v a v av a, τότε να αποδείξετε ότι ν <4.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "v a v av a, τότε να αποδείξετε ότι ν <4."

Transcript

1 ΘΕΜΑ ο ΑΣΚΗΣΕΙΣ-ΘΕΜΑΤΑ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ Θεωρούμε τους μιγαδικούς αριθμούς για τους οποίους ισχύει η σχέση: Α. Να αποδείξετε ότι ο γεωμετρικός τόπος των εικόνων των μιγαδικών είναι ο κύκλος με Κ(,0) και ακτίνα ρ=. Β. Αν οι μιγαδικοί αριθμοί, που ανήκουν στον παραπάνω κύκλο είναι ρίζες της εξίσωσης w w 0, w,, και Im( ) Im( ), τότε να αποδείξετε ότι β=-4 και γ=5. Γ. Θεωρούμε τους μιγαδικούς αριθμούς α ο, α, α οι οποίοι ανήκουν στο γεωμετρικό τόπο του Α ερωτήματος. Αν ο μιγαδικός αριθμός ν ικανοποιεί τη σχέση: v a v av a, τότε να αποδείξετε ότι ν < ΘΕΜΑ ο Θεωρούμε τους μιγαδικούς αριθμούς και w για τους οποίους ισχύουν οι σχέσεις: i 3 w i Α. Να βρείτε το γεωμετρικό τόπο των εικόνων των μιγαδικών. Ποιος είναι ο γεωμετρικός τόπος των μιγαδικών ; Β. Να βρείτε τη μέγιστη τιμή του, καθώς και τις τιμές του για τις οποίες επιτυγχάνεται. Γ. Αν για τους μιγαδικούς των προηγούμενων ερωτημάτων ισχύει = και Im()>0, τότε να υπολογίσετε την τιμή του 03 Δ. Να βρείτε το γεωμετρικό τόπο των εικόνων των μιγαδικών w και να αποδείξετε ότι η απόσταση των εικόνων των και w είναι ίση με την απόσταση της εικόνας του από το σημείο Α(0,). ΘΕΜΑ 3 ο Θεωρούμε τους μιγαδικούς αριθμούς και w για τους οποίους ισχύουν οι σχέσεις: 6 8i i 6 3i w Α. Να αποδείξετε ότι 3i Β. Να βρείτε το i w Γ. Να αποδείξετε ότι w 0 kw v Δ. Θεωρούμε το μιγαδικό αριθμό : u, k. Να αποδείξετε ότι u, v. w k ΘΕΜΑ 4 ο Θεωρούμε τους μιγαδικούς αριθμούς και w για τους οποίους ισχύουν οι σχέσεις: w, w w 3 Α. Να δείξετε ότι +w = B. Να δείξετε ότι οι εικόνες των και w κινούνται σε κύκλους με κέντρο το Ο και να βρείτε τις ακτίνες των κύκλων.

2 Γ. Να βρείτε την απόσταση των εικόνων των μιγαδικών και w. Δ. Να δείξετε ότι οι εικόνες των, w και το Ο είναι συνευθειακά σημεία. ΘΕΜΑ 5 ο Θεωρούμε τους μιγαδικούς για τους οποίους ισχύει : i i i Α. Να βρείτε το γεωμετρικό τόπο των εικόνων του. Β. Να βρείτε τον αριθμό: ( 4 3i) 5 Γ. Να βρείτε τη μέγιστη και την ελάχιστη τιμή του. Δ. Θεωρούμε ένα μιγαδικό αριθμό 0 για τον οποίο ισχύει η αρχική σχέση και έστω w, w οι ρίζες της εξίσωσης: w 5 w i) Να δείξετε ότι τα w, w δεν είναι πραγματικοί ii) Να βρείτε τα μέτρα των w, w. w 3i iii) Να αποδείξετε ότι ο αριθμός u, είναι φανταστικός. w 3i ΘΕΜΑ 6 ο Έστω οι μιγαδικοί αριθμοί για τους οποίους ισχύει: Α. Να βρεθεί ο γεωμετρικός τόπος των εικόνων των μιγαδικών. Re Im Β. Μεταξύ των μιγαδικών που ικανοποιούν την αρχική σχέση, να βρείτε εκείνον με το μεγαλύτερο μέτρο. Γ. Αν ο μιγαδικός του προηγούμενου ερωτήματος, να δείξετε ότι: Δ. Να βρείτε τη μέγιστη τιμή του -w όπου οι μιγαδικοί και w ικανοποιούν την αρχική σχέση. Ε. Αν η γραμμή που προκύπτει σαν γεωμετρικός τόπος από την αρχική σχέση, τέμνει τους άξονες σε 4 3 σημεία που είναι εικόνες των μιγαδικών 3 και 4, να αποδείξετε ότι ο u, είναι φανταστικός αριθμός. ΘΕΜΑ 7 ο 04 i 3 4 Έστω οι μιγαδικοί αριθμοί, w, g για τους οποίους ισχύει: w wg g και οι εικόνες τους δεν συμπίπτουν. Να δείξετε ότι: Α. Κανένας από τους τρεις δεν είναι το 0. Β. Ισαπέχουν από το (0,0). Γ. Αν Α, Β, Γ οι εικόνες τους, το τρίγωνο ΑΒΓ είναι ισόπλευρο. ΘΕΜΑ 8 ο Έστω ο μιγαδικός αριθμός για τον οποίο ισχύει: Α ( ) 3 Να δείξετε ότι: Β. Οι εικόνες των, είναι ομοκυκλικά σημεία και ισχύει

3 Γ. Αν, τότε ο μιγαδικός w έχει την εικόνα του στον κατακόρυφο άξονα. Δ. Αν a, όπου μιγαδικός που ανήκει στο γεωμετρικό τόπο του ερωτήματος Β, να βρείτε το γεωμετρικό τόπο του μιγαδικού α. ΘΕΜΑ 9 ο Δίνεται η εξίσωση 3 0,. Α. Να αποδείξετε ότι η εξίσωση δεν έχει πραγματικές ρίζες. Β. Αν για τις εικόνες Μ και Ν των ριζών και της εξίσωσης ισχύει ότι το εμβαδόν του τριγώνου ΟΜΝ είναι 3,.. τότε: α. Να βρείτε το λ και τις ρίζες της εξίσωσης. 3 3 β. Να αποδείξετε ότι 8 γ. Να αποδείξετε ότι: ΘΕΜΑ 0 ο w w 3 i w w 5 i 8 6i Θεωρούμε τον μιγαδικό αριθμό w για τον οποίο ισχύει: Α. Να βρείτε τον αριθμό w. B. Θεωρούμε τον μιγαδικό αριθμό 50 w : ί ύ α. Να βρείτε τα Re( ) Im( ) β. Να αποδείξετε ότι: Re( ) Im( ) και να υπολογίσετε την τιμή της παράστασης: A ΘΕΜΑ ο Δίνεται μιγαδικός αριθμός για τον οποίο ισχύει: i 3καθώς και ο μιγαδικός w για τον οποίο 5 ισχύει: w i i Α. Να βρείτε το μιγαδικό αριθμό u, όπου u και να δείξετε ότι: u Β. Να βρείτε το γεωμετρικό τόπο των εικόνων του w. Γ. Να αποδείξετε ότι: 5 w 3 5 Δ. Να αποδείξετε ότι υπάρχουν ακριβώς δύο φανταστικοί αριθμοί που να ανήκουν στο γεωμετρικό τόπο του ερωτήματος Β. ΘΕΜΑ ο Δίνεται μιγαδικός αριθμός για τον οποίο ισχύει: i i Α. Να βρείτε το γεωμετρικό τόπο των εικόνων των μιγαδικών. 04

