεδίο ορισμού το σύνολο Ν*, των θετικών ακέραιων ( πάντα ν Î Ν* ) ΟΡΟΙ

Ακολουθία συνάρτηση με πεδίο ορισμού το σύνολο Ν*, των θετικών ακέραιων ( πάντα ν Î Ν* ) ΟΡΟΙ parmenides5 ΑΚΟΛΟΥΘΙΕΣ Αοουθί συάρτηση με πεδίο ορισμού το σύοο Ν*, τω θετιώ έριω ( πάτ Î Ν* Έστω οουθί ( : ΟΡΟΙ πρώτος όρος της οουθίς δεύτερος όρος της οουθίς 3 τρίτος όρος της οουθίς 4 τέτρτος όρος

Διαβάστε περισσότερα

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom.

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom. RAVAN Ravan je osnovni pojam u geometiji i kao takav se ne definiše. Ravan je odeđena tačkom i nomalnim vektoom. nabc (,, ) π M ( x,, ) y z Da bi izveli jednačinu avni, poučimo sledeću sliku: n( A, B,

Διαβάστε περισσότερα

Οριακή Κατάσταση. με ή χωρίς ορθή δύναμη

Οριακή Κατάσταση. με ή χωρίς ορθή δύναμη ΤΕΕ Θράκης Κομοτηνή 10.10.2009 Σχεδιασμός φορέων από σκυρόδεμα με βάση τον Ευρωκώδικα 2 Μέρος 1-1 (EN 1992-1-1) Οριακή Κατάσταση Αστοχίας έναντι Κάμψης με ή χωρίς ορθή δύναμη Γιαννόπουλος Πλούταρχος Δρ.

Διαβάστε περισσότερα

ϐρίσκεται στο http://www.materials.uoc.gr/el/undergrad/courses/ety213

ϐρίσκεται στο http://www.materials.uoc.gr/el/undergrad/courses/ety213 Τµηµα Επιστηµης και Τεχνολογιας Υλικων Πανεπιστηµιο Κρητης Ηλεκτρονικοί Υπολογιστές ΙΙ : Εισαγωγή στην Αριθµητική Ανάλυση Σηµειώσεις ιαλέξεων και Εργαστηρίων Ηράκλειο εκέµβριος 01 Copyright c 005 01 Στη

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΠΟΙΟΤΗΤΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΟΜΗΣΙΜΩΝ ΥΛΙΚΩΝ

ΕΛΕΓΧΟΣ ΠΟΙΟΤΗΤΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΟΜΗΣΙΜΩΝ ΥΛΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΕΛΕΓΧΟΥ ΠΟΙΟΤΗΤΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΟΜΗΣΙΜΩΝ ΥΛΙΚΩΝ ρ Αθ. Ρούτουλας Καθηγητής ΕΛΕΓΧΟΣ ΠΟΙΟΤΗΤΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΟΜΗΣΙΜΩΝ ΥΛΙΚΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΕΝΟΤΗΤΑ 2 η Α ΡΑΝΗ ΥΛΙΚΑ ΑΣΚΗΣΗ 4 η : Ι. ΓΝΩΡΙΜΙΑ

Διαβάστε περισσότερα

Περιγραφή Προϊόντος 1 1/5. Φύλλο Ιδιοτήτων Προϊόντος Έκδοση 30/04/2012 Κωδικός: 2012.06.03.060 Sika MonoTop -627

Περιγραφή Προϊόντος 1 1/5. Φύλλο Ιδιοτήτων Προϊόντος Έκδοση 30/04/2012 Κωδικός: 2012.06.03.060 Sika MonoTop -627 Φύλλο Ιδιοτήτων Προϊόντος Έκδοση 30/04/2012 Κωδικός: 2012.06.03.060 Εκτοξευόμενο κονίαμα ενός συστατικού, χαμηλής συρρίκνωσης, με συνθετικές ίνες, για επισκευές υψηλής αντοχής, μεγάλου πάχους και για νέες

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΠΕΡΙΕΧΟΝΤΑΙ ΚΑΙ ΟΙ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ)

