ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Θετικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Θετικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ"

Transcript

1 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ (εκπαιδευτικό υλικό Θετικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ

2

3 Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Αν z = α + βi, α, β R και z = 0, τότε α = 0 και β = 0. Σ Λ. * Αν z = α + βi και αβ 0, τότε = + i. Σ Λ z α β 3. * Αν z = κ + λi κ, λ R, τότε Re (z) = κ. Σ Λ 4. * Αν z = x + (y - ) i και Ιm (z) = 0, τότε y =. Σ Λ 5. * Αν z, z C µε Re (z + z ) = 0, τότε Re (z ) + Re (z ) = 0. Σ Λ 6. * Οι εικόνες των φανταστικών αριθµών στο µιγαδικό επίπεδο βρίσκονται πάνω στον άξονα y y. Σ Λ 7. * Αν i = - τότε i 003 = i. Σ Λ 8. * Οι εικόνες των αντίθετων µιγαδικών αριθµών στο µιγαδικό επίπεδο είναι σηµεία συµµετρικά ως προς τον άξονα x x. Σ Λ 9. * Για κάθε µιγαδικό αριθµό z 0 ορίζεται z =. Σ Λ 0. * Αν Μ, Μ είναι οι εικόνες των µιγαδικών z και z αντιστοίχως στο µιγαδικό επίπεδο και ο άξονας x x είναι η µεσοκάθετος του ευθυγράµµου τµήµατος Μ Μ, τότε είναι z = z.. * Αν z = α + βi, z C, και z + z = α, τότε z = z. Σ Λ. * Αν Re (z) = τότε οι εικόνες των µιγαδικών z στο µιγαδικό επίπεδο βρίσκονται πάνω στην ευθεία x =. Σ Λ 3. * Αν Ιm (z + i) = 8 τότε οι εικόνες των µιγαδικών z στο µιγαδικό επίπεδο βρίσκονται στην ευθεία y = 8. Σ Λ 4. * Η εξίσωση x - x + λ = 0, λ R, µπορεί να έχει ρίζες τους µιγαδικούς + i και - i. Σ Λ 5. * Αν η εξίσωση αx + βx + γ = 0, α 0, α, β, γ R έχει ρίζα τον + i θα έχει και τον 5 + i. Σ Λ 6. * Η εξίσωση αx + βx + γ = 0, α, β, γ, R * έχει πάντοτε λύση Σ Λ 3

4 στο C. Σ Λ 7. * Αν Re (z z ) = 0 τότε ισχύει πάντα Re (z ) Re (z ) = 0. Σ Λ 8. * Για κάθε µιγαδικό αριθµό z ισχύει - z = z. Σ Λ 9. * Για κάθε z, z C ισχύει z + z = z + z. Σ Λ 0. * Η εξίσωση z - z = z - z, z C, παριστάνει στο µιγαδικό επίπεδο τη µεσοκάθετο του ευθυγράµµου τµήµατος που έχει άκρα τα σηµεία Α (z ) και B (z ). Σ Λ. * Η εξίσωση z - z = z - z µε άγνωστο το z C και z, z C έχει µόνο µια λύση. Σ Λ. * Η εξίσωση z - z 0 = ρ, ρ > 0 παριστάνει στο µιγαδικό επίπεδο κύκλο µε κέντρο Κ (z 0 ) και ακτίνα ρ. Σ Λ 3. * Για το µιγαδικό αριθµό z = (συν (3π) + iηµ (3π)) ισχύει Αrg (z) = 3π. Σ Λ 4. * Αν z = 3 (συν 4 π + iηµ 4 π ) τότε ένα όρισµα του z είναι το 9π. Σ Λ 4 5. * Αν ένας µιγαδικός αριθµός πολλαπλασιαστεί επί i τότε η διανυσµατική του ακτίνα στρέφεται κατά γωνία π. Σ Λ 6. * Η πολική µορφή του µιγαδικού αριθµού z = α + βi είναι z = ρ (συνθ + iηµθ), όπου ρ = z και θ ένα όρισµά του. Σ Λ 7. * Για τους µιγαδικούς αριθµούς z = ρ (συνθ + iηµθ ), ρ > 0 και z = ρ (συνθ + iηµθ ), ρ > 0 ισχύει z z = ρ ρ (συν (θ θ ) + ηµ (θ θ )). Σ Λ 8. * Αν τα ορίσµατα δύο µιγαδικών διαφέρουν κατά κπ, κ Ζ, τότε οι εικόνες τους στο µιγαδικό επίπεδο και η αρχή των αξόνων βρίσκονται στην ίδια ευθεία. Σ Λ 9. * Το θεώρηµα De Moivre ισχύει και για εκθέτη αρνητικό 4

5 ακέραιο αριθµό. Σ Λ 30. * Ισχύει (συν + iηµ ) 5 = + i. 3 Σ Λ 3. * Η εξίσωση z 5 = 3 έχει πέντε ρίζες, των οποίων οι εικόνες στο µιγαδικό επίπεδο βρίσκονται σε κύκλο µε κέντρο το Ο (αρχή των αξόνων) και ακτίνα. Σ Λ 3. * Η εξίσωση z 3 + i = 0 έχει µοναδική ρίζα τον z 0 = i. Σ Λ 33. * Οι εξισώσεις x ν = και x µ =, ν, µ Ν * έχουν τουλάχιστον µια κοινή ρίζα. Σ Λ 34. * Οι εικόνες των ριζών της εξίσωσης z ν = α, α 0 και ν Ν *, στο µιγαδικό επίπεδο είναι κορυφές κανονικού ν-γώνου. Σ Λ 35. * Αν η εξίσωση αx 3 + βx + γx + δ = 0, α 0, έχει πραγµατικούς συντελεστές, τότε αυτή έχει οπωσδήποτε µια πραγµατική ρίζα. Σ Λ 36. * Υπάρχει εξίσωση µε πραγµατικούς συντελεστές 3ου βαθµού που έχει ρίζες τους αριθµούς, + i, + i. Σ Λ 37. * ύο ορίσµατα ενός µιγαδικού αριθµού διαφέρουν κατά γωνία κπ µε κ Ζ. Σ Λ 38. * Στο µιγαδικό επίπεδο η εικόνα του µιγαδικού αριθµού + 3i είναι εσωτερικό σηµείο του κύκλου z = 4. Σ Λ 39. * Όλα τα σηµεία της ευθείας y = x στο µιγαδικό επίπεδο είναι εικόνες των µιγαδικών αριθµών z = α + αi µε α R. Σ Λ y 40. * Στο µιγαδικό επίπεδο του διπλανού σχήµατος η εξίσωση του κύκλου είναι z - = x Σ Λ 5

6 4. * Οι µιγαδικοί αριθµοί z που ικανοποιούν τη σχέση y π Arg (z) - π < έχουν εικό- 4 νες στο µιγαδικό επίπεδο που απεικονίζονται στο γραµ- µοσκιασµένο τµήµα του διπλανού σχήµατος. 0 3π 4 3π 4 x Σ Λ Ερωτήσεις πολλαπλής επιλογής. * Η ισότητα x + (y - ) i = 3 + 4i ισχύει αν και µόνο αν Α. x = 3 ή y = 5 Β. x = 3 και y = 4 Γ. x = 3 ή y = 4. x = 3 και y = 5 Ε. x + y = 7. * Αν i κ = - και [(i ) ] 3 =, τότε η µικρότερη τιµή του θετικού ακεραίου κ είναι Α. Β. 3 Γ. 6. Ε * Η εικόνα κάθε φανταστικού αριθµού στο µιγαδικό επίπεδο βρίσκεται πάνω στην ευθεία µε εξίσωση Α. y = x Β. y = - x Γ. y = 0. x = 0 Ε. σε καµία από τις προηγούµενες. 4. * Οι εικόνες των µιγαδικών + 3i και 3 + i στο µιγαδικό επίπεδο έχουν άξονα συµµετρίας την ευθεία Α. x = Β. y = 3 Γ. y = x. y = - x Ε. x = 0 6

7 5. * Αν η διανυσµατική ακτίνα του µιγαδικού αριθµού z στο µιγαδικό επίπεδο έχει φορέα τη διχοτόµο της ης και 4ης γωνίας των αξόνων του µιγαδικού επιπέδου, τότε ο z µπορεί να είναι ο Α. + i Β. - + i Γ. + i. - - i Ε. - - i 6. * Αν η εικόνα του µιγαδικού z στο µιγαδικό επίπεδο είναι σηµείο της ευθείας x + 3y - = 0, τότε ο z δεν µπορεί να είναι ο Α. Β. - i Γ. 5-3i. i Ε. + i * Αν η εικόνα του µιγαδικού w = (x + ) + (y - ) i, x, y R, στο µιγαδικό επίπεδο είναι η αρχή των αξόνων, τότε ο z = x + yi ισούται µε Α. - i Β. + i Γ. - - i. - + i E. + i 8. * Αν ν Ν, από τις παρακάτω ισότητες δεν είναι σωστή η Α. i 4ν = Β. i 4ν+ = - i Γ. i 4ν+ = -. i ν+4 = i ν Ε. i 4ν+3 = - i 9. * Αν z = α + βi µε αβ 0 και z ο συζυγής του ποια από τις παρακάτω προτάσεις δεν είναι σωστή; Α. z + z πραγµατικός αριθµός Β. z - z φανταστικός αριθµός Γ. z z φανταστικός αριθµός. - z z πραγµατικός αριθµός Ε. z + z πραγµατικός αριθµός 0. * Στο µιγαδικό επίπεδο, οι εικόνες δύο συζυγών µιγαδικών αριθµών είναι σηµεία συµµετρικά Α. ως προς τον άξονα y y Β. ως προς τον άξονα x x Γ. ως προς την ευθεία y = x. ως προς την ευθεία y = - x Ε. ως προς την αρχή των αξόνων 7

8 . * Η εξίσωση z - 6z + λ = 0, λ R, µπορεί να έχει ρίζα τον αριθµό Α. i Β. - i Γ. + i. - i Ε. 3 + i. * Η εξίσωση x + αx + 5 = 0, α R µπορεί να έχει ρίζα τον Α i Β. - i Γ. - i. 3 - i Ε i 3. * Αν η εξίσωση z - κz + λ = 0, κ, λ Ζ έχει ρίζα τον + i τότε ισχύει Α. κ = 6 και λ = 5 Β. κ = 4 και λ = Γ. κ = 3 και λ = 4. κ = 4 και λ = 5 Ε. κ = 5 και λ = 4 4. * Αν z = x + yi ποια από τις παρακάτω ισότητες δεν είναι πάντα σωστή; Α. z = z Β. z = - z Γ. z = z. z = x + (-y ) Ε. z = z 5. * Αν z = 3 και z = 4 + 3i τότε η µεγαλύτερη τιµή του z + z είναι Α. 5 Β. 8 Γ. 9. Ε * Αν z = και - z = 5 τότε η ελάχιστη τιµή του z z είναι Α. B. 3 Γ E * Αν z = 3 + yi και z = 5, τότε µια τιµή του y είναι η Α. 5 B. 5 Γ E. 3 8