4 5 Β. Να δείξετε ότι ο αριθμός m είναι φανταστικός. 5 Γ. Να αποδείξετε ότι Im Δ. Να αποδείξετε ότι: i i 4 w Ε. Για οποιονδήποτε μιγαδικό w, να βρείτε το μέτρο του μιγαδικού u w ΘΕΜΑ 3 ο 3 i Δίνεται η συνάρτηση f ( ), i. i Α. Να αποδείξετε ότι: f ( ) i 04 Β. Αν η εξίσωση: f ( ) ( a i ) i, a,, έχει ρίζα τον αριθμό ( 3 4i ) να βρείτε τους α και β. i Γ. Αν ο αριθμός w είναι πραγματικός, τότε: i α. Να βρείτε το β. Να αποδείξετε ότι οι εικόνες του f() δεν είναι εξωτερικά σημεία του κύκλου με κέντρο το Ο και ακτίνα 3. γ. Να βρείτε τον αριθμό: ΘΕΜΑ 4 ο f ( i ) f ( i ) Θεωρούμε τους μιγαδικούς, w, u για τους οποίους ισχύουν οι παρακάτω σχέσεις: 05 i 0 I, i wi i w i ώ ό : 03 i u 3 u 8. Α. Να αποδείξετε ότι: = w = u = Β. Να αποδείξετε ότι: iw 5 iw 5 5 Γ. Να αποδείξετε ότι οι εικόνες των, w, u Δ. Να αποδείξετε ότι: ΘΕΜΑ 5 ο Re Re 0 w u w u i Δίνεται η συνάρτηση με τύπο: f ( ), f( i ) Α. Να βρείτε τον αριθμό 04 Β. Έστω ότι f ( )I. Τότε: w u uw είναι ομοκυκλικά σημεία. w u α) Να βρείτε το γεωμετρικό τόπο των εικόνων του.

5 β) Να βρείτε τη μέγιστη και την ελάχιστη τιμή του. γ) Να αποδείξετε ότι ο αριθμός w i,. ΘΕΜΑ 6 ο Θεωρούμε τους μιγαδικούς για τους οποίους ισχύει : 3i i Α. Να βρείτε το γεωμετρικό τόπο των εικόνων των μιγαδικών. είναι πραγματικός με τιμές στο διάστημα i Β. Να αποδείξετε ότι υπάρχουν δύο ακριβώς τέτοιοι μιγαδικοί αριθμοί των οποίων οι εικόνες απέχουν 0 από το σημείο Α(0,-) και να τους βρείτε. Γ. Έστω και ( όπου Im >0) οι αριθμοί που βρήκατε στο προηγούμενο ερώτημα. Αν είναι w, να αποδείξετε ότι το τρίγωνο με κορυφές τις εικόνες των ισοσκελές i ΘΕΜΑ 7 ο Δίνονται οι μιγαδικοί i 3 4 i. Α. Να βρείτε το πραγματικό και το φανταστικό μέρος του μιγαδικού. 3 w, w, w είναι ορθογώνιο και Β. Αν μία ρίζα της εξίσωσης x x 0,,, είναι ο, να βρείτε τις τιμές των β και γ. Γ. Θεωρούμε τους μιγαδικούς για τους οποίους ισχύει α) Να βρείτε το γεωμετρικό τόπο των εικόνων του μιγαδικού. β) Να αποδείξετε ότι η εικόνα του i, ανήκει στον παραπάνω γεωμετρικό τόπο. i 4 7i w 5i γ) Αν για το μιγαδικό αριθμό w ισχύει ότι: w, να αποδείξετε ότι ο αριθμός u w 5i είναι φανταστικός. ΘΕΜΑ 8 ο Δίνονται οι μιγαδικοί αριθμοί 0 και κάθετες. w. Οι διανυσματικές ακτίνες των μιγαδικών και w είναι Α. Να αποδείξετε ότι οι εικόνες του κινούνται σε δύο ευθείες κάθετες μεταξύ τους. 4 Β. Να αποδείξετε ότι: 0. Γ. Έστω ότι επιπλέον ισχύει α) Να δείξετε ότι =..

6 i 5 β) Να δείξετε ότι Im i 5 0 γ) Να βρείτε το μέτρο του μιγαδικού u για τον οποίο ισχύει: 3 4 u i ΘΕΜΑ 9 ο Δίνονται μιγαδικοί αριθμοί και w και πραγματικός αριθμός ρ, 0,, για τους οποίους ισχύουν i i w i wi. Α. Να αποδείξετε ότι ο γεωμετρικός τόπος των εικόνων του είναι κύκλος C ακτίνας ρ. Β. Να αποδείξετε ότι οι εικόνες του w ανήκουν σε κύκλο C ο οποίος είναι ομόκεντρος του C, του οποίου να βρείτε την ακτίνα ως συνάρτηση του ρ. Γ. Να αποδείξετε ότι w p i w 4 wi w Δ. Να αποδείξετε ότι ο αριθμός u I w Ε. Έστω Α, Β οι εικόνες δύο μιγαδικών που ανήκουν στον κύκλο C και Μ η εικόνα ενός μιγαδικού που ανήκει στον κύκλο C. Να αποδείξετε ότι: 3 MA MB 3 ΘΕΜΑ 0 ο Θεωρούμε το μιγαδικό αριθμό w για τον οποίο ισχύει: w 4w 8i, καθώς και τους μιγαδικούς αριθμούς : w i,. Α. Να βρείτε το μιγαδικό αριθμό w. Β. Να βρείτε το γεωμετρικό τόπο των εικόνων του. Γ. Να βρείτε το μιγαδικό ο οποίος απέχει την ελάχιστη απόσταση από την αρχή των αξόνων, καθώς και το μιγαδικό αυτό. Δ. Αν οι μιγαδικοί αριθμοί και ανήκουν στον παραπάνω γεωμετρικό τόπο και έχουν ίσα μέτρα, να αποδείξετε ότι έχουν σταθερό άθροισμα. ΘΕΜΑ ο 3 Δίνεται η εξίσωση 0, και ονομάζουμε o,, τις ρίζες της, όπου. Α. Να βρείτε τις ρίζες της εξίσωσης Β. Να αποδείξετε ότι: o Γ. Να αποδείξετε ότι οι εικόνες των ριζών της εξίσωσης είναι κορυφές ορθογωνίου και ισοσκελούς τριγώνου. Δ. Να αποδείξετε ότι: ΘΕΜΑ ο o Δίνονται οι μη μηδενικοί μιγαδικοί αριθμοί και w για τους οποίους ισχύει η σχέση : o

7 w w 0 και Α, Β οι εικόνες των μιγαδικών αριθμών και w αντίστοιχα. Α. Να αποδείξετε ότι οι εικόνες των μιγαδικών και w ισαπέχουν από το Ο(0,0). Β. Να αποδείξετε ότι το τρίγωνο ΑΟΒ είναι ορθογώνιο και ισοσκελές. Γ. Αν οι εικόνες των μιγαδικών κινούνται σε κύκλο με κέντρο (,-) και ακτίνα, να βρείτε το γεωμετρικό τόπο των εικόνων των μιγαδικών w. ΘΕΜΑ 3 ο Έστω ότι για τους μιγαδικούς ισχύει η σχέση: 3 4i 5, ενώ για τους μιγαδικούς αριθμούς w ισχύει ότι: w 3 w 3 5 Α. Να αποδείξετε ότι ο γεωμετρικός τόπος των εικόνων των μιγαδικών είναι ευθύγραμμο τμήμα, το οποίο και να βρείτε. Β. Να βρείτε ποιος από τους μιγαδικούς του προηγούμενου ερωτήματος, απέχει ελάχιστη απόσταση από το (0,0). Γ. Να βρείτε το γεωμετρικό τόπο των μιγαδικών w και να δείξετε ότι υπάρχει ένα μόνο κοινό σημείο με το γεωμετρικό τόπο του ερωτήματος Α. Δ. Αν w και w μιγαδικοί των οποίων οι εικόνες ανήκουν στο γεωμετρικό τόπο του ερωτήματος Γ, να βρείτε τη μέγιστη και την ελάχιστη τιμή του w w, καθώς και τη μέγιστη τιμή του w w. ΘΕΜΑ 4 ο Θεωρούμε τους μιγαδικούς αριθμούς, α και β για τους οποίους ισχύουν οι σχέσεις:,, i i i. Να αποδείξετε ότι: Α. Im( ) Β. a 4 a Γ. Να βρείτε το γεωμετρικό τόπο των εικόνων των μιγαδικών, αν 3. ΘΕΜΑ 5 ο Δίνονται οι μιγαδικοί, w, g ώστε : w w, g w. Α. Να αποδείξετε ότι g g Β. Να δείξετε ότι: w 0 Γ. Να αποδείξετε ότι: w g

