Θέματα Μεταγλωττιστών

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Θέματα Μεταγλωττιστών"

Transcript

1 Γιώργος Δημητρίου Ενότητα 6 η : Αλγεβρικά Πλαίσια Ανάλυσης Ροής Δεδομένων

2 Αναπαράσταση Προγράμματος Γράφος Ροής Ελέγχου (Control Flow Graph CFG) Κόμβοι N εντολές Ακμές E ροή ελέγχου pred(n) = σύνολο άμεσων προγόνων του κόμβου n succ(n) = σύνολο άμεσων απογόνων του κόμβου n Κόμβος εκκίνησης n 0 Πιθανά νέος κόμβος ENTRY Σύνολο κόμβων τερματισμού N final Πιθανά συνδεμένοι σε έναν κοινό κόμβο EXIT

3 Σημεία Προγράμματος Ένα σημείο πριν και ένα σημείο μετά από κάθε κόμβο Σημείο σύγκλισης (join point) σημείο με πολλαπλούς άμεσους προγόνους Σημείο διακλάδωσης (split point) σημείο με πολλαπλούς άμεσους απογόνους

4 Βασική Ιδέα Η πληροφορία που μας ενδιαφέρει κάθε φορά αναπαρίσταται ως τιμές μιας αλγεβρικής δομής που ονομάζεται πλέγμα (lattice) Η ανάλυση παράγει τιμές πλέγματος για κάθε σημείο προγράμματος Κατεύθυνση ανάλυσης Προς τα εμπρός (forward) Προς τα πίσω (backward)

5 Ανάλυση προς τα Εμπρός Η ανάλυση διαδίδει τιμές προς τα εμπρός σύμφωνα με τη ροή ελέγχου που περιγράφει ο CFG Για κάθε κόμβο ορίζεται μια συνάρτηση διάδοσης f: Είσοδος τιμή σημείου πριν τον κόμβο Έξοδος τιμή σημείου μετά τον κόμβο Οι τιμές ρέουν από σημεία που έπονται προγόνων προς σημεία που προηγούνται απογόνων Στα σημεία σύγκλισης οι τιμές συνδυάζονται με βάση κάποια συνάρτηση συγχώνευσης Παράδειγμα που είδαμε: Ορισμοί χρήσεων

6 Ανάλυση προς τα Πίσω Η ανάλυση διαδίδει τιμές προς τα πίσω αντίστροφα με τη ροή ελέγχου που περιγράφει ο CFG Για κάθε κόμβο ορίζεται μια συνάρτηση διάδοσης f: Είσοδος τιμή σημείου μετά τον κόμβο Έξοδος τιμή σημείου πριν τον κόμβο Οι τιμές ρέουν από σημεία που προηγούνται απογόνων προς σημεία που έπονται προγόνων Στα σημεία διακλάδωσης οι τιμές συνδυάζονται με βάση κάποια συνάρτηση συγχώνευσης Παράδειγμα που είδαμε: Ζωντάνια μεταβλητών

7 Αλγεβρικές Δομές Σύνολα στοιχείων Πράξεις μεταξύ στοιχείων Πράξη διάζευξης ( - join) πχ πρόσθεση, έ- νωση Πράξη σύζευξης ( - meet) πχ πολλαπλασιασμός, τομή Πράξεις και ιδιότητες πράξεων Συγκεκριμένες πράξεις και ιδιότητες για διαφορετικές δομές

8 Μερική Διάταξη Σύνολο P Ορίζουμε τη μερική διάταξη στο Ρ έτσι ώστε x,y,z P να ισχύουν οι ιδιότητες: x x x y και y x x y x y και y z x z (ανακλαστική) (αντισυμμετρική) (μεταβατική) Με βάση τη μερική διάταξη ορίζουμε: Άνω και κάτω φράγματα Ελάχιστο άνω φράγμα (lub) Μέγιστο κάτω φράγμα (glb)

9 Άνω Φράγματα Εάν S P τότε Ένα στοιχείο x P αποτελεί άνω φράγμα του S, εάν y S: y x Ένα στοιχείο x P είναι το ελάχιστο άνω φράγμα του S εάν το x αποτελεί άνω φράγμα του S, και x y για όλα τα άνω φράγματα y του S - πράξη join και ελάχιστο άνω φράγμα (lub, sup) S είναι το lub του S x y είναι το lub του {x,y}