9 8. * Αν οι εικόνες δύο µη µηδενικών µιγαδικών αριθµών z και z στο µιγαδικό επίπεδο είναι στο ίδιο τεταρτηµόριο, ποια από τις παρακάτω σχέσεις µπορεί να ισχύει; Α. z = - z B. z = z Γ. z = - z. Ιm (z ) + Im (z ) = 0 E. κανένα από τα παραπάνω 9. * Αν το σηµείο Ρ (x, y) είναι εικόνα του µιγαδικού z = x + yi στο µιγαδικό επίπεδο για τον οποίο ισχύει z - 3 = 5, το Ρ βρίσκεται πάνω σε Α. ευθεία B. έλλειψη Γ. κύκλο. παραβολή E. υπερβολή 0. * Η εξίσωση z - (+ i) = 4 παριστάνει στο µιγαδικό επίπεδο κύκλο µε Α. κέντρο (-, ) και ακτίνα 4 B. κέντρο (, - ) και ακτίνα Γ. κέντρο (, - ) και ακτίνα 4. κέντρο (, ) και ακτίνα E. κέντρο (, ) και ακτίνα 4. * Θεωρούµε στο µιγαδικό επίπεδο τον κύκλο µε κέντρο το Ο (αρχή των αξόνων) και ακτίνα 0. Από τους παρακάτω αριθµούς έχει εικόνα πάνω στον κύκλο ο µιγαδικός αριθµός Α. z = + 3i B. z = 3 + i 7 Γ. z = - i 8. z = 8 + 6i E. z = + i 8. * Ο γεωµετρικός τόπος των εικόνων του µιγαδικού αριθµού z στο µιγαδικό επίπεδο για τον οποίο ισχύει z - = z - i είναι Α. ο άξονας y y B. η ευθεία y = x Γ. ο άξονας x x. η µεσοκάθετος του ευθυγράµµου τµήµατος µε άκρα τα σηµεία (, 0) και (0, ) E. η µεσοκάθετος του ευθυγράµµου τµήµατος µε άκρα τα σηµεία (0, ) και (, 0) 9

10 3. * Στο µιγαδικό επίπεδο ο κύκλος µε κέντρο το σηµείο Κ (, ) και ακτίνα 3 είναι ο γεωµετρικός τόπος των εικόνων του µιγαδικού z για τον οποίο ισχύει Α. z - ( - i) = 3 B. z - (+ i) = 3 Γ. z - ( + i) = 9. z - ( + i) = 3 E. z + ( + i) = 3 4. * Οι µιγαδικοί αριθµοί z που οι εικόνες y τους στο µιγαδικό επίπεδο βρίσκονται στο γραµµοσκιασµένο τµήµα του σχή- µατος είναι αυτοί για τους οποίους ισχύει Α. z + < και z + i < 0 x B. z < και z + i < Γ. z > και z i >. z < και z i < Ε. z + < και z i < 5. * Οι µιγαδικοί αριθµοί z που οι εικόνες τους στο µιγαδικό επίπεδο βρίσκονται y στο γραµµοσκιασµένο τµήµα του σχήµατος είναι αυτοί για τους οποίους ισχύει Α. z < και z 3 < x B. z < και z 3 > Γ. z + < και z 3 >. z + < και z + 3 > Ε. z > και z 3 < 6. * Αν η εξίσωση z = z κi επαληθεύεται από τους µιγαδικούς αριθµούς που η εικόνα τους στο µιγαδικό επίπεδο βρίσκεται στην ευθεία y = x, ο πραγµατικός αριθµός κ ισούται µε Α. B. - Γ.. - E. 4 0

11 7. * Αν οι εικόνες των µιγαδικών z, z, z 3 στο µιγαδικό επίπεδο δεν βρίσκονται στην ίδια ευθεία, τότε το πλήθος των λύσεων του συστήµατος z z = z z = z z 3 µε άγνωστο τον z είναι Α. B. 3 Γ.. 4 Ε * Για το πρωτεύον όρισµα του µιγαδικού z από τις παρακάτω προτάσεις δεν είναι σωστή η Α. Το Arg (z) βρίσκεται στο διάστηµα [0, π) B. Το Arg (z) είναι η γωνία που σχηµατίζει η διανυσµατική ακτίνα του z στο µιγαδικό επίπεδο µε τον άξονα x x και παίρνει τιµές στο [0, π) π Γ. Αν Arg (z) = ο z έχει πραγµατικό µέρος ίσο µε το φανταστικό 4. Αν Arg (z) = π ο z είναι πραγµατικός αριθµός E. Αν Arg (z) = 3π τότε Re (z) = - Im (z) 4 9. * Αν z = α +βi, αβ 0 και Αrg (z) = θ, θ (0, π ) τότε πάντοτε ισχύει Α. β α = εφθ B. αβ = σφθ Γ. α β = εφθ. αβ = εφθ E. α + β = σφθ 30. * Αν Αrg (z) = 4 π, η εικόνα του z στο µιγαδικό επίπεδο είναι σηµείο της ευθείας µε εξίσωση Α. y = x B. y = - x Γ. y = x. y = - x E. y = x

12 3. * Αν η εικόνα του µιγαδικού z στο µιγαδικό επίπεδο βρίσκεται στην ευθεία y = - x, τότε από τις παρακάτω γωνίες Arg (z) µπορεί να είναι η Α. 4 π B. 9π 4 Γ. 3π 4. π E. 5π 4 3. * Αν z = z όπου z = ρ (συνθ + iηµθ), z = ρ (συν 3 π + iηµ 3 π ), ρ > 0, τότε η γωνία θ δεν µπορεί να είναι Α. 40 B. 780 Γ E * Το γινόµενο των µιγαδικών αριθµών z = (συν30 + iηµ30 ) και z = 7 (συν0 + iηµ0 ) είναι Α. 4 (συν300 + iηµ300 ) B. 9 (συν40 + iηµ40 ) Γ. 4 (συν40 + iηµ40 ). 9 (συν300 + iηµ300 ) E. 7 (συν3 + iηµ3 ) 34. * Ο µιγαδικός αριθµός (συν + iηµ ) 5 ισούται µε Α. - + i B. - - i Γ. + i. - 3 i E. µε κανένα από τους προηγούµενους 35. * Αν z = 0 (συν5 + iηµ5 ) 5 (συν3 + iηµ3 ) τότε ο z ισούται Α. 4 B. 5 (συν5 + iηµ5 ) Γ. 4 (συν + iηµ ). 4 (συν5 + iηµ5 ) E. 5 (συν + iηµ ) 36. * Αν z = ρ (συν0 + iηµ0 ), ρ > 0, τότε το Arg ( z) ισούται µε

13 Α. ( ) B. 70 Γ. ( ). 60 E * Αν Α, Β είναι οι εικόνες στο µιγαδικό επίπεδο των µιγαδικών z και iz αντιστοίχως τότε η γωνία ΑΟΒ (Ο η αρχή των αξόνων) ισούται µε Α. 3π B. π 3 Γ. π. 5π 6 E. π 38. * Αν z = συνθ + iηµθ τότε ο z ισούται µε Α. συνθ + i ηµθ B. συν θ + iηµ θ Γ. - συνθ - iηµθ. συν (- θ) + iηµ (- θ) E. - συνθ + iηµθ 39. * Αν z = συν 4 π + iηµ 4 π, ο z 000 ισούται µε Α. + i B. Γ E. - i 40. * Αν Ρ (x) πολυώνυµο τουλάχιστον ου βαθµού µε πραγµατικούς συντελεστές και η εξίσωση P (x) = 0 έχει ρίζα τον αριθµό - i, θα έχει οπωσδήποτε και τον Α. + i 0 B. + i 0 Γ. + i i E. - i 4 4. * Αν η εξίσωση x 3 + κx + λ = 0, κ, λ R, έχει ως λύση την x = + 5i, τότε αποκλείεται να έχει λύση την Α. x = 5 B. x = - 5i Γ. x = 0. x = + i E. x = - 3 3

14 4. * Οι αριθµοί + i, 3-5i, - + 3i, + 7i είναι ρίζες του πολυωνύµου f (x) = α ν x ν + α ν- x ν- + α ν- x ν- + + α x + α 0, α ν 0, ν Ν *, µε πραγµατικούς συντελεστές. Για το ν ισχύει Α. ν = 4 B. ν = 6 Γ. 4 < ν < 8. ν 8 E. 6 ν < 8 Ερωτήσεις συµπλήρωσης. * Ο z είναι µιγαδικός αριθµός. Να συµπληρώσετε τον παρακάτω πίνακα: z Re (z) Im (z) - z z - + 3i - i - 5 3i z z. * Οι αριθµοί z, z είναι µιγαδικοί. Να συµπληρώσετε τον παρακάτω πίνακα: µιγαδικός αριθµός z z = 3 + i z = - + i z z = z z z = z z 3 = Agr (z) τριγωνο- µετρική µορφή z 4

15 Ερωτήσεις αντιστοίχισης. * Αν z = α + βi, να συµπληρώσετε τον παρακάτω πίνακα ώστε κάθε παράσταση της στήλης Α να αντιστοιχεί στην ίση της που βρίσκεται στη στήλη Β. Στήλη Α Στήλη Β Α. z. α. α + β Β. z + z 3. α + βi Γ. z - z 4. α - βi. z z 5. βi 6. α + i Α Β Γ 5

16 . * Να συµπληρώσετε τον παρακάτω πίνακα ώστε σε κάθε σχέση της στήλης Α να αντιστοιχεί ο γεωµετρικός τόπος των εικόνων του z που βρίσκεται στη στήλη Β. Στήλη Α σχέση που ικανοποιεί ο µιγαδικός αριθµός z Στήλη Β γεωµετρική περιγραφή των εικόνων του z στο µιγαδικό επίπεδο Α. το πραγµατικό µέρος του z είναι Β. το πραγµατικό µέρος του z είναι ίσο µε το φανταστικό µέρος του Γ. το πραγµατικό µέρος του z είναι αντίθετο του φανταστικού µέρους του. ο άξονας x x. η ευθεία y = x 3. η ευθεία y = - x 4. η ευθεία x = 5. η ευθεία y = - Α Β Γ 6

17 3. * Αν η εικόνα του µιγαδικού αριθµού z στο µιγαδικό επίπεδο είναι το σηµείο Μ (, ), να συµπληρώσετε τον παρακάτω πίνακα ώστε κάθε µιγαδικός αριθµός της στήλης Α να αντιστοιχεί στην εικόνα του που βρίσκεται στη στήλη Β. Στήλη Α µιγαδικός αριθµός Στήλη Β σηµείο στο µιγαδικό επίπεδο Α. z. (-, ). ( 5, ) Β. - z 3. (, 5 4 ) Γ. iz 4. (-, ) 5. ( 5, 5 4 ) Α Β Γ 7