ΕΠΑΝΑΛΗΨΗ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ

ΕΠΑΝΑΛΗΨΗ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ ΕΠΑΝΑΛΗΨΗ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ. Δίνεται η συνάρτηση f (). Να βρείτε για ποιες τιμές του δεν ορίζεται η συνάρτηση f. Να βρείτε τον αριθμό f ( ). Να δείξετε ότι f () I. Δίνεται η εξίσωση με η οποία έχει ρίζες

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014-2015 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014-2015 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 04-05 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ Θεωρούμε τους μιγαδικούς C για τους οποίους ισχύει: - = + Im() και τη συνάρτηση f : w f ( w), όπου w C, w - και f (w) = w ) Να

Διαβάστε περισσότερα

Θέματα από τους μιγαδικούς

Θέματα από τους μιγαδικούς Σελίδα από 8 Θέματα από τους μιγαδικούς Θέμα ο Δίνονται τα σύνολα : A C/ και α) Να εκφράσετε γεωμετρικά το σύνολο Α BwC/w,A β) Να βρείτε τη μέγιστη τιμή της παράστασης K, με, A γ) Αν, Aμε,να βρείτε την

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2ο Μιγαδικοί Αριθμοί (Νο 1) ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΚΕΦΑΛΑΙΟ 2ο Μιγαδικοί Αριθμοί (Νο 1) ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ ΚΕΦΑΛΑΙΟ ο Μιγαδικοί Αριθμοί (Νο ) ΛΥΚΕΙΟ Α Λ Γ Ε Β Ρ Α Ο Κ Ε Φ Α Λ Α Ι Ο ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Θετική Τεχνολογική Κατεύθυνση ασκήσεις (ΝΑ ΛΥΘΟΥΝ ΜΕΤΑ ΑΠΟ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΤΟΥ ΒΙΒΛΙΟΥ) ΕΝΝΟΙΑ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΜΙΓΑ ΙΚΟΙ. iz+α. (z 1)(z + 1) f ( ) = f (z). (1993-2ο- 1) (1994-2ο) (1999-2ο) ΑΘΑΝΑΣΙΑΔΗΣ ΚΩΣΤΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΜΙΓΑ ΙΚΟΙ. iz+α. (z 1)(z + 1) f ( ) = f (z). (1993-2ο- 1) (1994-2ο) (1999-2ο) ΑΘΑΝΑΣΙΑΔΗΣ ΚΩΣΤΑΣ ΜΙΓΑ ΙΚΟΙ.. Αν +α w =, α R και α να αποδειχθεί ότι: +α α) Ο w είναι φανταστικός αριθµός, αν και µόνο αν, ο είναι φανταστικός αριθµός. β) Ισχύει: w =, αν και µόνο αν, ο είναι πραγµατικός αριθµός. (99-ο)..

Διαβάστε περισσότερα

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ < Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [008-09 < Mathematica.gr], τον οποίο κι ευχαριστώ ιδιαίτερα για το

Διαβάστε περισσότερα

Θέματα εξετάσεων στους μιγαδικούς

Θέματα εξετάσεων στους μιγαδικούς Θέμα ο α Να βρείτε τον γεωμετρικό τόπο των εικόνων των μιγαδικών για τους οποίους ισχύει: 6 4 β Να βρείτε τον γεωμετρικό τόπο των εικόνων των μιγαδικών για τους οποίους ισχύει: i (Ιούλιος 00) Θέμα ο i

Διαβάστε περισσότερα

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( )

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( ) ΑΣΚΗΣΗ ίνονται οι µιγαδικοί αριθµοί z + 0i για τους οποίους ισχύει: z 4 =. z i. Να δείξετε ότι z =. ii. Αν επιπλέον ισχύει Re( z) Im( z) iii. = να υπολογίσετε τους παραπάνω µιγαδικούς αριθµούς. Για τους

Διαβάστε περισσότερα

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης - - Γ Λυκείου ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Ορισμός Έστω ο μιγαδικός αριθμός x yi και M(x, y) η εικόνα του στο μιγαδικό επίπεδο Ορίζουμε ως μέτρο του την απόσταση

Διαβάστε περισσότερα

Κεφάλαιο 2ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ

Κεφάλαιο 2ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις ανάπτυξης. ** Να βρείτε τους πραγµατικούς αριθµούς x και y ώστε να ισχύουν οι ισότητες: α) x - + y = - + - y β) y + = 3 - ( + ) x γ) 4y - 3y - x = - 5x + 9 δ) (x

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ

ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ . ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 4 α. Να βρείτε τον γεωμετρικό τόπο των εικόνων του. β. Αν Re ( ) 0, τότε: 4 i. Να αποδείξετε ότι ο μιγαδικός w = + είναι πραγματικός και ισχύει 4 w 4. ii. Να βρείτε τον

Διαβάστε περισσότερα

Ασκήσεις. x ' x οι ευθείες πάνω στις οποίες κινούνται οι εικόνες Μ(z).

Ασκήσεις. x ' x οι ευθείες πάνω στις οποίες κινούνται οι εικόνες Μ(z). εθοδολογία Παραδείγματα σκήσεις. ν α,β,γ,δ και ο OA, w a βi γ δi OB, των a βi, γ δi. α λυθεί η ανίσωση 0 πιμέλεια.: άτσιος Δημήτρης είναι φανταστικός, να δειχθεί ότι οι διανυσματικές ακτίνες αντίστοιχα,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β. ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ Γ. Π. Β. ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.) (Μαθηματικός) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ

Διαβάστε περισσότερα

Ερωτήσεις σωστού-λάθους

Ερωτήσεις σωστού-λάθους ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Α ΜΕΡΟΣ (ΑΛΓΕΒΡΑ) ΚΕΦ ο : Μιγαδικοί Αριθμοί Φυλλάδιο ο Κεφ..: Η Έννοια του Μιγαδικού Αριθμού Κεφ..: Πράξεις στο Σύνολο C των Mιγαδικών Κεφ..: Πράξεις στο Σύνολο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ i ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΠΤΥΧΙΟΥΧΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΘΗΝΩΝ (ΕΚΠΑ)

Διαβάστε περισσότερα

Κεφάλαιο 1ο. Μιγαδικοί Αριθμοί

Κεφάλαιο 1ο. Μιγαδικοί Αριθμοί Κεφάλαιο 1ο. Μιγαδικοί Αριθμοί 1η. Άσκηση Να αποδείξετε ότι Α) όπου Β) Αν με τότε Γ) όπου ν Δ) Αν με τότε Ε) αν για τους μιγαδικούς z, w ισχύει τότε 2η. Άσκηση Α) Εφαρμογή 1 σελίδα 93. Β) Να βρείτε τους