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΠΕΡΙΕΧΟΝΤΑΙ ΚΑΙ ΟΙ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ) ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΠΕΡΙΕΧΟΝΤΑΙ ΚΑΙ ΟΙ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 9 ΙΟΥΝΙΟΥ

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

ΕΠΙΣΗΜΑΝΣΗ ΜΕΙΓΜΑΤΩΝ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΕΠΙΣΗΜΑΝΣΗ ΜΕΙΓΜΑΤΩΝ ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΕΥΘΥΝΣΗ ΕΝΕΡΓΕΙΑΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ & ΧΗΜΙΚΩΝ ΠΡΟΪΟΝΤΩΝ ΓΕΝΙΚΟΥ ΧΗΜΕΙΟΥ ΤΟΥ ΚΡΑΤΟΥΣ ΕΠΙΣΗΜΑΝΣΗ ΜΕΙΓΜΑΤΩΝ ΠΑΡΑΔΕΙΓΜΑΤΑ Δ. ΧΑΤΖΗΑΝΤΩΝΙΟΥ Δ/ΝΣΗ ΕΝΕΡΓΕΙΑΚΩΝ, ΒΙΟΜΗΧΑΝΙΚΩΝ & ΧΗΜΙΚΩΝ ΠΡΟΪΟΝΤΩΝ ΓΧΚ Ημερίδα PROTEAS-Σεμινάριο

Διαβάστε περισσότερα

τὴν εἴσοδον ἐχούσῃ μακρὰν παρὰ πᾶν τὸ σπήλαιον, ΚΕΙΜΕΝΟ, ΜΕΤΑΦΡΑΣΗ, ΣΧΟΛΙΑ, ΕΡΩΤΗΣΕΙΣ ἐν ταύτῃ ἐκ παίδων ὄντας ἐν δεσμοῖς καὶ τὰ σκέλη

τὴν εἴσοδον ἐχούσῃ μακρὰν παρὰ πᾶν τὸ σπήλαιον, ΚΕΙΜΕΝΟ, ΜΕΤΑΦΡΑΣΗ, ΣΧΟΛΙΑ, ΕΡΩΤΗΣΕΙΣ ἐν ταύτῃ ἐκ παίδων ὄντας ἐν δεσμοῖς καὶ τὰ σκέλη Μετὰ ταῦτα δή, εἶπον, ἀπείκασον τοιούτῳ πάθει τὴν ἡμετέραν φύσιν παιδείας τε πέρι καὶ ἀπαιδευσίας. ἰδὲ γὰρ ἀνθρώπους οἷον ἐν καταγείῳ οἰκήσει σπηλαιώδει, ἀναπεπταμένην πρὸς τὸ φῶς ΠΛΑΤΩΝΟΣ ΠΟΛΙΤΕΙΑ τὴν

Διαβάστε περισσότερα

ΗΧΩΚΑΡΔΙΟΓΡΑΦΙΚΗ ΕΚΤΙΜΗΣΗ ΤΗΣ ΔΕΞΙΑΣ ΚΟΙΛΙΑΣ

ΗΧΩΚΑΡΔΙΟΓΡΑΦΙΚΗ ΕΚΤΙΜΗΣΗ ΤΗΣ ΔΕΞΙΑΣ ΚΟΙΛΙΑΣ ΗΧΩΚΑΡΔΙΟΓΡΑΦΙΚΗ ΕΚΤΙΜΗΣΗ ΤΗΣ ΔΕΞΙΑΣ ΚΟΙΛΙΑΣ ΔΗΜΗΤΡΙΟΣ Γ. ΚΕΤΙΚΟΓΛΟΥ MD PhD FESC ΚΑΡΔΙΟΛΟΓΟΣ ΔΙΔΑΚΤΩΡ Α.Π.Θ. Δ/ΝΤΗΣ ΣΤΕΦΑΝΙΑΙΑΣ ΜΟΝΑΔΑΣ ΚΑΙ ΗΧΩΚΑΡΔΙΟΓΡΑΦΙΑΣ ΙΑΤΡΙΚΟ ΔΙΑΒΑΛΚΑΝΙΚΟ ΚΕΝΤΡΟ ΘΕΣΣΑΛΟΝΙΚΗ 2014