18 4. * Να συµπληρώσετε τον παρακάτω πίνακα ώστε κάθε δύναµη του i που υπάρχει στη στήλη Α να αντιστοιχεί στην τιµή της που βρίσκεται στη στήλη Β. Στήλη Α δύναµη του i Στήλη Β Α. i 3. - i Β. i 4. i 3. - Γ. i i i Α Β Γ 8

19 5. * Αν z = i, να συµπληρώσετε τον παρακάτω πίνακα ώστε κάθε στοιχείο της στήλης Α να αντιστοιχεί στο ίσο του που βρίσκεται στη στήλη Β. Στήλη Α Στήλη Β Α. z. 0. Β. - 0 z Γ. (z) - z Α Β Γ 9

20 6. * Να συµπληρώσετε τον παρακάτω πίνακα ώστε ο γεωµετρικός τόπος των εικόνων του z στο µιγαδικό επίπεδο της στήλης Α να αντιστοιχεί στη σχέση που βρίσκεται στη στήλη Β. Στήλη Α γεωµετρική περιγραφή των εικόνων του z στο µιγαδικό επίπεδο Στήλη Β σχέση που ικανοποιεί ο µιγαδικός αριθµός z Α. κύκλος κέντρου Κ (, ) και ακτίνας 3 Β. µεσοκάθετος του τµήµατος µε άκρα τα σηµεία (, 0), (0, - ) Γ. κύκλος κέντρου Ο (0, 0) και ακτίνας 3. z + + i = 3. z = 3 3. z i = 3 4. z + = z i 5. z = z + i Α Β Γ 30

21 7. * Αν z = x + yi, x, y 0 και c σταθερός πραγµατικός αριθµός, διάφορος του µηδενός, να συµπληρώσετε τον παρακάτω πίνακα ώστε σε κάθε παράσταση της στήλης Α να αντιστοιχεί ο γεωµετρικός τόπος των εικόνων του z που βρίσκεται στη στήλη Β. Στήλη Α σχέση που ικανοποιεί ο µιγαδικός αριθµός z Στήλη Β γεωµετρικός τόπος του z στο µιγαδικό επίπεδο. y = x + c Α. Re (z) = c. y = x c Β. Im (z) = c 3. y = c Γ. Re (z) Im (z) = c 4. c x + y = 0 5. x = c Α Β Γ 3

22 8. * Στα σχήµατα της στήλης Α φαίνονται τόξα κύκλων στα οποία βρίσκεται η εικόνα του µιγαδικού αριθµού z στο µιγαδικό επίπεδο. Να συµπληρώσετε τον παρακάτω πίνακα ώστε σε κάθε σχήµα της στήλης Α να αντιστοιχεί η σωστή σχέση της στήλης Β. Στήλη Α Στήλη Β y M(z). z =, Im (z) 0 και Α. Re (z) x. z - = και Im (z) 0 y M(z) 3. z = και Re (z) 0 Β. 0 4 x 4. z + = και Re (z) < 0 y Γ. 0 4 x M(z) Α Β Γ 3

23 9. * Να συµπληρώσετε τον παρακάτω πίνακα ώστε κάθε µιγαδικός αριθµός της στήλης Α να αντιστοιχεί στην εικόνα του στο µιγαδικό επίπεδο που βρίσκεται στη στήλη Β. Στήλη Α Στήλη Β. z = (συν 6 π + iηµ 6 π ) y Σ 5π 5π. z = συν + iηµ 6 6 Θ M E A 3. z 3 = συν 9π 9 + iηµ 6 6π Ρ Β Λ Ζ Í π 6 π 6 Κ N Η Γ x 4. z 4 = (συν 6 π - iηµ 6 π ) Τ

24 0. * Να συµπληρώσετε τον παρακάτω πίνακα ώστε η εικόνα κάθε µιγαδικού αριθµού, το όρισµα του οποίου φαίνεται στη στήλη Α να βρίσκεται στην ευθεία που ανήκει και γράφεται στη στήλη Β. Στήλη Α πρωτεύον όρισµα του µιγαδικού αριθµού z Στήλη Β γεωµετρική περιγραφή των εικόνων του z στο µιγαδικό επίπεδο. ο άξονας x x Α. Arg (z) = π. ο άξονας y y Β. Arg (z) = 4 π 3. η ευθεία y = x Γ. Arg (z) = 3π 4 4. η ευθεία y = - x 5. η ευθεία y = c (c σταθερός) Α Β Γ 34

25 Ερωτήσεις ανάπτυξης. ** Να βρείτε τους πραγµατικούς αριθµούς x και y ώστε να ισχύουν οι ισότητες: α) x - + yi = - i + - yi β) y + i = 3 - ( + i) x γ) 4y - 3yi - x = - 5xi + 9i δ) (x + ) i + x = x - xi - 3. ** ίνονται οι µιγαδικοί αριθµοί z = x - x - 9i και w = - y i, x, y R. α) Να βρείτε τους x, y ώστε z = w. β) Να βρείτε τον z. 3. ** ίνεται ο µιγαδικός z = 6i - (3-4i) x - 3yi - (3i - ) x + (4 - yi), x, y R. α) Να γράψετε τον z στη µορφή α + βi. β) Να λύσετε τις εξισώσεις: i) Re (z) = 0 ii) Im (z) = 0 iii) Re (z) = Im (z) iv) z = 0 4. ** ίνεται ο µιγαδικός αριθµός z = ( + i) x + (y - ) i - 5, x, y R. α) Να τον γράψετε στη µορφή α + βi. β) Να γράψετε τον z συναρτήσει του x, αν Im (z) = 0. γ) Να βρείτε τη σχέση που συνδέει τα x και y, αν Re (z) = Im (z). 5. ** ίνονται οι µιγαδικοί z = + i, z = + 3 i, z3 = i, z 4 = + i, z5 = + i, Να βρείτε το άθροισµα των απείρων όρων w = z + z + z 3 + z 4 + z ** Να γράψετε στη µορφή α + βi τους µιγαδικούς αριθµούς: α) z = 5 - i - i β) z = i - i - (- i) 35

26 7. ** Να γράψετε στη µορφή α + βi τους µιγαδικούς αριθµούς: 3 α) 3i (- 5i) β) ( + i) (- i + 3) γ) 4i δ) - i ε) - i - i + ζ) ( + 3i) (- i + ) - i 8. ** Να γράψετε στη µορφή α + βi τους µιγαδικούς αριθµούς: - i i + α) ( - 3i) (4-5i) + 7i - β) i + 3 3i + δ) 3 + i 3 - i ε) ( - i) -3 γ) + i 9. ** Να προσδιορίσετε τους πραγµατικούς αριθµούς α, β ώστε οι µιγαδικοί z = α + βi και z = + 8i - 3i i 3i να είναι ίσοι. 0. ** Να βρεθούν οι πραγµατικοί αριθµοί α, β ώστε να ισχύει: (α + βi) = + 5i. i. ** Να υπολογιστεί το x R ώστε να ισχύει: + i = 3 + xi. - xi. ** Να βρεθούν τα x, y R ώστε οι µιγαδικοί: z = x + y - i και z = - (4x - y) i να είναι συζυγείς. 3. ** Αν z φανταστικός αριθµός µε z - i να αποδείξετε ότι ο αριθµός z 3 i ω = είναι αρνητικός πραγµατικός αριθµός. z +- i 36

27 4. ** α) Να βρείτε τους µιγαδικούς αριθµούς που επαληθεύουν την ισότητα z z + (z - z ) = 3 + i. β) Να βρεθεί ο µιγαδικός αριθµός που ικανοποιεί την ισότητα z = z. 5. ** Για τις διάφορες τιµές του ν Ν να βρεθεί η τιµή της παράστασης ν i + f (ν) =. i 6. ** Να αποδείξετε ότι για κάθε ν Ν ισχύει ( + i) 0ν = ( - i) 0ν. 7. ** α) Να δείξετε ότι κάθε πραγµατικός αριθµός είναι ίσος µε το συζυγή του και αντιστρόφως. β) Να δείξετε ότι αν ω = αριθµός. z z + i και ω R τότε ο z είναι φανταστικός 8. ** ίνεται ο µιγαδικός αριθµός z = x + yi, x, y R. z + 8i α) Να γράψετε στη µορφή α + βi τον µιγαδικό w =. z + 6 β) Να βρείτε τη σχέση που συνδέει τα x και y, αν Im (w) = 0. γ) Να βρείτε τη σχέση που συνδέει τα x και y, αν Re (w) = 0. δ) Να δείξετε ότι η προηγούµενη σχέση (γ) είναι εξίσωση κύκλου και να βρείτε το κέντρο του και την ακτίνα του. ε) Να δείξετε ότι ο προηγούµενος κύκλος διέρχεται από την αρχή των αξόνων. 9. ** Η εξίσωση z + αz + β =0, α, β R έχει ρίζα τον µιγαδικό αριθµό - i. α) Να βρείτε την άλλη ρίζα. β) Να βρείτε τα α και β. 0. ** Να βρείτε τους µιγαδικούς z = x + yi, x, y R, για τους οποίους ισχύει: z + z + = 0. 37

28 . ** Αν η εικόνα του µιγαδικού z = λ + (λ - ) i στο µιγαδικό επίπεδο βρίσκεται στην ευθεία y = 4x +, να βρεθεί ο λ R.. ** Να συµπληρώσετε το διπλανό σχήµα y µε το σηµείο Μ (z). Μετά να βρείτε τα σηµεία Μ ( z), Μ 3 (-z) êáé Μ 4 (- z). Να βρείτε το εµβαδόν του τετραπλεύρου Μ Μ Μ 3 Μ 4. 0 M(z) 3 4 x 3. ** Ο µιγαδικός z = + i να αναλυθεί σε άθροισµα δύο µιγαδικών z, z που οι εικόνες τους βρίσκονται αντίστοιχα στις ευθείες y = x - και y = x ** Να βρεθεί το µέτρο των µιγαδικών αριθµών: α) z = + i - 3i β) z = ( i) + i + - 4i 5. ** Να βρεθεί το µέτρο των µιγαδικών αριθµών: + i α) z = - 3i i β) z = ν, ν Ν. 6. ** Να βρεθεί ο µιγαδικός αριθµός z που ικανοποιεί την ισότητα z + z = + i. 7. ** Αν z C και z + 9 = 3 z +, αποδείξτε ότι z = 3. 38