Διαβάστε περισσότερα

Θωμάς Ραϊκόφτσαλης 01

Θωμάς Ραϊκόφτσαλης 01 0 Α. ΕΙΑΓΩΓΗ ΘΕΜΑ Α Γ_Μ_Μ_ΑΘΡ_ΕΙ_Β_ΕΚ_9 Έστω ο μιγαδικός αριθμός i,,. Τι καλούμε:. Πραγματικό μέρος του.. Φανταστικό μέρος του.. υζυγή του. 4. Εικόνα του μιγαδικού στο μιγαδικό επίπεδο. 5. Διανυσματική

Διαβάστε περισσότερα

Θέµατα Μιγαδικών Αριθµών από τις Πανελλαδικές Εξετάσεις

Θέµατα Μιγαδικών Αριθµών από τις Πανελλαδικές Εξετάσεις Θέµατα Μιγαδικών Αριθµών από τις Πανελλαδικές Εξετάσεις γιατί συχνά, οι ιδέες επαναλαµβάνονται ΕΠΙΜΕΛΕΙΑ: ΠΑΠΠΑΣ ΑΘΑΝΑΣΙΟΣ Ο ΓΕΝ ΛΥΚΕΙΟ ΥΜΗΤΤΟΥ Σελίδα από 8 Επιµέλεια: Παππάς Αθανάσιος/o ΓΕΛ ΥΜΗΤΤΟΥ 00

Διαβάστε περισσότερα

qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj

qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj qwφιertyuiopasdfghjklxερυυξnmηq σwωψerβνtyuςiopasdρfghjklxcvbn mqwertyuiopasdfghjklxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ klxcvλοπbnαmqwertyuiopasdfghjkl

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΜΑ Α Άσκηση, μιγαδικοί αριθμοί να αποδείξετε ότι: Αν = Έχουμε: = ( ) ( ) ( ) ( ) = = =. Το τελευταίο ισχύει, άρα ισχύει και η ισοδύναμη αρχική σχέση.

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ

ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ ν ν æ α + i ö æ i - α ö Να βρείτε όλες τις τιμές της παράστασης Α = ç, νî Ν αi + ç αi è - ø è + ø και α Î R Να αναλύσετε το μιγαδικό = 5 + i σε άθροισμα δύο μιγαδικών,, των οποίων οι εικόνες βρίσκονται

Διαβάστε περισσότερα

ΘΕΜΑ (επαναληπτικές) α. Δίνονται Να περιγράψετε οι μιγαδικοί γεωμετρικά αριθμοί το, σύνολο, (Σ) των εικόνων των μιγαδικών αριθμών 3 με 3 3. πο

ΘΕΜΑ (επαναληπτικές) α. Δίνονται Να περιγράψετε οι μιγαδικοί γεωμετρικά αριθμοί το, σύνολο, (Σ) των εικόνων των μιγαδικών αριθμών 3 με 3 3. πο ΘΕΜΑΤΑ ΜΙΓΑΔΙΚΩΝ ΣΤΙΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (000-03) ΘΕΜΑ 000 α. Αν, είναι οι ρίζες της εξίσωσης + + = 0, να αποδείξετε ότι 0-0 =0. β. Αν είναι ρίζα της εξίσωσης του α. ερωτήματος, με φανταστικό μέρος

Διαβάστε περισσότερα

ΣΥΝΘΕΤΑ ΘΕΜΑΤΑ ΜΙΓΑΔΙΚΟΙ ΣΥΝΑΡΤΗΣΕΙΣ

ΣΥΝΘΕΤΑ ΘΕΜΑΤΑ ΜΙΓΑΔΙΚΟΙ ΣΥΝΑΡΤΗΣΕΙΣ ΣΥΝΘΕΤΑ ΘΕΜΑΤΑ ΜΙΓΑΔΙΚΟΙ ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΜΑ Δίνεται η εξίσωση w w + i 0 () και το πολυώνυμο 3 P ( ) + a + β -,, R α) Να λύσετε την εξίσωση () β)αν ο αριθμός w που βρήκατε στο ερώτημα α) είναι ρίζα της εξίσωσης

Διαβάστε περισσότερα

5, 5 = 1. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΜΙΑ ΣΥΛΛΟΓΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ 30 ΑΣΚΗΣΕΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΜΟΝΟ ΜΙΓΑΔΙΚΟΙ + 10 ΑΣΚΗΣΕΩΝ ΜΙΓΑΔΙΚΟΙ ΜΕ ΑΝΑΛΥΣΗ

5, 5 = 1. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΜΙΑ ΣΥΛΛΟΓΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ 30 ΑΣΚΗΣΕΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΜΟΝΟ ΜΙΓΑΔΙΚΟΙ + 10 ΑΣΚΗΣΕΩΝ ΜΙΓΑΔΙΚΟΙ ΜΕ ΑΝΑΛΥΣΗ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΙΑ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ΜΟΝΟ ΜΙΓΑΔΙΚΟΙ + ΑΣΚΗΣΕΩΝ ΜΙΓΑΔΙΚΟΙ ΜΕ ΑΝΑΛΥΣΗ 4 α Να βρείτε τον γεωμετρικό τόπο των εικόνων του Έστω οι μιγαδικοί για τους οποίους

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης 999-000) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύπου «Σωστό -

Διαβάστε περισσότερα

Ισότητα μιγαδικών αριθμών πράξεις στο C Έστω z 1 =α+βi και z 2 =γ+δi δύο μιγαδικοί (α,β,γ,δ R) z 1 =z 2 α=γ και β=δ z 1 =0 α=0 και β=0

Ισότητα μιγαδικών αριθμών πράξεις στο C Έστω z 1 =α+βi και z 2 =γ+δi δύο μιγαδικοί (α,β,γ,δ R) z 1 =z 2 α=γ και β=δ z 1 =0 α=0 και β=0 ΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ C Το σύνολο των μιγαδικών αριθμών C, αποτελείται από αριθμούς της μορφής =α+βi,όπου α,βr Το στοιχείο i είναι τέτοιο ώστε : i = - Το σύνολο C είναι υπερσύνολο του R Οι πράξεις

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί

Διαβάστε περισσότερα

Ασκήσεις σχ. Βιβλίου σελίδας Α ΟΜΑ ΑΣ 1.

Ασκήσεις σχ. Βιβλίου σελίδας Α ΟΜΑ ΑΣ 1. .. Ασκήσεις σχ. Βιβλίου σελίδας 94 97 Α ΟΜΑ ΑΣ. Να βρείτε τις τιµές του λ R, ώστε ο z (λ )( ) να είναι : πραγµατικός αριθµός φανταστικός αριθµός z λ λ 6 (λ ) (6 λ) z πραγµατικός 6 λ 0 λ 6 z φανταστικός

Διαβάστε περισσότερα

20 επαναληπτικά θέματα

20 επαναληπτικά θέματα 0 επαναληπτικά θέματα για τα μαθηματικά κατεύθυνσης Γ λυκείου Γράφουν οι μαθηματικοί: Βέρρας Οδυσσέας Ζαχαράκης Δημήτρης Καρύμπαλης Νώντας Κλίτσας Γιώργος Κοτσώνης Γιώργος Μπούζας Δημήτρης Πετρόπουλος

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ

ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ 1 ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ Επιμέλεια Αιμίλιος Βλάστος Μαθηματικός ΘΕΜΑ 1ο : Ε.Μ.Ε 010 Θεωρούμε τους μιγαδικούς αριθμούς z(t) Να αποδείξετε ότι: α) β) Ο γεωμετρικός τόπος των εικόνων των μιγαδικών αριθμών