Διαβάστε περισσότερα

42. διαβάζει την εφηµερίδα (α) ή να διαβάζει την εφηµερίδα (β) ii) Ορίζουµε το ενδεχόµενο

42. διαβάζει την εφηµερίδα (α) ή να διαβάζει την εφηµερίδα (β) ii) Ορίζουµε το ενδεχόµενο 5 η δεκάδα θεµάτων επανάληψης 41. Να βρεθούν 4 αριθµοί οι οποίοι αποτελούν διαδοχικούς όρους αριθµητικής προόδου αν το άθροισµα τους είναι και το άθροισµα των τετραγώνων τους είναι 166 i Αν ο µικρότερος

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 5 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ 10

ΕΝΟΤΗΤΑ 5 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ 10 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ 10 Η ενότητα 5 αποτελεί εισαγωγή στην έννοια της πρόσθεση και αφαίρεση αριθμών μέχρι το 10. Οι διαμερισμοί των αριθμών και εξάσκηση των μαθητών στην πρόσθεση και

Διαβάστε περισσότερα

ΠΙΝΑΚΑΣ ΑΝΤΙΣΤΟΙΧΙΣΗΣ ΑΡΘΡΩΝ ΤΙΜΟΛΟΓΙΟΥ ΜΕ ΚΩΔΙΚΟΥΣ ΕΤΕΠ

ΠΙΝΑΚΑΣ ΑΝΤΙΣΤΟΙΧΙΣΗΣ ΑΡΘΡΩΝ ΤΙΜΟΛΟΓΙΟΥ ΜΕ ΚΩΔΙΚΟΥΣ ΕΤΕΠ ΚΑΤΗΓΟΡΙΑ Α' :ΟΙΚΟΔΟΜΙΚΑ ΟΜΑΔΑ 1: ΧΩΜΑΤΟΥΡΓΙΚΑ ΚΑΘΑΙΡΕΣΕΙΣ 1.1.1 Γενικές εκσκαφές σε έδαφος γαιώδες -ημιβραχώδες OΔΟ Α-2 02-02-01-00 1.1.2 Eκσκαφή θεμελίων και τάφρων χωρίς τη χρήση μηχανικών μέσων σε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 8 ΜΑΪΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία, σελ. 53, σχολικού βιβλίου. Α. Θεωρία, σελ. 9, σχολικού βιβλίου. Α3. Θεωρία, σελ. 58, σχολικού βιβλίου. Α4. α) Σ, β) Σ,

Διαβάστε περισσότερα

Διακήρυξη Διαγωνισμού για το Έργο

Διακήρυξη Διαγωνισμού για το Έργο Διακήρυξη Διαγωνισμού για το Έργο ΑΓΡΟΤΙΚΗ ΠΑΡΑΓΩΓΗ ΤΟΥΡΙΣΜΟΣ (ΑΝΑΔΕΙΞΗ ΕΥΚΑΙΡΙΩΝ) Αναθέτουσα Αρχή: ΔΗΜΟΣ ΒΟΪΟΥ Προϋπολογισμός: 61.500 (συμπεριλαμβανομένου ΦΠΑ 23%) Διάρκεια: 3 μήνες Διαδικασία Ανάθεσης:

Διαβάστε περισσότερα

1. ΠΡΟΟΡΙΣΜΟΣ - ΣΚΟΠΟΣ

1. ΠΡΟΟΡΙΣΜΟΣ - ΣΚΟΠΟΣ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΡΟΣΤΑΣΙΑΣ ΤΟΥ ΠΟΛΙΤΗ ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΗΜΟΣΙΑΣ ΤΑΞΗΣ ΑΡΧΗΓΕΙΟ ΠΥΡΟΣΒΕΣΤΙΚΟΥ ΣΩΜΑΤΟΣ Β ΚΛΑ ΟΣ ΙΟΙΚΗΤΙΚΗΣ ΥΠΟΣΤΗΡΙΞΗΣ ΙΕΥΘΥΝΣΗ ΤΕΧΝΙΚΩΝ ΤΜΗΜΑ 2ο ΤΕΧΝΙΚΩΝ ΠΡΟ ΙΑΓΡΑΦΩΝ Μουρούζη