29 8. ** ίνεται ο µιγαδικός αριθµός ω. α) Να δειχθεί ότι αν ω φανταστικός αριθµός, τότε ω = - ωκαι αντιστρόφως. β) Με βάση το προηγούµενο ή µε άλλο τρόπο δείξτε ότι αν ο αριθµός z - ω =, z -, είναι φανταστικός, τότε z =. z + 9. ** Να γράψετε όλους τους µιγαδικούς αριθµούς z αν ξέρουµε ότι η απόλυτη τιµή του πραγµατικού µέρους του z είναι 3 και η απόλυτη τιµή του φανταστικού µέρους του z είναι 4. Πού βρίσκονται οι εικόνες στο µιγαδικό επίπεδο των παραπάνω µιγαδικών αριθµών; 30. ** Να βρείτε τους µιγαδικούς αριθµούς z για τους οποίους ισχύει: z = = z -. z 3. ** Να λυθεί στο C η εξίσωση: z + z + + i = ** Αν για το µιγαδικό αριθµό z ισχύει: - z > z, δείξτε ότι Re (z) <. 33. ** Να αποδείξετε ότι οι εικόνες των µιγαδικών z στο µιγαδικό επίπεδο που ικανοποιούν τη σχέση z - = z - 4 βρίσκονται σε κύκλο κέντρου Ο (0, 0) και ακτίνας. 34. ** Να βρεθεί ο γεωµετρικός τόπος των εικόνων του z στο µιγαδικό επίπεδο z + i αν ο αριθµός είναι πραγµατικός. z + 39

30 35. ** Ο µιγαδικός αριθµός z ικανοποιεί τις σχέσεις: - Re (z) () Im (z) () z (3) Να γραµµοσκιάσετε στο µιγαδικό επίπεδο το χωρίο που αντιπροσωπεύει το σύνολο των εικόνων του z και να βρείτε το εµβαδόν του. 36. ** Να βρεθεί στο µιγαδικό επίπεδο ο γεωµετρικός τόπος των εικόνων του µιγαδικού z για τον οποίο ισχύει: α) z + - i = 3 β) z -- i < 4 γ) < z -+ i < 37. ** Ο κύκλος του διπλανού σχήµατος εφάπτεται του άξονα των τετµηµένων και είναι ο γεωµετρικός τόπος των y εικόνων του µιγαδικού αριθµού z = x + yi, x, y R στο µιγαδικό επί- K πεδο. α) Από τις παρακάτω εξισώσεις, να επιλέξετε δύο που τον αντιπροσω x πεύουν: i) (x - 3) + (y - ) = 9 ii) 3x + y = 4 iii) z i = 4 iv) x + y - 6x - 4y + 9 = 0 v) z i = β) Να δικαιολογήσετε την επιλογή σας. 40

31 38. ** Στο διπλανό σχήµα η µεσοκάθετος y (ε) (ε) του ευθυγράµµου τµήµατος ΑΒ είναι ο γεωµετρικός τόπος των εικόνων του µιγαδικού αριθµού z = x + yi, x, y R στο µιγαδικό επίπεδο. α) Από τις παρακάτω εξισώσεις, να επιλέξετε τρεις που τον αντιπροσωπεύουν: i) x - i = y Α Μ Β 3 4 x ii) z - i = z - 4 iii) z - - z - 4 = 0 5 iv) y = 4x - v) Re (z) = Im (z) vi) 8Re (z) = 5 + Im (z) β) Να δικαιολογήσετε την επιλογή σας. 39. ** Στο διπλανό σχήµα το ΟΑΒΓ είναι τετράγωνο. Αν Α, Β και Γ είναι οι εικόνες των µιγαδικών z = 3 + 4i, z = x + yi και z 3 = κ + λi αντιστοίχως στο µιγαδικό επίπεδο: α) Να δειχθεί ότι 3κ + 4λ = 0. β) Να βρεθούν οι z και z 3. y Α 3 4 x Β Γ 40. ** Να γραφούν στην τριγωνοµετρική µορφή οι µιγαδικοί: α) i i 3 β) i i γ) 4π 4π συν - iηµ 3 3 4

32 4. ** Να γραφούν στην τριγωνοµετρική µορφή οι µιγαδικοί αριθµοί: α) z = - συνθ + iηµθ β) z = - συνθ - iηµθ γ) z = ηµθ + iσυνθ + 5i π π 4. ** Αν z = και z = - (συν + iηµ ), να γραφούν σε τριγωνο- 3 + i 3 3 µετρική µορφή οι αριθµοί: α) z z β) z z 43. ** Να δείξετε ότι για κάθε ακέραιο ν ισχύει: 3ν i =. ν+ 44. ** Να δείξετε ότι: ( + i) ν + ( - i) ν = συν νπ, ν Ν ** Να βρείτε το µέτρο και το όρισµα του µιγαδικού αριθµού: z = (ηµθ - iσυνθ) (συνθ - iηµθ) ** ίνεται ο µιγαδικός αριθµός z = 3 + i. α) Να γράψετε τον z στην τριγωνοµετρική του µορφή. β) Αν ν θετικός ακέραιος να βρείτε τον w = z ν. γ) Να βρείτε τη µικρότερη τιµή του ν ώστε ο w να είναι πραγµατικός. δ) Να βρείτε τη µικρότερη τιµή του ν ώστε ο w να είναι φανταστικός. 47. ** Στο µιγαδικό επίπεδο έστω OA η διανυσµατική ακτίνα ενός µιγαδικού z και OB η διανυσµατική ακτίνα του z = z w, όπου w = + i. 3 α) Να γράψετε τον w στην τριγωνοµετρική του µορφή. β) Να δείξετε ότι w 3 = -. γ) Να δείξετε ότι το τρίγωνο ΟΑΒ είναι ισόπλευρο. 3 3 δ) Να δείξετε ότι z = - z και z + z = zz. 4

33 48. ** ίνεται ο µιγαδικός z = - συνα + iηµα, α [0, π). α π - α α) Να δείξετε ότι z = ηµ και Αrg (z) =. β) Να γραφεί σε τριγωνοµετρική µορφή ο αριθµός ω = + συνθ + iηµθ. γ) Να βρεθεί ο ω = ( + συν 0π 0π + iηµ ) ** Να βρείτε το σύνολο των σηµείων του µιγαδικού επιπέδου που είναι z - i εικόνες των µιγαδικών z για τους οποίους ισχύει η σχέση: Arg z + i = 4 π. 50. ** Να βρείτε το µιγαδικό αριθµό z για τον οποίο ισχύουν οι σχέσεις: Arg (z - ) = 4 π και z = ** ίνονται οι µιγαδικοί αριθµοί: 3 3 z = - i z = - + i z3 = + i z 4 = i z5 = α) Να βρείτε τα µέτρα τους. 3 + i β) Να βρείτε το πρωτεύον όρισµά τους. γ) Να τους γράψετε σε µια σειρά ώστε να προηγείται αυτός που έχει το µικρότερο όρισµα. δ) Πού βρίσκονται οι εικόνες τους στο µιγαδικό επίπεδο; 43

34 5. ** ίνονται οι µιγαδικοί αριθµοί: z = - i z = - i z3 = - + i z 4 = i z 5 = i α) Να γράψετε τους παραπάνω µιγαδικούς αριθµούς στη µορφή κ ( - 3 i), κ R και να τους τοποθετήσετε σε µια σειρά, ώστε να προηγείται αυτός που έχει το µικρότερο µέτρο. β) Πού βρίσκονται οι εικόνες τους στο µιγαδικό επίπεδο; γ) Να βρείτε τον µιγαδικό z έτσι ώστε η εικόνα του z z να συµπίπτει µε την εικόνα του z ** Στο διπλανό σχήµα το ΟΑΒΓ είναι παραλληλόγραµµο. Αν z = κ + λi να δειχθεί ότι: Α(κ,λ) λ 3 = κ +. 0 x 30 Γ Β 54. ** Η ευθεία (ε) είναι ο γεωµετρικός τόπος y των εικόνων του µιγαδικού z στο µιγαδικό επίπεδο. α) Να επιλέξετε δύο από τις παρακάτω εξισώσεις που δίνουν σηµεία της ευθείας (ε) που ανήκουν στο δεύτερο τεταρτηµόριο (ε) 0 0 x x i) = - y 3 ii) x = y iii) Arg (z) = π 3 β) Να δικαιολογήσετε την επιλογή σας. iv) z = v) x + y 3 = 0 44

35 55. ** Να βρεθούν οι κυβικές ρίζες των αριθµών: α) - 8i β) + i 56. ** Να λυθεί στο σύνολο C η εξίσωση: z 5 = + i ** Να λυθούν στο σύνολο C οι εξισώσεις: α) (z - ) 3 = β) (z - ) 4 = 58. ** Αν w είναι µια µη πραγµατική κυβική ρίζα της µονάδας, να δείξετε ότι: α) + w + w = 0 β) ( + w) 3 = - γ) ( + w ) = w δ) ( - w) ( - w ) ( - w 4 ) ( - w 5 ) = ** Αν w είναι µια µη πραγµατική κυβική ρίζα της µονάδας να δείξετε: α) w = w β) ( + w w + w + w ) ( w + w ) 3 = 8 γ) ( + w) ν+ + ( w) ν+4 =0 60. ** α) Να παραγοντοποιήσετε το πολυώνυµο Ρ (z) = z 3-3z + 4z -. β) Να λύσετε την εξίσωση: z 3-3z + 4z - = 0. γ) Να παραστήσετε στο µιγαδικό επίπεδο τα σηµεία που είναι εικόνες των ριζών. δ) Τι είδους τρίγωνο σχηµατίζουν οι εικόνες των ριζών; Να βρείτε το εµβαδόν του. 6. ** Να βρεθεί για ποιες τιµές των α, β R το πολυώνυµο f (x) = 3x 4 - αx 3 + 5x - 9x + β έχει παράγοντα το x +. Στη συνέχεια να βρεθούν όλες οι ρίζες του f (x). 6. ** Αν οι συντελεστές του πολυωνύµου f (x) = αx 3 + βx + γx + δ είναι πραγµατικοί αριθµοί και το x - i είναι παράγοντάς του, να αποδείξετε ότι 45

36 το x + είναι παράγοντας του f (x). Στη συνέχεια να προσδιορίσετε τα α, β, γ, δ γνωρίζοντας ακόµα ότι f (0) = και f () = ** ίνεται η εξίσωση z 3 + 3z + 3z - 7 = 0. Να αποδείξετε ότι οι εικόνες των ριζών της στο µιγαδικό επίπεδο είναι κορυφές ισοπλεύρου τριγώνου. 64. ** ίνεται η εξίσωση z - z ηµ β συν β + ηµ παράµετρος µε β [0, π]. α) Να δείξετε ότι οι ρίζες της εξίσωσης αυτής είναι οι ηµ β συν β ± iηµ β. β = 0, όπου β πραγµατική β) Να γράψετε τις ρίζες αυτές στην τριγωνοµετρική τους µορφή. 65. ** ίνεται η εξίσωση z + βz + γ = 0, z C, µε ρίζες τους συζυγείς µιγαδικούς αριθµούς z και z. Να αποδείξετε ότι: α) οι αριθµοί β και γ είναι πραγµατικοί β) η εξίσωση z + βz - γ = 0 έχει ρίζες πραγµατικές. 66. ** Αν Ρ (z) = z 3 + z + 4z + 8 = 0: α) να λύσετε την εξίσωση Ρ (z) = 0 και να γράψετε τις ρίζες της σε τριγωνοµετρική µορφή. β) να βρείτε την εξίσωση του κύκλου που περνάει από τις εικόνες των τριών ριζών του Ρ (z). 67. ** ίνεται η εξίσωση z - = z - 3i, z C. α) Να δειχθεί ότι ο γεωµετρικός τόπος των εικόνων του z στο µιγαδικό επίπεδο είναι η µεσοκάθετος (ε) του ευθυγράµµου τµήµατος ΑΒ µε άκρα Α (, 0) και Β (0, 3). β) Να δειχθεί ότι η εξίσωση της (ε) είναι x - 3y + 4 = 0. γ) Να γίνει η γραφική παράσταση της (ε). δ) Να βρεθεί η εικόνα του z για τον οποίο το z είναι ελάχιστο. 46