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΔΙΑΝΥΣΜΑΤΑ Επιμέλεια: Άλκης Τζελέπης ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΕΝΝΟΙΑ - ΠΡΑΞΕΙΣ. Αν τα διανύσματα,, σχηματίζουν τρίγωνο, να αποδείξετε ότι το ίδιο συμβαίνει

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Α) Έστω η συνάρτηση f, η οποία είναι συνεχής στο διάστημα [α,β] με f(α) f(β). Να αποδείξετε ότι για κάθε αριθμό η μεταξύ των f(α) και

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ÏÅÖÅ. x και f ( x ) >, τότε f ( ) 0

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ÏÅÖÅ. x και f ( x ) >, τότε f ( ) 0 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε. 3 ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Θέµα ο Α. α) Έστω η συνάρτηση ( ) στο R και ισχύει: f '( ) ηµ f = συν. Να αποδείξετε ότι η f είναι παραγωγίσιµη

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 Ε_3.Μλ3ΘΤ(ε) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου Η ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου Η ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Η ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Το Σύνολο C των Μιγαδικών Αριθμών Είναι γνωστό ότι η εξίσωση x δεν έχει λύση στο σύνολο IR των πραγματικών αριθμών, αφού το τετράγωνο κάθε πραγματικού αριθμού είναι μη αρνητικός

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 8 ΘΕΜΑ ο Έστω, α,β, α β και ν α + + i = βi () β + αi α) Να αποδείξετε ότι ο δεν είναι πραγµατικός αριθµός. β) Να αποδείξετε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ. x + 5= 6 (1) και. x = 1, οπότε η (2) γίνεται 1 5x + 1= 7 x = 1 ΘΕΜΑ Β. Άσκηση 1. Να βρείτε τον αριθμό x R όταν. Λύση.

ΑΣΚΗΣΕΙΣ. x + 5= 6 (1) και. x = 1, οπότε η (2) γίνεται 1 5x + 1= 7 x = 1 ΘΕΜΑ Β. Άσκηση 1. Να βρείτε τον αριθμό x R όταν. Λύση. ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i. ΙΔΙΟΤΗΤΕΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης 999-000) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύπου «Σωστό -

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i ΙΔΙΟΤΗΤΕΣ

Διαβάστε περισσότερα

2.3. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. Να βρείτε τα µέτρα των µιγαδικών : 1 + i, 1 i, 3 + 4i, 3 4i, 5i, 4, 1 i, 1 i.

2.3. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. Να βρείτε τα µέτρα των µιγαδικών : 1 + i, 1 i, 3 + 4i, 3 4i, 5i, 4, 1 i, 1 i. .3 Ασκήσεις σχολικού βιβλίου σελίδας 00-0 A Οµάδας. Να βρείτε τα µέτρα των µιγαδικών : +,, 3 +, 3, 5,, ( ) ( + ), ( ) ( + ), και +, 3+ 3 + + + ( ) 3+ 3 3 + 5 5 3 + ( ) 5 5 5 5 5. 5 + + (οι +, είναι συζυγείς,

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. Β κύκλος

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. Β κύκλος ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Β κύκλος ) Δίνεται η παραγωγίσιμη συνάρτηση f για την οποία ισχύει : [f()] 8 +α[f()] = -e f(), α>,για κάθε. α) Να δείξετε ότι f()=c, για κάθε,όπου c αρνητική σταθερά. β) Να βρείτε τις

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ 3: ΓΕΩΜΕΤΡΙΚΗ ΕΡΜΗΝΕΙΑ ΤΟΥ ΜΕΤΡΟΥ - ΤΡΙΓΩΝΙΚΗ ΑΝΙΣΟΤΗΤΑ

ΚΕΦΑΛΑΙΟ 1ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ 3: ΓΕΩΜΕΤΡΙΚΗ ΕΡΜΗΝΕΙΑ ΤΟΥ ΜΕΤΡΟΥ - ΤΡΙΓΩΝΙΚΗ ΑΝΙΣΟΤΗΤΑ ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΓΕΩΜΕΤΡΙΚΗ ΕΡΜΗΝΕΙΑ ΤΟΥ ΜΕΤΡΟΥ - ΤΡΙΓΩΝΙΚΗ ΑΝΙΣΟΤΗΤΑ [Κεφ..: Μέτρο Μιγαδικού Αριθμού του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ Άσκηση. ΘΕΜΑ Β Δίνονται οι μιγαδικοί z,w με

Διαβάστε περισσότερα

Θέματα από τους μιγαδικούς

Θέματα από τους μιγαδικούς 6/0/0 Θέματα από τους μιγαδικούς Μπάμπης Στεργίου Σεπτέμβριος 0 Θέμα ο ***Οι λύσεις έγιναν από τον Αλέξη Μιχαλακίδη Δίνονται τα σύνολα : A C/ και α) Να εκφράσετε γεωμετρικά το σύνολο Α BwC/w,A β) Να βρείτε

Διαβάστε περισσότερα

AΠΑΝΤΗΣΕΙΣ. z z 0 που είναι τριώνυμο με διακρίνουσα. 2 Re z 4Im z R. x 2 y x y 2

AΠΑΝΤΗΣΕΙΣ. z z 0 που είναι τριώνυμο με διακρίνουσα. 2 Re z 4Im z R. x 2 y x y 2 AΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α Βλ σχολ βιβλίο σελ 5 Α Βλ σχολ βιβλίο σελ Α Σ Σ Σ 4 Σ 5 - Λ ΘΕΜΑ Β Β Η εξίσωση () z ισοδυναμεί με την z z που είναι τριώνυμο με διακρίνουσα 4 διότι 4 Άρα οι ρίζες είναι συζυγείς μιγαδικές

Διαβάστε περισσότερα

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 4. [ ] z, w. 3 f x, x 1,3 όπου 3 μιγαδικοί των οποίων οι εικόνες

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 4. [ ] z, w. 3 f x, x 1,3 όπου 3 μιγαδικοί των οποίων οι εικόνες ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 4 1. i) Να δείξετε ότι υπάρχει μοναδικό 3 3 0 1, ώστε: 3 e, 1 ln 0 + 0 = 0 ii) Δίνεται ο μιγαδικός 3 z = ln + i, > 0 a) Να βρείτε την ελάχιστη απόσταση k της εικόνας του z από την αρχή

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΚΟΙ ΤΟΠΟΙ ΚΑΙ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ

ΓΕΩΜΕΤΡΙΚΟΙ ΤΟΠΟΙ ΚΑΙ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΓΕΩΜΕΤΡΙΚΙ ΤΠΙ ΚΑΙ ΜΙΓΑΔΙΚΙ ΑΡΙΘΜΙ ΒΑΣΙΚΕΣ ΕΝΝΙΕΣ ΣΥΝΤΜΗ ΕΠΑΝΑΛΗΨΗ ΑΠΣΤΑΣΗ ΣΗΜΕΙΥ Α( 1, y 1 ΑΠ ΤΗΝ ΑΡΧΗ (0, 0 των αξόνων: (A = + y 1 1 Αν έχουμε τον μιγαδικό αριθμό 1 = 1 + i y 1 με εικόνα στο μιγαδικό

Διαβάστε περισσότερα

20 επαναληπτικά θέματα

20 επαναληπτικά θέματα 0 επαναληπτικά θέματα για τα μαθηματικά κατεύθυνσης Γ λυκείου (τεύχος σχολικό έτος 03-04) Γράφουν οι μαθηματικοί: Βέρρας Οδυσσέας Καρύμπαλης Νώντας Κοτσώνης Γιώργος Κώνστας Χάρης Μπούζας Δημήτρης Πετρόπουλος

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. σε µια σελίδα Α4 ανά έτος.. προσαρµοσµένα στις επιταγές του ΝΤ MΑΘΗΜΑΤΙΚΑ ΟΜΟΓΕΝΩΝ 05 ΣΕΠΤΕΜΒΡΙΟΥ

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. σε µια σελίδα Α4 ανά έτος.. προσαρµοσµένα στις επιταγές του ΝΤ MΑΘΗΜΑΤΙΚΑ ΟΜΟΓΕΝΩΝ 05 ΣΕΠΤΕΜΒΡΙΟΥ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ σε µια σελίδα Α4 ανά έτος.. προσαρµοσµένα στις επιταγές του ΝΤ (IMF: 4o µεσοπρόθεσµο.) ( WWF:.εξοικονόµηση πόρων.) MΑΘΗΜΑΤΙΚΑ ΟΜΟΓΕΝΩΝ 5 ΣΕΠΤΕΜΒΡΙΟΥ... ΜΑΘΗΜΑΤΙΚΑ ΟΜΟΓΕΝΩΝ 7 ΣΕΠΤΕΜΒΡΙΟΥ...