10 Κάτω Φράγματα Εάν S P τότε Ένα στοιχείο x P αποτελεί κάτω φράγμα του S, εάν y S: x y Ένα στοιχείο x P είναι το μέγιστο κάτω φράγμα του S εάν το x αποτελεί κάτω φράγμα του S, και y x για όλα τα κάτω φράγματα y του S - πράξη meet και μέγιστο κάτω φράγμα (glb, inf) S είναι το glb του S x y είναι το glb του {x,y}

11 Μερικά Διατεταγμένα Σύνολα Μερικά διατεταγμένο σύνολο (partially ordered set poset) είναι ένα σύνολο εφοδιασμένο με μια σχέση μερικής διάταξης που να ικανοποιεί τις προαναφερθείσες ιδιότητες: (Ρ, )

12 Πλέγματα (Lattices) Πλέγμα (Lattice) είναι ένα μερικά διατεταγμένο σύνολο (poset), όπου κάθε ζεύγος στοιχείων του έχει ελάχιστο άνω φράγμα (lub) και μέγιστο κάτω φράγμα (glb) Hμιπλέγμα (semilattice) είναι το poset όπου κάθε ζεύγος στοιχείων έχει είτε μόνο lub (join-semilattice) είτε μόνο glb (meet-semilattice)

13 Κάλυψη Ορίζουμε x y εάν x y και x y Το x καλύπτεται από το y (ή αλλιώς το y καλύπτει το x) εάν x y, και x z y x z Αυτό σημαίνει ότι το y καλύπτει το x εάν δεν υπάρχουν άλλα στοιχεία μεταξύ των x και y

14 Παράδειγμα P = { 000, 001, 010, 011, 100, 101, 110, 111} (κλασικό πλέγμα Boolean, γνωστό ως hypercube) x y εάν (x & y) = x Διάγραμμα Hasse Εάν το y καλύπτει το x το y συνδέεται με το x το y είναι πάνω από το x 000

15 Πλέγματα ως Αλγεβρικές Δομές Μια αλγεβρική δομή P ονομάζεται πλέγμα, εάν σε αυτήν ορίζονται οι πράξεις x y και x y, x,y P ώστε να ισχύουν οι ιδιότητες: x ο x = x x ο y = y ο x (ταυτοδυναμία), (αντιμεταθετικότητα), (x ο y) ο z = x ο (y ο z) (προσεταιριστικότητα), όπου ο ή, και επιπλέον: x (x y) x (απορρόφηση του από το ) x (x y) x (απορρόφηση του από το ) x,y,z P

16 Πλήρη Πλέγματα Εάν S P ορίζονται τα S και S, τότε το P αποτελεί πλήρες πλέγμα Κάθε πεπερασμένο πλέγμα είναι πλήρες

17 Πλήρη Πλέγματα Εάν S P ορίζονται τα S και S, τότε το P αποτελεί πλήρες πλέγμα Κάθε πεπερασμένο πλέγμα είναι πλήρες Παράδειγμα μη πλήρους πλέγματος Σύνολο ακεραίων Ν x, y Ν, x y = max(x,y), x y = min(x,y) Όμως δεν ορίζονται τα Ν και Ν Το Ν {, } είναι πλήρες πλέγμα

18 Κορυφή και Βάση Πλέγματος Το μέγιστο στοιχείο του Ρ εφόσον υπάρχει είναι η κορυφή του Ρ ( ) Το ελάχιστο στοιχείο του P εφόσον υπάρχει είναι η βάση του Ρ ( )

19 Σχέση μεταξύ,, και Οι παρακάτω 3 ιδιότητες είναι ισοδύναμες: x y x y y x y x Πρέπει να δείξουμε ότι: x y x y y και x y x x y y x y x y x x y Οπότε θα έχουμε και: x y y x y x x y x x y y

20 Αποδείξεις x y x y y : x y y αποτελεί άνω φράγμα του συνόλου {x,y} Για κάθε άνω φράγμα z του {x,y} πρέπει y z Άρα το y είναι το lub του {x,y} οπότε x y y x y x y x : x y x αποτελεί κάτω φράγμα του συνόλου {x,y} Για κάθε κάτω φράγμα z του {x,y} πρέπει z x Άρα το x είναι το glb του {x,y} οπότε x y x

21 Αποδείξεις (συνέχεια) x y y x y Το y αποτελεί άνω φράγμα του {x,y} x y x y x x y Το x αποτελεί κάτω φράγμα του {x,y} x y

22 Ισοδυναμία Ορισμών Με βάση τα προηγούμενα, ένα πλέγμα (ή ημιπλέγμα) ορίζεται ισοδύναμα Είτε ως αλγεβρική δομή Είτε ως μερικά διατεταγμένο σύνολο Μπορούμε εύκολα να αποδείξουμε τις ι- διότητες των πράξεων και με βάση τη σχέση μερικής διάταξης, όπως και τις ι- διότητες της σχέσης με βάση τις πράξεις και