37 47

38 68. ** Αν z µιγαδικός και f (ν) = i ν z, ν Ν * τότε: α) Να δειχθεί ότι f (4λ) + f (4λ + ) + f (4λ + ) + f (4λ + 3) = 0, λ Ν *. β) Αν z = ρ και Arg (z) = θ, να δειχθεί ότι: f (4λ + ) = ρ [συν ( π + θ) + iηµ ( π + θ)]. γ) Αν Arg (z) = 3 π και z =, να σχεδιαστούν οι διανυσµατικές ακτίνες των z και f (4λ + ) στο µιγαδικό επίπεδο και να βρεθεί το εµβαδόν του τριγώνου που έχει κορυφές τις εικόνες των µιγαδικών 0, z και f (4λ + ). 69. ** Αν z µιγαδικός αριθµός µε Re =, τότε: z 4 α) Να δειχθεί ότι ο γεωµετρικός τόπος των εικόνων του z στο µιγαδικό επίπεδο είναι ο κύκλος µε εξίσωση z - =. β) Να δειχθεί ότι αν για τον z ισχύει Im (z) =, τότε Re (z) = + 3 ή Re (z) = - 3. γ) Να βρεθεί η εξίσωση 4ου βαθµού που θα έχει ρίζες τους αριθµούς ± και τους µιγαδικούς του ερωτήµατος (β). 70. ** Για τους µιγαδικούς z και w ισχύουν αντιστοίχως z z + i (z - z) = και π Arg (w + ) =. Να δειχθεί ότι: 4 α) ο γεωµετρικός τόπος των εικόνων του z στο µιγαδικό επίπεδο είναι κύκλος C µε κέντρο Κ (0, ) και ακτίνα ρ =. β) το σύνολο των σηµείων των εικόνων του w στο µιγαδικό επίπεδο βρίσκονται στην ευθεία µε εξίσωση y = x +. γ) η ευθεία (ε) του ερωτήµατος (β) τέµνει τον κύκλο C του ερωτήµατος (α) σε δύο σηµεία αντιδιαµετρικά. δ) αν t, t είναι οι µιγαδικοί που οι εικόνες τους στο µιγαδικό επίπεδο είναι οι τοµές των (ε) και C, τότε ισχύει: 3ν t t + + ν t t = 3ν+. 48

39 49

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης 999-000) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύπου «Σωστό -

Διαβάστε περισσότερα

Κεφάλαιο 2ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ

Κεφάλαιο 2ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Κεφάλαιο ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύου «Σωστό - Λάθος». * Αν = α + βi, α, β R και = 0, τότε α = 0 και β = 0. Σ Λ. * Αν = α + βi και αβ 0, τότε = α β i. Σ Λ. * Αν = κ + λi κ, λ R, τότε Re () =

Διαβάστε περισσότερα

Κεφάλαιο 2ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ

Κεφάλαιο 2ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Η ισότητα στο σύνολο C των µιγαδικών αριθµών ορίζεται από την ισοδυναµία: α +βi = γ + δi α = γ και β = δ. Σ Λ. * Αν z = α + βi, α, β

Διαβάστε περισσότερα

Κεφάλαιο 2ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ

Κεφάλαιο 2ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις ανάπτυξης. ** Να βρείτε τους πραγµατικούς αριθµούς x και y ώστε να ισχύουν οι ισότητες: α) x - + y = - + - y β) y + = 3 - ( + ) x γ) 4y - 3y - x = - 5x + 9 δ) (x

Διαβάστε περισσότερα

Ερωτήσεις σωστού-λάθους

Ερωτήσεις σωστού-λάθους ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Α ΜΕΡΟΣ (ΑΛΓΕΒΡΑ) ΚΕΦ ο : Μιγαδικοί Αριθμοί Φυλλάδιο ο Κεφ..: Η Έννοια του Μιγαδικού Αριθμού Κεφ..: Πράξεις στο Σύνολο C των Mιγαδικών Κεφ..: Πράξεις στο Σύνολο

Διαβάστε περισσότερα

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( )

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( ) ΑΣΚΗΣΗ ίνονται οι µιγαδικοί αριθµοί z + 0i για τους οποίους ισχύει: z 4 =. z i. Να δείξετε ότι z =. ii. Αν επιπλέον ισχύει Re( z) Im( z) iii. = να υπολογίσετε τους παραπάνω µιγαδικούς αριθµούς. Για τους

Διαβάστε περισσότερα

Γ / ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Γ / ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ / ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μ Ι Γ Α Δ Ι Κ Ο Ι Α Ρ Ι Θ Μ Ο Ι ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΡΟΣ ο Ερωτήσεις του τύπου σωστό λάθος. Αν = α + βi, α, β R και = 0, τότε α = 0 και β = 0. Σ

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΟΥΣ ΜΙΓΑ ΙΚΟΥΣ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΟΥΣ ΜΙΓΑ ΙΚΟΥΣ - - ΜΙΓΑ ΙΚΟΙ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΟΥΣ ΜΙΓΑ ΙΚΟΥΣ. Να βρεθούν οι τετραγωνικές ρίζες του µιγαδικού =3+4i. (+i και --i ). Nα αποδείξετε ότι v v+ v+ v+ 3 i + i + i + i = + + + v v+ v+ v+ 3. i i i i 3. Να

Διαβάστε περισσότερα

Ασκήσεις. x ' x οι ευθείες πάνω στις οποίες κινούνται οι εικόνες Μ(z).

Ασκήσεις. x ' x οι ευθείες πάνω στις οποίες κινούνται οι εικόνες Μ(z). εθοδολογία Παραδείγματα σκήσεις. ν α,β,γ,δ και ο OA, w a βi γ δi OB, των a βi, γ δi. α λυθεί η ανίσωση 0 πιμέλεια.: άτσιος Δημήτρης είναι φανταστικός, να δειχθεί ότι οι διανυσματικές ακτίνες αντίστοιχα,

Διαβάστε περισσότερα

Ισότητα μιγαδικών αριθμών πράξεις στο C Έστω z 1 =α+βi και z 2 =γ+δi δύο μιγαδικοί (α,β,γ,δ R) z 1 =z 2 α=γ και β=δ z 1 =0 α=0 και β=0

Ισότητα μιγαδικών αριθμών πράξεις στο C Έστω z 1 =α+βi και z 2 =γ+δi δύο μιγαδικοί (α,β,γ,δ R) z 1 =z 2 α=γ και β=δ z 1 =0 α=0 και β=0 ΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ C Το σύνολο των μιγαδικών αριθμών C, αποτελείται από αριθμούς της μορφής =α+βi,όπου α,βr Το στοιχείο i είναι τέτοιο ώστε : i = - Το σύνολο C είναι υπερσύνολο του R Οι πράξεις

Διαβάστε περισσότερα

Θέµατα Μιγαδικών Αριθµών από τις Πανελλαδικές Εξετάσεις

Θέµατα Μιγαδικών Αριθµών από τις Πανελλαδικές Εξετάσεις Θέµατα Μιγαδικών Αριθµών από τις Πανελλαδικές Εξετάσεις γιατί συχνά, οι ιδέες επαναλαµβάνονται ΕΠΙΜΕΛΕΙΑ: ΠΑΠΠΑΣ ΑΘΑΝΑΣΙΟΣ Ο ΓΕΝ ΛΥΚΕΙΟ ΥΜΗΤΤΟΥ Σελίδα από 8 Επιµέλεια: Παππάς Αθανάσιος/o ΓΕΛ ΥΜΗΤΤΟΥ 00

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Α) Έστω η συνάρτηση f, η οποία είναι συνεχής στο διάστημα [α,β] με f(α) f(β). Να αποδείξετε ότι για κάθε αριθμό η μεταξύ των f(α) και

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε

Διαβάστε περισσότερα

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Θεωρία - Μέθοδοι Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση Επιλεγμένα θέματα «Σας εύχομαι, καλό κουράγιο και μεγάλη δύναμη

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΜΑ Α Άσκηση, μιγαδικοί αριθμοί να αποδείξετε ότι: Αν = Έχουμε: = ( ) ( ) ( ) ( ) = = =. Το τελευταίο ισχύει, άρα ισχύει και η ισοδύναμη αρχική σχέση.

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 Ε_3.Μλ3ΘΤ(ε) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

ΘΕΜΑ (επαναληπτικές) α. Δίνονται Να περιγράψετε οι μιγαδικοί γεωμετρικά αριθμοί το, σύνολο, (Σ) των εικόνων των μιγαδικών αριθμών 3 με 3 3. πο

ΘΕΜΑ (επαναληπτικές) α. Δίνονται Να περιγράψετε οι μιγαδικοί γεωμετρικά αριθμοί το, σύνολο, (Σ) των εικόνων των μιγαδικών αριθμών 3 με 3 3. πο ΘΕΜΑΤΑ ΜΙΓΑΔΙΚΩΝ ΣΤΙΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (000-03) ΘΕΜΑ 000 α. Αν, είναι οι ρίζες της εξίσωσης + + = 0, να αποδείξετε ότι 0-0 =0. β. Αν είναι ρίζα της εξίσωσης του α. ερωτήματος, με φανταστικό μέρος

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Να γνωρίζει: α. την έννοια του μιγαδικού αριθμού και β. πότε δύο μιγαδικοί αριθμοί είναι ίσοι. Να μπορεί να βρίσκει: α. το άθροισμα,

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1 Δ Ι Α Γ Ω Ν Ι Σ Μ Α Θ έ μ α Α Α. α. Πότε η εξίσωση αx + βx + γ = 0, α 0 έχει διπλή ρίζα; Ποια είναι η διπλή ρίζα της; 4 μονάδες β. Ποια μορφή παίρνει το τριώνυμο αx + βx + γ, α 0, όταν Δ = 0; 3 μονάδες

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος.. προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF:.4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων.