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΟΥΣ ΜΙΓΑ ΙΚΟΥΣ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΟΥΣ ΜΙΓΑ ΙΚΟΥΣ - - ΜΙΓΑ ΙΚΟΙ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΟΥΣ ΜΙΓΑ ΙΚΟΥΣ. Να βρεθούν οι τετραγωνικές ρίζες του µιγαδικού =3+4i. (+i και --i ). Nα αποδείξετε ότι v v+ v+ v+ 3 i + i + i + i = + + + v v+ v+ v+ 3. i i i i 3. Να

Διαβάστε περισσότερα

ΘΕΜΑΤΑΚΙΑ ΓΕΝΙΚΑ. x 0. 2 x

ΘΕΜΑΤΑΚΙΑ ΓΕΝΙΚΑ. x 0. 2 x ΘΕΜΑ A ΘΕΜΑΤΑΚΙΑ ΓΕΝΙΚΑ. Δίνεται η συνάρτηση f με τύπο: f ( ) ln,,. Να δείξετε ότι η f είναι αντιστρέψιμη και να βρείτε το πεδίο ορισμού της αντίστροφής της.. Να δικαιολογήσετε ότι η εξίσωση f ( ) a, a,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Μιγαδικοί Αριθμοί ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ ΑΡΙΘΜΟΥΣ ΑΝΘΟΥΛΑ ΣΟΦΙΑΝΟΠΟΥΛΟΥ ΓΕΩΡΓΙΟΣ ΚΑΡΙΠΙΔΗΣ Μιγαδικοί Αριθμοί ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Α. Πράξεις Συζυγής - Μέτρο Α. Να δείξετε

Διαβάστε περισσότερα

Επαναληπτικά ϑέµατα στους Μιγαδικούς Αριθµούς

Επαναληπτικά ϑέµατα στους Μιγαδικούς Αριθµούς Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου Επαναληπτικά ϑέµατα στους Μιγαδικούς Αριθµούς ιδάσκων : Αντώνης Λουτράρης Μαθηµατικός M.S.c Αύγουστος, 2012 Σελίδα 1 Ο συντοµότερος δρόµος ανάµεσα

Διαβάστε περισσότερα

ΤΡΥΦΩΝ ΠΑΥΛΟΣ Μαθηµατικά Γ Λυκείου - Κατεύθυνσης

ΤΡΥΦΩΝ ΠΑΥΛΟΣ Μαθηµατικά Γ Λυκείου - Κατεύθυνσης Η ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑ ΙΚΟΥ ΑΡΙΘΜΟΥ Οι µιγαδικοί αριθµοί και w συνδέονται µε την σέση a β w =, όπου γ α,β,γ R Όταν =0 τότε w= και όταν =-i τότε w=- i Να βρείτε τις σταθερές α,β,γ α Αν το άθροισµα και το γινόµενο

Διαβάστε περισσότερα

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση. Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση. Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Υποδειγματικά Λυμένες Ασκήσεις Άλυτες Ασκήσεις ΛΑ Να βρείτε

Διαβάστε περισσότερα

Κεφάλαιο 2ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ

Κεφάλαιο 2ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Η ισότητα στο σύνολο C των µιγαδικών αριθµών ορίζεται από την ισοδυναµία: α +βi = γ + δi α = γ και β = δ. Σ Λ. * Αν z = α + βi, α, β

Διαβάστε περισσότερα

Γ / ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Γ / ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ / ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μ Ι Γ Α Δ Ι Κ Ο Ι Α Ρ Ι Θ Μ Ο Ι ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΡΟΣ ο Ερωτήσεις του τύπου σωστό λάθος. Αν = α + βi, α, β R και = 0, τότε α = 0 και β = 0. Σ

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ Επιμέλεια: Καρράς Ιωάννης Μαθηματικός Εἰ ἄρα ὁ δίκαιος ἀργύριον δεινὸς φυλάττειν, καὶ κλέπτειν δεινός.

ΑΣΚΗΣΕΙΣ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ Επιμέλεια: Καρράς Ιωάννης Μαθηματικός Εἰ ἄρα ὁ δίκαιος ἀργύριον δεινὸς φυλάττειν, καὶ κλέπτειν δεινός. ΑΣΚΗΣΕΙΣ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ Επιμέλεια: Καρράς Ιωάννης Μαθηματικός Εἰ ἄρα ὁ δίκαιος ἀργύριον δεινὸς φυλάττειν, καὶ κλέπτειν δεινός. gxkarras@gmail.com 2 2 o ΛΥΚΕΙΟ ΓΕΡΑΚΑ- ΚΑΡΡΑΣ 1. Να αποδειχθεί ότι a +

Διαβάστε περισσότερα

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΙΓΑΔΙΚΩΝ

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΙΓΑΔΙΚΩΝ ΑΣΚΗΣΗ 1 Να αποδειχθεί ότι οι γεωμετρικές εικόνες των μιγαδικών ριζών της εξίσωσης (συν θ)z (4συνθ)z + (5 συν θ) = 0 με θ π, π κινούνται σε υπερβολή, της οποίας να ευρεθούν τα στοιχεί ΑΣΚΗΣΗ Στο μιγαδικό

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΙΣΟΤΗΤΑ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ. α+βi =γ+δi α=γ και β=δ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΙΣΟΤΗΤΑ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ. α+βi =γ+δi α=γ και β=δ Το σύνολο C των μιγαδικών αριθμών είναι ένα υπερσύνολο του R, του συνόλου των πραγματικών αριθμών, στο οποίο ισχύουν: Επεκτείνονται οι πράξεις της πρόσθεσης του πολλαπλασιασμού έτσι ώστε, να έχουν τις

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

Ον/μο: Θετ-Τεχν. ΘΕΜΑ 1 0

Ον/μο: Θετ-Τεχν. ΘΕΜΑ 1 0 ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 5 Υλη: Μιγαδικοί Γ Λυκείου Ον/μο:.. 9-0-3 Θετ-Τεχν. ΘΕΜΑ 0 Α. Να αποδείξετε ότι : «Η διανυσματική ακτίνα της διαφοράς των μιγαδικών i και i είναι η διαφορά των διανυσματικών ακτινών

Διαβάστε περισσότερα

1. ΔΙΑΒΑΖΩ ΣΗ ΘΕΩΡΙΑ 2. ΞΑΝΑΒΛΕΠΩ ΑΠΟ ΣΟ ΧΟΛΙΚΟ ΒΙΒΛΙΟ ΣΙ ΑΚΗΕΙ: 3. ρ. 4. Δυνάμεις του 1±i, α±αi, α±α 3 i, α 3 ± αi.