Διαβάστε περισσότερα

Πρώτα θεωρήµατα περί ευστάθειας BIBO

Πρώτα θεωρήµατα περί ευστάθειας BIBO Πρώτα θεωρήµατα περί ευστάθειας BIBO Το κριτήριο Routh-Hurwitz Όπως έχει τονισθεί, τα συστήµατα που µελετάµε είτε ευθέως κλάδου είτε κλειστού βρόχου, είναι της µορφής: = + + + + + + + + όπου ο βαθµός του

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΑΝΑΠΤΥΞΗΣ Ι ΙΩΤΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Ο ΗΓΟΣ

ΕΛΕΓΧΟΣ ΑΝΑΠΤΥΞΗΣ Ι ΙΩΤΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Ο ΗΓΟΣ ΚΥΠΡΙΑΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΤΕΧΝΙΚΕΣ ΥΠΗΡΕΣΙΕΣ ΕΛΕΓΧΟΣ ΑΝΑΠΤΥΞΗΣ Ι ΙΩΤΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Ο ΗΓΟΣ 2013 2 1. Αντικείμενο Σύμφωνα με την νομοθεσία οι Αρχές ελέγχου της ανάπτυξης οφείλουν

Διαβάστε περισσότερα

Θερ ικοί Αισθητήρες. Α. Πετρόπουλος - Τεχνολογία των αισθητήρων. 2011. Θερμικοί αισθητήρες. 1. Αισθητήρας Μέτρησης Ροής

Θερ ικοί Αισθητήρες. Α. Πετρόπουλος - Τεχνολογία των αισθητήρων. 2011. Θερμικοί αισθητήρες. 1. Αισθητήρας Μέτρησης Ροής Θερ ικοί Αισθητήρες Α. Πετρόπουλος - Τεχνολογία των αισθητήρων. 011 Θερμικοί αισθητήρες 1. Αισθητήρας Μέτρησης Ροής Θερ ικοί Αισθητήρες Α. Πετρόπουλος - Τεχνολογία των αισθητήρων. 011 Συγκεντρωτικά Εφαρμογές

Διαβάστε περισσότερα

ΠΡΟΔΙΑΓΡΑΦΕΣ ΒΑΣΙΚΟΥ ΕΡΓΑΣΤΗΡΙΑΚΟΥ ΕΞΟΠΛΙΣΜΟΥ (ΤΕΧΝΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΜΗΧΑΝΟΛΟΓΙΚΟΥ ΤΟΜΕΑ)

ΠΡΟΔΙΑΓΡΑΦΕΣ ΒΑΣΙΚΟΥ ΕΡΓΑΣΤΗΡΙΑΚΟΥ ΕΞΟΠΛΙΣΜΟΥ (ΤΕΧΝΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΜΗΧΑΝΟΛΟΓΙΚΟΥ ΤΟΜΕΑ) ΥΠΟΥΡΓΙΟ ΘΝ. ΠΑΙΔΙΑΣ ΚΑΙ ΘΡΗΣΚEYMAΤΩΝ ΔΙΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΚΠΑΙΔΥΣΗΣ ΤΜΗΜΑ Β - T.E.E ΠΡΟΔΙΑΓΡΑΦΣ ΒΑΣΙΚΟΥ ΡΓΑΣΤΗΡΙΑΚΟΥ ΞΟΠΛΙΣΜΟΥ (ΤΧΝΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΜΗΧΑΝΟΛΟΓΙΚΟΥ ΤΟΜΑ) . 1 ΠΡΟΔΙΑΓΡΑΦΣ ΒΑΣΙΚΟΥ ΡΓΑΣΤΗΡΙΑΚΟΥ

Διαβάστε περισσότερα