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος.. προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF:.4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος.. προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF:.4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων.) ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ TEXΝΟΛΟΓ. 5... ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ

Διαβάστε περισσότερα

Επαναληπτικά ϑέµατα στους Μιγαδικούς Αριθµούς

Επαναληπτικά ϑέµατα στους Μιγαδικούς Αριθµούς Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου Επαναληπτικά ϑέµατα στους Μιγαδικούς Αριθµούς ιδάσκων : Αντώνης Λουτράρης Μαθηµατικός M.S.c Αύγουστος, 2012 Σελίδα 1 Ο συντοµότερος δρόµος ανάµεσα

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ. x + 5= 6 (1) και. x = 1, οπότε η (2) γίνεται 1 5x + 1= 7 x = 1 ΘΕΜΑ Β. Άσκηση 1. Να βρείτε τον αριθμό x R όταν. Λύση.

ΑΣΚΗΣΕΙΣ. x + 5= 6 (1) και. x = 1, οπότε η (2) γίνεται 1 5x + 1= 7 x = 1 ΘΕΜΑ Β. Άσκηση 1. Να βρείτε τον αριθμό x R όταν. Λύση. ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i. ΙΔΙΟΤΗΤΕΣ

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ

ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ . ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 4 α. Να βρείτε τον γεωμετρικό τόπο των εικόνων του. β. Αν Re ( ) 0, τότε: 4 i. Να αποδείξετε ότι ο μιγαδικός w = + είναι πραγματικός και ισχύει 4 w 4. ii. Να βρείτε τον

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i ΙΔΙΟΤΗΤΕΣ

Διαβάστε περισσότερα

Αναλυτικές λύσεις όλων των θεμάτων στα Μαθηματικά των Πανελλαδικών εξετάσεων και των Επαναληπτικών εξετάσεων Θεολόγης Καρκαλέτσης

Αναλυτικές λύσεις όλων των θεμάτων στα Μαθηματικά των Πανελλαδικών εξετάσεων και των Επαναληπτικών εξετάσεων Θεολόγης Καρκαλέτσης Αναλυτικές λύσεις όλων των θεμάτων στα Μαθηματικά των Πανελλαδικών εξετάσεων και των Επαναληπτικών εξετάσεων 9 Θεολόγης Καρκαλέτσης Μαθηματικός teomail@schgr Πρόλογος Στο βιβλίο αυτό περιέχονται όλα τα

Διαβάστε περισσότερα

1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση:

1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση: ΕΡΩΤΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ Ερωτήσεις συµπλήρωσης 1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση: Φυσική γλώσσα Μαθηµατική γλώσσα ύο αριθµοί x, y διαφέρουν κατά και έχουν γινόµενο x (x

Διαβάστε περισσότερα

Επαναληπτικά συνδυαστικα θέµατα

Επαναληπτικά συνδυαστικα θέµατα Επαναληπτικά συνδυαστικα θέµατα A. Αν α, β i. αβ Θέµα ο µη µηδενικά διανύσµατα και ισχύει α+ β + α β =, τότε να δείξετε ότι: και ii. Αν α β τότε ισχύει α + β =. B. Να βρεθούν οι τιµές του λ ώστε η εξίσωση

Διαβάστε περισσότερα

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α. Έστω µια συνάρτηση f παραγωγίσιµη σ ένα διάστηµα (α, β), µε εξαίρεση ίσως ένα σηµείο του, στο

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

α) () z i z iz i Αν z i τότε i( yi) i + + y y y ( y) i i y + 4y + 4, y y 4. Άρα z i. 4 β) ( z) z i z z i z ( i) z, οπότε ( z ) i z z Άρα z z γ) Αν z τ

α) () z i z iz i Αν z i τότε i( yi) i + + y y y ( y) i i y + 4y + 4, y y 4. Άρα z i. 4 β) ( z) z i z z i z ( i) z, οπότε ( z ) i z z Άρα z z γ) Αν z τ Λυμένα θέματα στους Μιγαδικούς αριθμούς. Δίνονται οι μιγαδικοί z, w και u z w. α) Να αποδείξετε ότι ο μιγαδικός z είναι φανταστικός αν και μόνο αν ισχύει z z. β) Αν για τους z και w ισχύει: z + w z w,

Διαβάστε περισσότερα

Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης ΚΕΦΑΛΑΙΟ. 1 ο :Μιγαδικοί Αριθµοί

Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης ΚΕΦΑΛΑΙΟ. 1 ο :Μιγαδικοί Αριθµοί ΚΕΦΑΛΑΙΟ ο :Μιγαδικοί Αριθµοί. Ποιο σύνολο ονοµάζεται σύνολο των µιγαδικών αριθµών ;. Tι ονοµάζεται µιγαδικός αριθµός; Ποιο είναι το πραγµατικό και ποιο το φανταστικό του µέρος ; 3. Tι ονοµάζεται εικόνα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑ o A. Έστω f µια συνεχής συνάρτηση σ' ένα διάστηµα [α, ]. Αν G είναι µια παράγουσα της f στο [α, ], τότε να δείξετε ότι f(t)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β. ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ Γ. Π. Β. ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.) (Μαθηματικός) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ

Διαβάστε περισσότερα

ΣΥΝΘΕΤΑ ΘΕΜΑΤΑ ΜΙΓΑΔΙΚΟΙ ΣΥΝΑΡΤΗΣΕΙΣ

ΣΥΝΘΕΤΑ ΘΕΜΑΤΑ ΜΙΓΑΔΙΚΟΙ ΣΥΝΑΡΤΗΣΕΙΣ ΣΥΝΘΕΤΑ ΘΕΜΑΤΑ ΜΙΓΑΔΙΚΟΙ ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΜΑ Δίνεται η εξίσωση w w + i 0 () και το πολυώνυμο 3 P ( ) + a + β -,, R α) Να λύσετε την εξίσωση () β)αν ο αριθμός w που βρήκατε στο ερώτημα α) είναι ρίζα της εξίσωσης

Διαβάστε περισσότερα

ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ. Ασκήσεις. Επιµέλεια.: Κάτσιος ηµήτρης. Μεθοδολογία Παραδείγµατα Ασκ ΜΕΘΟ ΟΛΟΓΙΑ 1

ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ. Ασκήσεις. Επιµέλεια.: Κάτσιος ηµήτρης. Μεθοδολογία Παραδείγµατα Ασκ ΜΕΘΟ ΟΛΟΓΙΑ 1 εθοδολογία Παραδείγµατα σκ σκήσεις πιµέλεια.: άτσιος ηµήτρης Ρ ια να προσθέσουµε (ή να αφαιρέσουµε) δύο µιγαδικούς, προσθέτουµε (ή αφαιρούµε) τα πραγµατικά και τα φανταστικά τους µέρη, δηλαδή: ± = [Re

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. Η έννοια του μιγαδικού Το σύνολο των μιγαδικών. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

ΣΗΜΕΙΩΣΕΙΣ. Η έννοια του μιγαδικού Το σύνολο των μιγαδικών. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i ΙΔΙΟΤΗΤΕΣ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 04 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 04 ΘΕΜΑ ο : * Θεωρούμε τους μιγαδικούς αριθμούς της μορφής xxi,

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 8 ΘΕΜΑ ο Έστω, α,β, α β και ν α + + i = βi () β + αi α) Να αποδείξετε ότι ο δεν είναι πραγµατικός αριθµός. β) Να αποδείξετε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ i ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΠΤΥΧΙΟΥΧΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΘΗΝΩΝ (ΕΚΠΑ)

Διαβάστε περισσότερα

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Εκθετική - Λογαριθµ ική Συνάρτηση)

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Εκθετική - Λογαριθµ ική Συνάρτηση) ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ( Κεφάλαιο 4ο : Εκθετική - Λογαριθµ ική Συνάρτηση) Τα κριτήρια αξιολόγησης που ακολουθούν είναι ενδεικτικά. Ο καθηγητής έχει τη δυνατότητα διαµόρφωσής τους σε ενιαία

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑ o ΕΚΦΩΝΗΣΕΙΣ A. Έστω µια συνεχς συνάρτηση σ' ένα διάστηµα [α, ]. Αν G είναι µια παράγουσα της στο [α, ], τότε να δείξετε ότι

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ : ΜΑΘΗΜΑΤΙΚΑ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ : ΜΑΘΗΜΑΤΙΚΑ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ : ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ o A.Aν η συνάρτηση f είναι παραγωγίσιμη σ' ένα σημείο x 0 του πεδίου ορισμού της,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΔΙΑΝΥΣΜΑΤΑ Επιμέλεια: Άλκης Τζελέπης ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΕΝΝΟΙΑ - ΠΡΑΞΕΙΣ. Αν τα διανύσματα,, σχηματίζουν τρίγωνο, να αποδείξετε ότι το ίδιο συμβαίνει

Διαβάστε περισσότερα

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΙΓΑΔΙΚΩΝ

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΙΓΑΔΙΚΩΝ ΑΣΚΗΣΗ 1 Να αποδειχθεί ότι οι γεωμετρικές εικόνες των μιγαδικών ριζών της εξίσωσης (συν θ)z (4συνθ)z + (5 συν θ) = 0 με θ π, π κινούνται σε υπερβολή, της οποίας να ευρεθούν τα στοιχεί ΑΣΚΗΣΗ Στο μιγαδικό

Διαβάστε περισσότερα

v a v av a, τότε να αποδείξετε ότι ν <4.

v a v av a, τότε να αποδείξετε ότι ν <4. ΘΕΜΑ ο ΑΣΚΗΣΕΙΣ-ΘΕΜΑΤΑ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ Θεωρούμε τους μιγαδικούς αριθμούς για τους οποίους ισχύει η σχέση: Α. Να αποδείξετε ότι ο γεωμετρικός τόπος των εικόνων των μιγαδικών είναι ο κύκλος με Κ(,0) και

Διαβάστε περισσότερα

ΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος

ΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος Κεφάλαιο ο: ΠΟΛΥΩΝΥΜΑ Ερωτήσεις του τύπου Σωστό-Λάθος 1. * Οι πραγματικοί αριθμοί είναι σταθερά πολυώνυμα. Σ Λ. * Το σταθερό πολυώνυμο 0 λέγεται μηδενικό πολυώνυμο. Σ Λ 3. * Κάθε σταθερό και μη μηδενικό

Διαβάστε περισσότερα

ΤΡΥΦΩΝ ΠΑΥΛΟΣ Μαθηµατικά Γ Λυκείου - Κατεύθυνσης

ΤΡΥΦΩΝ ΠΑΥΛΟΣ Μαθηµατικά Γ Λυκείου - Κατεύθυνσης Η ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑ ΙΚΟΥ ΑΡΙΘΜΟΥ Οι µιγαδικοί αριθµοί και w συνδέονται µε την σέση a β w =, όπου γ α,β,γ R Όταν =0 τότε w= και όταν =-i τότε w=- i Να βρείτε τις σταθερές α,β,γ α Αν το άθροισµα και το γινόµενο

Διαβάστε περισσότερα

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε Ν β K C Ε -α Ο α Ε Τάξη B Μ -β Λ Μάθημα: Η Θεωρία σε Ερωτήσεις Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Επιμέλεια: Διανύσματα Ερωτήσεις θεωρίας 1. Πως ορίζεται το διάνυσμα;. Τι λέγεται μηδενικό διάνυσμα;

Διαβάστε περισσότερα

ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ

ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ 1. Α. Έστω x, y και x, y δύο διανύσματα του καρτεσιανού επιπέδου Οxy. i. Να εκφράσετε (χωρίς απόδειξη) το εσωτερικό γινόμενο των διανυσμάτων και συναρτήσει των συντεταγμένων τους.