1. ΔΙΑΒΑΖΩ ΣΗ ΘΕΩΡΙΑ 2. ΞΑΝΑΒΛΕΠΩ ΑΠΟ ΣΟ ΧΟΛΙΚΟ ΒΙΒΛΙΟ ΣΙ ΑΚΗΕΙ: 3. ρ. 4. Δυνάμεις του 1±i, α±αi, α±α 3 i, α 3 ± αi. . ΔΙΑΒΑΖΩ ΣΗ ΘΕΩΡΙΑ Ορισμοί, Αποδείξεις, χόλια, Πλαίσια. ΞΑΝΑΒΛΕΠΩ ΑΠΟ ΣΟ ΧΟΛΙΚΟ ΒΙΒΛΙΟ ΣΙ ΑΚΗΕΙ: ελ. 96: Α, Α, Α4, Β3, Β4, Β5, Β6, Β7, Β8 ελ.97: Β9 ελ.0: Α3, Α7, Α8, Β, Β, Β3 ελ.0: Β4, Β5, Β6, Β7, Β8,

Διαβάστε περισσότερα

α) () z i z iz i Αν z i τότε i( yi) i + + y y y ( y) i i y + 4y + 4, y y 4. Άρα z i. 4 β) ( z) z i z z i z ( i) z, οπότε ( z ) i z z Άρα z z γ) Αν z τ

α) () z i z iz i Αν z i τότε i( yi) i + + y y y ( y) i i y + 4y + 4, y y 4. Άρα z i. 4 β) ( z) z i z z i z ( i) z, οπότε ( z ) i z z Άρα z z γ) Αν z τ Λυμένα θέματα στους Μιγαδικούς αριθμούς. Δίνονται οι μιγαδικοί z, w και u z w. α) Να αποδείξετε ότι ο μιγαδικός z είναι φανταστικός αν και μόνο αν ισχύει z z. β) Αν για τους z και w ισχύει: z + w z w,

Διαβάστε περισσότερα

2(z 2) οι εικόνες των z 1

2(z 2) οι εικόνες των z 1 ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ 3: ΓΕΩΜΕΤΡΙΚΗ ΕΡΜΗΝΕΙΑ ΤΟΥ ΜΕΤΡΟΥ - ΤΡΙΓΩΝΙΚΗ ΑΝΙΣΟΤΗΤΑ [Κεφ 3: Μέτρο Μιγαδικού Αριθμού του σχολικού βιβλίου] ΣΗΜΕΙΩΣΕΙΣ Γεωμετρική ερμηνεία του μέτρου Θεωρούμε το

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 0 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 0 ΘΕΜΑ ο : Έστω, C με Re( ) και Re( ) Αν f() ( )( )( )( ) και

Διαβάστε περισσότερα

(2+ i)z (3 i)u= 5i (1+2i)z+(1+3i)u=7+8i

(2+ i)z (3 i)u= 5i (1+2i)z+(1+3i)u=7+8i Να βρεθούν οι τιµές των παραστάσεων: 00 00 005 006 ( ( ( ( ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ + + + + (Απ:0 5ν+ 5ν+ 5ν+ 5ν+ + + + (Απ:0 Να γίνουν οι πράξεις: + (Απ:0 5 ( 5 ( ( + + + + +

Διαβάστε περισσότερα

qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj

qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj qwφιeryuiopasdfghjklερυυξnmηq σwωψerβνyuςiopasdρfghjklcvbn mqweryuiopasdfghjklcvbnφγιmλι ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ qπςπζαwωeτrνyuτioρνμpκaλsdfghςj Τάξη : Γ Λυκείου klcvλοπbnαmqweryuiopasdfghjkl

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. Η έννοια του μιγαδικού Το σύνολο των μιγαδικών. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

ΣΗΜΕΙΩΣΕΙΣ. Η έννοια του μιγαδικού Το σύνολο των μιγαδικών. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i ΙΔΙΟΤΗΤΕΣ

Διαβάστε περισσότερα

5o Επαναληπτικό Διαγώνισμα 2015 Διάρκεια: 3 ώρες

5o Επαναληπτικό Διαγώνισμα 2015 Διάρκεια: 3 ώρες ΘΕΜΑ A 5o Επαναληπτικό Διαγώνισμα 5 Διάρκεια: 3 ώρες A Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του,στο οποίο όμως η f είναι συνεχής Να αποδείξετε ότι Αν f ()

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 0 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 0 ΘΕΜΑ ο : Έστω, C με Re( ) και Re( ) Αν f() ( )( )( )( ) και

Διαβάστε περισσότερα

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α. Έστω µια συνάρτηση f παραγωγίσιµη σ ένα διάστηµα (α, β), µε εξαίρεση ίσως ένα σηµείο του, στο

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008 -6 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 8.doc ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 8 ΘΕΜΑ ο Έστω, α,β, α β και ν α i = βi () β αi α) Να αποδείξετε ότι ο δεν είναι

Διαβάστε περισσότερα

117 ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Μανώλη Ψαρρά. Μαθηματικού

117 ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Μανώλη Ψαρρά. Μαθηματικού 117 ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Μανώλη Ψαρρά Μαθηματικού Περιεχόμενα 1. Διανύσματα (47) ελ. - 9. Ευθεία (18) ελ. 10-1 3. Κύκλος (13).ελ. 13-15 4. Παραβολή (14) ελ. 16-18 5. Έλλειψη (18)..

Διαβάστε περισσότερα

Στοιχεία Συναρτήσεων. 1. Να βρεθεί το πεδίο ορισμού των παρακάτω συναρτήσεων: στ. x 1

Στοιχεία Συναρτήσεων. 1. Να βρεθεί το πεδίο ορισμού των παρακάτω συναρτήσεων: στ. x 1 Στοιχεία Συναρτήσεων 1. Να βρεθεί το πεδίο ορισμού των παρακάτω συναρτήσεων: 1 α. f() β. f() 3 6 8 3 1 γ. g() δ. g() ( 6)( 5) 4 ε. h() 4 στ. h() 4 ζ. ε. στ. 1 φ() η. 1 1 1 r() 5 6 1 r() 1 5 6 φ() 5. Στις

Διαβάστε περισσότερα

20 επαναληπτικά θέματα

20 επαναληπτικά θέματα επαναληπτικά θέματα για τα μαθηματικά κατεύθυνσης Γ λυκείου (τεύχος 3 σχολικό έτος 4-5) Γράφουν οι μαθηματικοί: Βέρρας Οδυσσέας Καρύμπαλης Νώντας Κοτσώνης Γιώργος Κώνστας Χάρης Λιτζερίνος Χρήστος Μπούζας

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΚΑΙ ΕΠΙΛΕΓΜΕΝΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΘΕΜΑ o ΜΑΪΟΥ A Έστω μια συνεχής συνάρτηση σ' ένα διάστημα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ

ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ 1. Απόσταση δύο σηµείων Α και Β είναι το µήκος του ευθύγραµµου τµήµατος που τα ενώνει. 2. Γωνία είναι το µέρος του επιπέδου που βρίσκεται µεταξύ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 ο Δίνεται η ευθεία (ε) με εξίσωση: 2x y1 0 καθώς και το σημείο Μ(3,0). α. Να βρείτε την εξίσωση μιας ευθείας (η) που περνά από το Μ και είναι κάθετη στην ευθεία (ε). β. Να

Διαβάστε περισσότερα

Τελευταία Επανάληψη. την ευθεία x=1 και τoν x x. 2 1 x. Λύση. x 2 1 x 0, άρα. x 1 x. x x 1. γ) x 1 e x x 1 x e ln x 1 x f x.