23 Μονότονες Συναρτήσεις και Σταθερά Σημεία Έστω το πλέγμα L. Η συνάρτηση f : L L ονομάζεται μονότονη αν x, y S : x y f (x) f (y) Έστω A ένα σύνολο, f : A A μια συνάρτηση, και a A. Εάν f (a) = a, τότε το a ονομάζεται σταθερό σημείο της f στο σύνολο A

24 Ύπαρξη Σταθερών Σημείων Ορίζουμε ύψος ενός πλέγματος το μήκος του μακρύτερου μονοπατιού από τη βάση μέχρι την κορυφή του πλέγματος Σε ένα πλήρες πλέγμα L με πεπερασμένο ύψος, κάθε μονότονη συνάρτηση f : L L έχει μοναδικό ελάχιστο σταθερό σημείο: fix (f ) =

25 Εναλλακτικό Θεώρημα Μια συνάρτηση f : L L σε κάποιο πλήρες πλέγμα L ονομάζεται συνεχής, εάν για οποιοδήποτε υποσύνολο X του L, f ( X) = f (X). Έστω L ένα πλήρες πλέγμα. Εάν f : L L είναι μονότονη και συνεχής, τότε η f έχει μοναδικό ελάχιστο σταθερό σημείο: fix (f ) =

26 Θεώρημα Σταθερού Σημείου Knaster-Tarski Έστω (L, ) ένα πλήρες πλέγμα, και έστω f: L L μια μονότονη συνάρτηση. Τότε ένα σταθερό σημείο m της f μπορεί να οριστεί ως: m = x L f x x }

27 Υπολογισμός Σταθερού Σημείου Η πολυπλοκότητα στο χρόνο υπολογισμού ενός σταθερού σημείου εξαρτάται από τρεις παράγοντες: Το ύψος του πλέγματος, εφόσον αυτό αποτελεί ένα φράγμα για το i. Το κόστος υπολογισμού της f. Το κόστος ελέγχου ισότητας. Ο υπολογισμός ενός σταθερού σημείου μπορεί να αναπαρασταθεί ως μια διαπέραση του πλέγματος από τη βάση προς τα επάνω:

28 Επίλυση Συστήματος Εξισώσεων Έστω L ένα πλέγμα πεπερασμένου ύψους. Θεωρήστε ένα σύστημα εξισώσεων της μορφής: x 1 = F 1 (x 1,..., x n ) x 2 = F 2 (x 1,..., x n )... x n = F n (x 1,..., x n ) όπου x i μεταβλητές και F i : L n L ένα σύνολο από μονότονες συναρτήσεις. Η λύση του συστήματος αυτού λαμβάνεται ως το ελάχιστο σταθερό σημείο της ακόλουθης συνάρτησης F : L n L n : F(x 1,...,x n ) = (F 1 (x 1,...,x n ),..., F n (x 1,...,x n ))

29 Αλγόριθμος Απλοϊκός αλγόριθμος υπολογισμού σταθερού σημείου: x = (,..., ); do { t = x; x = F(x); } while (x t); Λίγο καλύτερα: x1 = ;... xn = ; do { t1 = x1;... tn = xn; x1 = F1(x1,..., xn);... xn = Fn(x1,..., xn); } while (x1 t1 or... or xn tn)

30 Αλυσίδες Ένα σύνολο S ονομάζεται αλυσίδα εάν x,y S: y x ή x y Το πλέγμα P ικανοποιεί τη συνθήκη αύξουσας αλυσίδας, εάν για όλες τις ακολουθίες x 1 x 2 υπάρχει n, τέτοιο ώστε x n = x n+1 =

31 Ανάλυση Ροής Δεδομένων (DFA) Η πληροφορία που μας ενδιαφέρει απεικονίζεται ως τιμές πλέγματος Οι συναρτήσεις διάδοσης εφαρμόζονται σε τιμές πλέγματος Ο αλγόριθμος επίλυσης παράγει αύξουσα ακολουθία τιμών για κάθε σημείο του προγράμματος Η συνθήκη αύξουσας αλυσίδας εξασφαλίζει τον τερματισμό του αλγορίθμου Η πράξη meet ( ) χρησιμοποιείται για τη συγχώνευση τιμών στα σημεία σύγκλισης του CFG