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού 97 98 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ 1. Να λυθεί η εξίσωση: 1 1 1 ( x+ )(x ) = x 3 3 9. Αν η εξίσωση (x - 3) λ + 3 = λ x έχει ρίζα τον αριθμό, να υπολογιστεί

Διαβάστε περισσότερα

Μαθηματικά Γ Λυκείου. Έκδοση Α. 120 Ασκήσεις προσδοκούν να προαχθούν σε θέµατα εξετάσεων. Αθήνα 2012 (λίγο πριν τις εκλογές) 5/5/2012

Μαθηματικά Γ Λυκείου. Έκδοση Α. 120 Ασκήσεις προσδοκούν να προαχθούν σε θέµατα εξετάσεων. Αθήνα 2012 (λίγο πριν τις εκλογές) 5/5/2012 Μαθηματικά Γ Λυκείου Ασκήσεις προσδοκούν να προαχθούν σε θέµατα εξετάσεων 5/5/ Έκδοση Α Θετική και Τεχνολογική Κατεύθυνση ( mac964@gmail.com) Αθήνα (λίγο πριν τις εκλογές) Επαναληπτικές ασκήσεις που φιλοδοξούν

Διαβάστε περισσότερα

ΘΕΜΑΤΑ. Μονάδες 8 Β. η εξίσωση της μεσοκάθετης της ΑΓ Μονάδες 9

ΘΕΜΑΤΑ. Μονάδες 8 Β. η εξίσωση της μεσοκάθετης της ΑΓ Μονάδες 9 ΓΕΛ ΜΑΘ. ΚΑΤΕΥΘΥΝΣΗΣ Β 331 Α. α. Τι ονομάζουμε εσωτερικό γινόμενο των μη μηδενικών διανυσμάτων α, β. Μονάδες 5 β. Εάν ορίζονται οι συντελεστές διεύθυνσης των διανυσμάτων α, β αντιστοίχως να δείξετε ότι:

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Επαναληπτικές Ασκήσεις Έστω ότι το υπόλοιπο της διαίρεσης ενός πολυωνύμου ( x ) α Να γράψετε την ταυτότητα της διαίρεσης β Να βρείτε τα 0 και Ρ γ Αν το πολυώνυμο ( x) είναι x να βρείτε: x + x είναι 3x

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β ΥΜΝΑΣΙΟ - 010 48 Α. Τι λέγεται τετραγωνική ρίζα ενός θετικού αριθμού α και πώς συμβολίζεται αυτή; Β. Ποιος αριθμός ονομάζεται άρρητος;. Πώς ορίζονται οι πραγματικοί αριθμοί; Α. Τι λέγεται ημίτονο μιας

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ O z είναι πραγματικός, αν και μόνο αν Ο z είναι φανταστικός, αν και μόνο αν β) Αν και να αποδείξετε ότι ο αριθμός είναι πραγματικός, ενώ ο αριθμός είναι φανταστικός. 9. Να βρείτε το γεωμετρικό τόπο των

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 4ο: Ερωτήσεις του τύπου «Σωστό - Λάθος» k R

ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 4ο: Ερωτήσεις του τύπου «Σωστό - Λάθος» k R Κεφάλαιο 4ο: ΚΩΝΙΚΕΣ ΤΟΜΕΣ Α. ΚΥΚΛΟΣ Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. * Η εξίσωση ( x x ) + ( y y ) = k, k R είναι πάντοτε εξίσωση κύκλου. o o. * Η εξίσωση x + y + Ax + By + Γ = 0 παριστάνει κύκλο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ o Κεφάλαιο ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Η διαδικασία, µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ 2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ (Α κύκλος)

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ (Α κύκλος) ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ (Α κύκλος) Δίνεται η εξίσωση z-=z-3i,zc α) Να αποδείξετε ότι ο γεωμετρικός τόπος των εικόνων του z είναι η ευθεία ε: -3y+4= β) Να βρείτε την εικόνα του μιγαδικού z, για τον οποίο το

Διαβάστε περισσότερα

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΚΩΝΙΚΕ ΤΟΜΕ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ 1. Να σημειώσετε το σωστό () ή το λάθος () στους παρακάτω ισχυρισμούς: 1. Η εξίσωση + = α (α > 0) παριστάνει κύκλο.. Η εξίσωση + + κ + λ = 0 µε κ, λ 0 παριστάνει

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. Β κύκλος

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. Β κύκλος ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Β κύκλος ) Δίνεται η παραγωγίσιμη συνάρτηση f για την οποία ισχύει : [f()] 8 +α[f()] = -e f(), α>,για κάθε. α) Να δείξετε ότι f()=c, για κάθε,όπου c αρνητική σταθερά. β) Να βρείτε τις

Διαβάστε περισσότερα

ΕΥΘΕΙΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΕΥΘΕΙΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου «Σωστό-Λάθος» Κεφάλαιο ο: ΕΥΘΕΙΑ Ερωτήσεις του τύπου «Σωστό-Λάθος». * Συντελεστής διεύθυνσης µιας ευθείας (ε) είναι η εφαπτοµένη της γωνίας που σχηµατίζει η ευθεία (ε) µε τον άξονα x x. Σ Λ. * Ο συντελεστής διεύθυνσης

Διαβάστε περισσότερα

Ασκήσεις σχ. Βιβλίου σελίδας Α ΟΜΑ ΑΣ 1.

Ασκήσεις σχ. Βιβλίου σελίδας Α ΟΜΑ ΑΣ 1. .. Ασκήσεις σχ. Βιβλίου σελίδας 94 97 Α ΟΜΑ ΑΣ. Να βρείτε τις τιµές του λ R, ώστε ο z (λ )( ) να είναι : πραγµατικός αριθµός φανταστικός αριθµός z λ λ 6 (λ ) (6 λ) z πραγµατικός 6 λ 0 λ 6 z φανταστικός

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό

Διαβάστε περισσότερα

ΜΑΙΟΣ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ο 5 + i Α. Δίνεται ο μιγαδικός αριθμός z =. + i α) Να γράψετε τον z στη μορφή α + βi, α, β IR. Στην παρ

ΜΑΙΟΣ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ο 5 + i Α. Δίνεται ο μιγαδικός αριθμός z =. + i α) Να γράψετε τον z στη μορφή α + βi, α, β IR. Στην παρ ΜΑΙΟΣ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ο 5 + i Α. Δίνεται ο μιγαδικός αριθμός z =. + i α) Να γράψετε τον z στη μορφή α + βi, α, β IR. Στην παρακάτω ερώτηση να γράψετε τη σωστή απάντηση. δ) Το z

Διαβάστε περισσότερα

ΘΕΜΑ 2 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο.

ΘΕΜΑ 2 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. (Μονάδες 10) β) Να παραστήσετε γραφικά στο επίπεδο τις δυο εξισώσεις

Διαβάστε περισσότερα

με παραμέτρους α, β, γ R α) Να επιλέξετε τιμές για τις παραμέτρους α, β, γ, ώστε το σύστημα αυτό να έχει μοναδική λύση το ζεύγος (1,-4).

με παραμέτρους α, β, γ R α) Να επιλέξετε τιμές για τις παραμέτρους α, β, γ, ώστε το σύστημα αυτό να έχει μοναδική λύση το ζεύγος (1,-4). Δίνεται το σύστημα: x 2y= 9 ax+ βy= γ με παραμέτρους α, β, γ R α) Να επιλέξετε τιμές για τις παραμέτρους α, β, γ, ώστε το σύστημα αυτό να έχει μοναδική λύση το ζεύγος (1,-4). (Μονάδες 13) β) Να επιλέξετε

Διαβάστε περισσότερα

1 Ο ΚΕΦΑΛΑΙΟ Ενότητα 1.

1 Ο ΚΕΦΑΛΑΙΟ Ενότητα 1. 1 Ο ΚΕΦΑΛΑΙΟ Ενότητα 1. Διανύσματα Ισότητα διανυσμάτων Πρόσθεση διανυσμάτων Ερωτήσεις 1. Τ ι ονομάζουμε διάνυσμα;. Τι λέμε μέτρο ενός διανύσματος ;. Τι λέμε μηδενικό διάνυσμα; 4. Τι λέμε φορέα διανύσματος;

Διαβάστε περισσότερα

Ερωτήσεις αντιστοίχισης

Ερωτήσεις αντιστοίχισης Ερωτήσεις αντιστοίχισης 1. ** Να αντιστοιχίσετε κάθε ευθεία που η εξίσωσή της βρίσκεται στη του πίνακα (Ι) µε τον συντελεστή της που βρίσκεται στη, συµπληρώνοντας τον πίνακα (ΙΙ) (α, β 0). 1. ε 1 : y =

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΙΑΝΥΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ. Να σηµειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισµούς:. Αν ΑΒ + ΒΓ = ΑΓ, τότε τα σηµεία Α, Β, Γ είναι συνευθειακά.. Αν α = β, τότε

Διαβάστε περισσότερα

ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός

ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός 01 ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΙΑ ΕΞΕΤΑΣΕΙΣ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παραπάνω φυλλάδιο φτιάχτηκε για να προσφέρει λίγη βοήθεια κυρίως στους

Διαβάστε περισσότερα

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ Α. Να συμπληρωθούν οι ισότητες: (α + β) =.., (α β) 3 = και (α + β)(α β) =.. Β. Να αποδείξετε τη δεύτερη. Θέμα ο Να γράψετε τα τρία (3) κριτήρια ισότητας τριγώνων. Να λυθεί η εξίσωση: 3 + 4 = 7 + 1 Άσκηση

Διαβάστε περισσότερα

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ.

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ. Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) 8556 ΘΕΜΑ Δίνονται τα διανύσματα και με, και, 3 α) Να βρείτε το εσωτερικό γινόμενο β) Αν τα διανύσματα γ) Να βρείτε το μέτρο του διανύσματος 8558 ΘΕΜΑ

Διαβάστε περισσότερα

1ο Κεφάλαιο: Συστήματα

1ο Κεφάλαιο: Συστήματα ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή

Διαβάστε περισσότερα

β = (9, x) να είναι ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ...Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΣΗΣ...