Τελευταία Επανάληψη. την ευθεία x=1 και τoν x x. 2 1 x. Λύση. x 2 1 x 0, άρα. x 1 x. x x 1. γ) x 1 e x x 1 x e ln x 1 x f x. Δίνεται η συνάρτηση ln Τελευταία Επανάληψη α) Να βρείτε το πεδίο ορισμού της β) Να μελετήσετε την ως προς την μονοτονία της γ) Να βρείτε το πλήθος των ριζών της εξίσωσης e, δ) Να υπολογίσετε το εμβαδόν

Διαβάστε περισσότερα

2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ

2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΚΕΦΑΛΑΙΟ Ο : ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ - ΕΝΟΤΗΤΕΣ :.... ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΜΕΘΟΔΟΛΟΓΙΑ : ΠΡΑΓΜΑΤΙΚΟ & ΦΑΝΤΑΣΤΙΚΟ ΜΕΡΟΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Έστω ένας μιγαδικός αριθμός,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Θετικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Θετικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ (εκπαιδευτικό υλικό Θετικής κατεύθυνσης 999-000) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύπου «Σωστό - Λάθος».

Διαβάστε περισσότερα

x R, να δείξετε ότι: i)

x R, να δείξετε ότι: i) ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ Γ ΛΥΚΕΙΟΥ Έστω μια συνάρτηση f παραγωγίσιμη στο R για την οποία ισχύουν: f ( ), f ( ) για κάθε R και f ( ) f ( ) α) Να βρείτε τον τύπο της f για κάθε R g( ) β) Αν g είναι

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό

Διαβάστε περισσότερα

Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου.

Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Τυπολόγιο Μαθηματικών Πρόλογος Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Π ε ρ ι ε χ ό μ ε ν α Λυκείου Άλγεβρα 001 018 Γεωμετρία 019

Διαβάστε περισσότερα

= u u I, ως διαφορά συζυγών. z + 2. i) R. Λύση: α τρόπος. + z z = . Άρα. x 2 +y 2 +x-2=0. , ως. i) Re(z 2 )= -4, ii) Im(z 2 )=2, iii) Re(1+z 2 )=0.

= u u I, ως διαφορά συζυγών. z + 2. i) R. Λύση: α τρόπος. + z z = . Άρα. x 2 +y 2 +x-2=0. , ως. i) Re(z 2 )= -4, ii) Im(z 2 )=2, iii) Re(1+z 2 )=0. ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ) Υπολογίστε τους µιγαδικούς, των οποίων το τετράγωνο ισούται µε: α) 6 β) - γ) -7 δ) - ε) α) 6 ± 6 β) - ± ± γ) -7() -7-7 7 0-7 ± ± ±± δ) -() - - - ± m ± m ±m 0 ε) () - ±± 0 0 ) Εάν, µιγαδικοί,

Διαβάστε περισσότερα

Μαθηµατικά Κατεύθυνσης Β Λυκείου Ευθεία. Ασκήσεις Ευθεία

Μαθηµατικά Κατεύθυνσης Β Λυκείου Ευθεία. Ασκήσεις Ευθεία Ασκήσεις Ευθεία 1. Να βρεθεί η εξίσωση της ευθείας η οποία διέρχεται από το σηµείο τοµής των ευθειών 3x + 4y 11 = 0 και 2x 3y + 21 = 0 και να γίνει η γραφική της παράσταση όταν είναι: i) παράλληλη στην

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Να γνωρίζει: α. την έννοια του μιγαδικού αριθμού και β. πότε δύο μιγαδικοί αριθμοί είναι ίσοι. Να μπορεί να βρίσκει: α. το άθροισμα,

Διαβάστε περισσότερα

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες Β.1.6. Είδη γωνιών Κάθετες ευθείες 1. Ορθή γωνία λέγεται η γωνία της οποίας το μέτρο είναι ίσο με 90 ο. 2. Οξεία γωνία λέγεται κάθε γωνία με μέτρο μικρότερο των 90 ο. 3. Αμβλεία γωνία λέγεται κάθε γωνία

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. α) Αν z=x+yi 0, z = ρ και θ ένα όρισµα του z, να αποδείξετε ότι ο z παίρνει τη µορφή z=ρ (συνθ + iηµθ) Μονάδες 8,5

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. α) Αν z=x+yi 0, z = ρ και θ ένα όρισµα του z, να αποδείξετε ότι ο z παίρνει τη µορφή z=ρ (συνθ + iηµθ) Μονάδες 8,5 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΤΡΙΤΗ 7 ΣΕΠΤΕΜΒΡΙΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚA (ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ) ΣΥΝΟΛΟ ΣΕΛΙ

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου

Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου Θέμα A. Να αποδείξετε ότι η εξίσωση της εφαπτομένης του κύκλου στο σημείο του Α, ) είναι 8 μονάδες) Β. Να δώσετε τον ορισμό

Διαβάστε περισσότερα

Τράπεζα συναρτήσει των διανυσμάτων α,β,γ. Μονάδες 13 β) να αποδείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά. Μονάδες 12

Τράπεζα συναρτήσει των διανυσμάτων α,β,γ. Μονάδες 13 β) να αποδείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά. Μονάδες 12 Τράπεζα 0- Πολλαπλασιασμός αριθμού με διάνυσμα.58 Θεωρούμε τα διανύσματα α,β,γ και τυχαίο σημείο Ο. Αν α β 5γ, α 3β 4γ και 3α β 6γ, τότε: α) να εκφράσετε τα διανύσματα, συναρτήσει των διανυσμάτων α,β,γ.

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ O z είναι πραγματικός, αν και μόνο αν Ο z είναι φανταστικός, αν και μόνο αν β) Αν και να αποδείξετε ότι ο αριθμός είναι πραγματικός, ενώ ο αριθμός είναι φανταστικός. 9. Να βρείτε το γεωμετρικό τόπο των

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β) ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x. Να λυθούν οι εξισώσεις: α) 3x x 3 3 5x x β) 4 3 x x x 0

Διαβάστε περισσότερα

(a) (3a + 14β) + (2a β)i = 7 i (β) a(1 + i) + β(1 i) = 5 i) (1 + i)2 3 i. a + βi =

(a) (3a + 14β) + (2a β)i = 7 i (β) a(1 + i) + β(1 i) = 5 i) (1 + i)2 3 i. a + βi = ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ-ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΛΥΣΗ ΕΠΙΜΕΛΕΙΑ: Καρράς Ιωάννης Μαθηματικός Ο μὲν κάλος ὄσσον ἴδην πέλεται κάλος ὀ δὲ κἄγαθος αὔτικα κὔστερον ἔσσεται. gxkarras@gmail.com 1. Να βρείτε τους αριθμούς

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα [α,β]. Αν η f είναι συνεχής στο [α,β]

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΜΑ Α Άσκηση z, z μιγαδικοί αριθμοί να αποδείξετε ότι: Αν z z = z z Έχουμε: z z = z z ( z z ) ( z z ) = z z z z = z z z z z z = z z z z. Το τελευταίο

Διαβάστε περισσότερα

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ.

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ. Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) 8556 ΘΕΜΑ Δίνονται τα διανύσματα και με, και, 3 α) Να βρείτε το εσωτερικό γινόμενο β) Αν τα διανύσματα γ) Να βρείτε το μέτρο του διανύσματος 8558 ΘΕΜΑ

Διαβάστε περισσότερα

Επαναληπτικές ασκήσεις για το Πάσχα.

Επαναληπτικές ασκήσεις για το Πάσχα. Μαθηματικά B Γυμνασίου Επαναληπτικές ασκήσεις για το Πάσχα. Άλγεβρα. Κεφάλαιο 1 ο. 1. Να υπολογιστούν οι παρακάτω αριθμητικές παραστάσεις : 1 7 1 7 1 1 ) - 1 4 : ) -1 1 : 1 4 10 9 6. Να λυθούν οι εξισώσεις:

Διαβάστε περισσότερα