32 Συναρτήσεις Διάδοσης Συνάρτηση διάδοσης f: P P για κάθε κόμβο του CFG Η f μοντελοποιεί την επίδραση του κόμβου στη ροής πληροφορίας του προγράμματος

33 Συναρτήσεις Διάδοσης Σε κάθε πρόβλημα ανάλυσης ροής δεδομένων ορίζουμε ένα σύνολο F συναρτήσεων διάδοσης f: P P, τέτοιο ώστε: Η ταυτοτική συνάρτηση I x.x F Το F πρέπει να είναι κλειστό στη σύνθεση συναρτήσεων: f,g F: h x.f(g(x)) F Κάθε f F πρέπει να είναι μονότονη: x y f(x) f(y)

34 Μονοτονία και Επιμεριστικότητα Μια επιμεριστική συνάρτηση είναι μονότονη Απόδειξη: Έστω f(x y) = f(x) f(y) Τότε: Αν x y θα δείξουμε ότι f(x) f(y) Όμως x y x y = x, και άρα Αλλά f(x) = f(x y) = f(x) f(y) f(x) = f(x) f(y) f(x) f(y)

35 Πλαίσιο Ανάλυσης προς τα Εμπρός Προσομοίωση εκτέλεσης του προγράμματος σύμφωνα με τη ροή ελέγχου Για κάθε κόμβο n: in n τιμή ροής δεδομένων αμέσως πριν τον n out n τιμή ροής δεδομένων αμέσως μετά τον n f n συνάρτηση διάδοσης του κόμβου n (με είσοδο in n, υπολογίζει την τιμή out n ) Η λύση πρέπει να ικανοποιεί τις συνθήκες: n: out n = f n (in n ) n n 0 : in n = { out m m pred(n) } in n0 = I όπου I η πληροφορία τιμών στην αρχή του προγράμματος

36 Εξισώσεις Ροής Δεδομένων Ο μεταγλωττιστής επεξεργάζεται το πρόγραμμα ώστε να βρει το σύνολο των εξισώσεων ροής δεδομένων out n := f n (in n ) in n := { out m m pred(n) }

37 Αλγόριθμος με Λίστα Εργασίας for each n do out n := f n ( ) in n0 := I; out n0 := f n0 (I) worklist := N - { n 0 } while worklist do remove a node n from worklist in n := { out m m in pred(n) } out n := f n (in n ) if out n changed then worklist := worklist succ(n)

38 Ορθότητα Αλγόριθμου Γιατί το αποτέλεσμα ικανοποιεί τις εξισώσεις ροής δεδομένων; 1) Από την εφαρμογή της συνάρτησης f n σε κάποιον κόμβο n προκύπτει κατ ανάγκη ότι out n = f n (in n ) 2) Οποτεδήποτε αλλάζει η τιμή out m, οι κόμβοι του succ(m) μπαίνουν στη λίστα εργασίας. Έτσι, κάθε κόμβος n succ(m) θα βγει κάποια στιγμή από τη λίστα και ο αλγόριθμος θα υπολογίσει το in n έτσι ώστε να ισχύει η σχέση in n = { out m m pred(n) } Επομένως η λύση θα ικανοποιεί τις εξισώσεις

39 Τερματισμός Αλγόριθμου Γιατί ο αλγόριθμος τερματίζεται; Η ακολουθία τιμών που λαμβάνουν τα in n ή out n αποτελεί αλυσίδα. Αν οι τιμές παύουν να αυξάνονται, η λίστα αδειάζει και ο αλγόριθμος τερματίζεται. Άρα αν το πλέγμα ικανοποιεί τη συνθήκη της αύξουσας αλυσίδας, ο αλγόριθμος τερματίζεται

40 Ορισμοί Χρήσεων P = δυναμοσύνολο του συνόλου των ορισμών του προγράμματος = (μερική διάταξη με τη σχέση ) = I = in n0 = F = οι συναρτήσεις f της μορφής f(x) = a (x-b) Το b είναι το σύνολο ορισμών που παύονται στον κόμβο Το a είναι το σύνολο ορισμών που παράγονται στον κόμβο Γενική μορφή πολλών συναρτήσεων διάδοσης: f(x) = GEN (x-kill)

41 Πλαίσιο Ανάλυσης Η σχέση ικανοποιεί τις ιδιότητες μερικής διάταξης : x x x y και y z x z x y και y x y = x (ανακλαστική) (μεταβατική) (αντισυμμετρική) Το σύνολο F ικανοποιεί τους περιορισμούς των συναρτήσεων διάδοσης: x. (x- ) = x.x F f(x y) = f(x) f(y) (επιμεριστικότητα) f(x) f(y) = (a (x b)) (a (y b)) = a (x b) (y b) = a ((x y) b) = f(x y)