β = (9, x) να είναι ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ...Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΣΗΣ... Αµυραδάκη 0, Νίκαια (104903576) ΝΟΕΜΒΡΙΟΣ 01 ΘΕΜΑ 1 ο i) Αν Α( x 1, y 1 ) και Β(x, y ) δυο σηµεία του καρτεσιανού επιπέδου και (x, y) οι συντεταγµένες του µέσου Μ του ΑΒ, να αποδείξετε ότι : x 1 + x x

Διαβάστε περισσότερα

Μαθηματικά Γενικής Παιδείας Κεφάλαιο 1ο Ανάλυση ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΝΑΛΥΣΗ

Μαθηματικά Γενικής Παιδείας Κεφάλαιο 1ο Ανάλυση ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΝΑΛΥΣΗ Μαθηματικά Γενικής Παιδείας Κεφάλαιο ο Ανάλυση ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α

Διαβάστε περισσότερα

Ασκήσεις Κύκλος. 6. Για ποια τιμή του λ το σημείο Μ(2λ + 1, λ) ανήκει στον κύκλο με εξίσωση (x 3) 2 + (y + 4) 2 = 100

Ασκήσεις Κύκλος. 6. Για ποια τιμή του λ το σημείο Μ(2λ + 1, λ) ανήκει στον κύκλο με εξίσωση (x 3) 2 + (y + 4) 2 = 100 Ασκήσεις Κύκλος 1. Να βρείτε το κέντρο και την ακτίνα του κύκλου (x + 5) + (y 5) =. Να βρείτε το κέντρο και την ακτίνα του κύκλου x + y 8x + 4y + 11 = 0 3. Ποια πρέπει να είναι η ακτίνα του κύκλου (x 1)

Διαβάστε περισσότερα

Β Γενική Τριγωνομετρία

Β Γενική Τριγωνομετρία Β Γενική Τριγωνομετρία 40 Γενικευμένη γωνία - Γενικευμένα τόξα - Το ακτίνιο Τριγωνομετρικός κύκλος - Τριγωνομετρικοί αριθμοί γενικευμένης γωνίας 1. Η γωνία ω του παρακάτω σχήματος είναι θετική. α) Συνδέστε

Διαβάστε περισσότερα

Μαθηματικά Γ! Λυκείου. Θετική και Τεχνολογική Κατεύθυνση. Μιγαδικοί αριθμοί. Θ ω μ ά ς. Ρ α ϊ κ ό φ τ σ α λ η ς

Μαθηματικά Γ! Λυκείου. Θετική και Τεχνολογική Κατεύθυνση. Μιγαδικοί αριθμοί. Θ ω μ ά ς. Ρ α ϊ κ ό φ τ σ α λ η ς Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Θ ω μ ά ς Μιγαδικοί αριθμοί Ρ α ϊ κ ό φ τ σ α λ η ς Προαπαιτούμενες γνώσεις Θ ω μ ά ς Ρ α ϊ κ ό φ τ σ α λ η ς Προαπαιτούμενες γνώσεις Βασικές TAYTOΤΗΤΕΣ

Διαβάστε περισσότερα

Επαναληπτικά Θέματα Μαθηματικών Γ Λυκείου Κατεύθυνσης

Επαναληπτικά Θέματα Μαθηματικών Γ Λυκείου Κατεύθυνσης 6 Επαναληπτικά Θέματα Μαθηματικών Γ Λυκείου Κατεύθυνσης ΘΕΜΑ Έστω η συνεχής συνάρτηση f : (, ) R τέτοια ώστε για κάθε να ισχύει: t f ( ) dt. f () t te ( ) α) Να αποδείξετε ότι για κάθε ισχύει: β) Να αποδείξετε

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό σας. ΚΕΦΑΛΑΙΟ 1 1. Να συμπληρώσετε

Διαβάστε περισσότερα

5, 5 = 1. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΜΙΑ ΣΥΛΛΟΓΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ 30 ΑΣΚΗΣΕΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΜΟΝΟ ΜΙΓΑΔΙΚΟΙ + 10 ΑΣΚΗΣΕΩΝ ΜΙΓΑΔΙΚΟΙ ΜΕ ΑΝΑΛΥΣΗ

5, 5 = 1. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΜΙΑ ΣΥΛΛΟΓΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ 30 ΑΣΚΗΣΕΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΜΟΝΟ ΜΙΓΑΔΙΚΟΙ + 10 ΑΣΚΗΣΕΩΝ ΜΙΓΑΔΙΚΟΙ ΜΕ ΑΝΑΛΥΣΗ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΙΑ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ΜΟΝΟ ΜΙΓΑΔΙΚΟΙ + ΑΣΚΗΣΕΩΝ ΜΙΓΑΔΙΚΟΙ ΜΕ ΑΝΑΛΥΣΗ 4 α Να βρείτε τον γεωμετρικό τόπο των εικόνων του Έστω οι μιγαδικοί για τους οποίους

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ 2: ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ. 2.3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 1ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ 2: ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ. 2.3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ..3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Παράδειγμα. Να βρείτε το μέτρο των μιγαδικών

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ Σ-Λ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΕΣΠΕΡΙΝΟY. 0, τότε είναι και παραγωγίσιμη στο σημείο αυτό.

ΕΡΩΤΗΣΕΙΣ Σ-Λ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΕΣΠΕΡΙΝΟY. 0, τότε είναι και παραγωγίσιμη στο σημείο αυτό. ΕΡΩΤΗΣΕΙΣ Σ-Λ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΕΣΠΕΡΙΝΟY Αν μια συνάρτηση f είναι παραγωγίσιμη σ ένα σημείο, τότε είναι και συνεχής στο σημείο αυτό Αν μια συνάρτηση f είναι συνεχής σ ένα

Διαβάστε περισσότερα

AB. Αν το διάνυσμα AB έχει μέτρο 1, τότε λέγεται

AB. Αν το διάνυσμα AB έχει μέτρο 1, τότε λέγεται ΔΙΑΝΥΣΜΑΤΑ Στη Γεωμετρία το διάνυσμα ορίζεται ως ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ως ένα ευθύγραμμο τμήμα του οποίου τα άκρα θεωρούνται διατεταγμένα Αν η αρχή και το πέρας ενός διανύσματος

Διαβάστε περισσότερα

Μαθηµατικά Κατεύθυνσης Β Λυκείου Ευθεία. Ασκήσεις Ευθεία

Μαθηµατικά Κατεύθυνσης Β Λυκείου Ευθεία. Ασκήσεις Ευθεία Ασκήσεις Ευθεία 1. Να βρεθεί η εξίσωση της ευθείας η οποία διέρχεται από το σηµείο τοµής των ευθειών 3x + 4y 11 = 0 και 2x 3y + 21 = 0 και να γίνει η γραφική της παράσταση όταν είναι: i) παράλληλη στην

Διαβάστε περισσότερα

ΠΡΟΛΟΓΟΣ. Επίσης. Ολες οι ασκήσεις ανα κεφάλαιο του Μαίου. Κλείνει με τις λύσεις όλων των θεμάτων του Μαίου

ΠΡΟΛΟΓΟΣ. Επίσης. Ολες οι ασκήσεις ανα κεφάλαιο του Μαίου. Κλείνει με τις λύσεις όλων των θεμάτων του Μαίου ΠΡΟΛΟΓΟΣ Το παρόν τεύχος δημιουργήθηκε για να διευκολύνει τους μαθητές στην ΆΜΕΣΗ κατανόηση των απαιτήσεων των πανελληνίων εξετάσεων δίνοντας τους τα θέματα των 4 χρόνων των κανονικών εξετάσεων του Μαίου

Διαβάστε περισσότερα

φέρουμε μια οποιαδήποτε χορδή ΑΒ του κύκλου και την προεκτείνουμε κατά τμήμα

φέρουμε μια οποιαδήποτε χορδή ΑΒ του κύκλου και την προεκτείνουμε κατά τμήμα 1. Δίνεται ο κύκλος + y ρ, όπου ρ>0. Από το σημείο A( - ρ,0) του C C :x = φέρουμε μια οποιαδήποτε χορδή ΑΒ του κύκλου και την προεκτείνουμε κατά τμήμα BM = AB. Να αποδείξετε ότι το Μ κινείται πάνω σε ένα

Διαβάστε περισσότερα

2 Ο ΚΕΦΑΛΑΙΟ Ενότητα 5.

2 Ο ΚΕΦΑΛΑΙΟ Ενότητα 5. Ευθεία Ο ΚΕΦΑΛΑΙΟ Ενότητα 5. Εξίσωση γραμμής Συντελεστής διεύθυνσης ευθείας Συνθήκες καθετότητας και παραλληλίας ευθειών Εξίσωση ευθείας ειδικές περιπτώσεις Σχόλιο Το σημείο είναι ο θεμελιώδης λίθος της

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B 151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.

Διαβάστε περισσότερα

2 ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ (1)

2 ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ (1) 2 ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ (1) 2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Εισαγωγή Η δημιουργία των μιγαδικών αριθμών οφείλεται στην προσπάθεια επίλυσης των εξισώσεων 3ου βαθμού. Αν στην αx 3 +βx 2 +γx + δ = 0 θέσουμε

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

1. ** Αν F είναι µια παράγουσα της f στο R, τότε να αποδείξετε ότι και η

1. ** Αν F είναι µια παράγουσα της f στο R, τότε να αποδείξετε ότι και η Ερωτήσεις ανάπτυξης. ** Αν F είναι µια παράγουσα της f στο R, τότε να αποδείξετε ότι και η συνάρτηση G () = F (α + β) είναι µια παράγουσα της h () = f (α + β), α α στο R. β + γ α+ γ. ** α) Να δείξετε ότι

Διαβάστε περισσότερα

Τράπεζα συναρτήσει των διανυσμάτων α,β,γ. Μονάδες 13 β) να αποδείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά. Μονάδες 12

Τράπεζα συναρτήσει των διανυσμάτων α,β,γ. Μονάδες 13 β) να αποδείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά. Μονάδες 12 Τράπεζα 0- Πολλαπλασιασμός αριθμού με διάνυσμα.58 Θεωρούμε τα διανύσματα α,β,γ και τυχαίο σημείο Ο. Αν α β 5γ, α 3β 4γ και 3α β 6γ, τότε: α) να εκφράσετε τα διανύσματα, συναρτήσει των διανυσμάτων α,β,γ.

Διαβάστε περισσότερα

ΘΕΜΑΤΑΚΙΑ ΓΕΝΙΚΑ. x 0. 2 x

ΘΕΜΑΤΑΚΙΑ ΓΕΝΙΚΑ. x 0. 2 x ΘΕΜΑ A ΘΕΜΑΤΑΚΙΑ ΓΕΝΙΚΑ. Δίνεται η συνάρτηση f με τύπο: f ( ) ln,,. Να δείξετε ότι η f είναι αντιστρέψιμη και να βρείτε το πεδίο ορισμού της αντίστροφής της.. Να δικαιολογήσετε ότι η εξίσωση f ( ) a, a,

Διαβάστε περισσότερα