42 Πλαίσιο Ανάλυσης (συνέχεια) Σύνθεση συναρτήσεων: Αν f 1 (x) = a 1 (x-b 1 ) και f 2 (x) = a 2 (x-b 2 ) Πρέπει η σύνθεση f 1 (f 2 (x)) να μπορεί να γραφτεί στη μορφή a (x - b) f 1 (f 2 (x)) = a 1 ((a 2 (x-b 2 )) - b 1 ) = a 1 ((a 2 - b 1 ) ((x-b 2 ) - b 1 )) = (a 1 (a 2 - b 1 )) ((x-b 2 ) - b 1 ) = (a 1 (a 2 - b 1 )) (x-(b 2 b 1 )) Έστω a = (a 1 (a 2 - b 1 )) και b = b 2 b 1 Τότε f 1 (f 2 (x)) = a (x b)

43 Διαθέσιμες Εκφράσεις P = δυναμοσύνολο του συνόλου των εκφράσεων του προγράμματος = (μερική διάταξη με τη σχέση ) = P I = in n0 = F = οι συναρτήσεις f της μορφής f(x) = a (x-b) Το b είναι το σύνολο των εκφράσεων που παύονται στον κόμβο Το a είναι το σύνολο των εκφράσεων που παράγονται στον κόμβο Παρόμοια GEN/KILL μορφή των συναρτήσεων διάδοσης

44 Πλαίσιο Ανάλυσης προς τα Πίσω Προσομοίωση εκτέλεσης του προγράμματος αντίστροφα με τη ροή ελέγχου Για κάθε κόμβο n: in n τιμή ροής δεδομένων αμέσως πριν τον n out n τιμή ροής δεδομένων αμέσως μετά τον n f n συνάρτηση διάδοσης του κόμβου n (με είσοδο out n, υπολογίζει την τιμή in n ) Η λύση πρέπει να ικανοποιεί τις συνθήκες: n: in n = f n (out n ) n N final : out n = { in m m succ(n) } n N final : out n = O όπου O η πληροφορία τιμών στο τέλος του προγράμματος

45 Αλγόριθμος με Λίστα Εργασίας for each n do in n := f n ( ) for each n N final do out n := O; in n := f n (O) worklist := N - N final while worklist do remove a node n from worklist out n := { in m m succ(n) } in n := f n (out n ) if in n changed then worklist := worklist pred(n)

46 Ζωντάνια Μεταβλητών P = δυναμοσύνολο του συνόλου των μεταβλητών του προγράμματος = (μερική διάταξη με τη σχέση ) = O = F = οι συναρτήσεις f της μορφής f(x) = a (x-b) Το b είναι το σύνολο των μεταβλητών που παύονται στον κόμβο Το a είναι το σύνολο των μεταβλητών που διαβάζονται στον κόμβο

47 Νέα Εφαρμογή DFA: Πολυάσχολες Εκφράσεις Μια έκφραση ονομάζεται πολυάσχολη (very busy) ή αναμενόμενη (anticipated) εάν είναι βέβαιο ότι θα αποτιμηθεί ξανά πριν αλλάξει η τιμή της Δουλεύουμε στο ίδιο πλέγμα τιμών και συναρτήσεων όπως στις διαθέσιμες εκφράσεις Για κάθε κόμβο v του CFG ορίζουμε x v το σύνολο των εκφράσεων που είναι πολυάσχολες στο σημείο προγράμματος αμέσως πριν τον v

48 Εφαρμόζοντας τη Θεωρία P = δυναμοσύνολο του συνόλου των εκφράσεων του προγράμματος = (μερική διάταξη με τη σχέση ) = P I = in exit = F = οι συναρτήσεις f της μορφής f(x) = a (x-b) Το b είναι το σύνολο των εκφράσεων που παύονται στον κόμβο Το a είναι το σύνολο των εκφράσεων που αποτιμώνται στον κόμβο

49 Παράδειγμα 1 BB3 BB4 b = b * d; d = a + b; e = e + 1; BB1 BB2 BB6 a = 1; b = 2; c = a + b; d = c a; b = a + b; e = c a; a = b * d; b = a d; BB5 Inexit = In6 = {b*d,e+1} {b*d} In5 = {a+b,c-a,a-d} {a+b,c-a} In4 = {a+b,c-a,e+1} {a+b,e+1,c-a} In3 = {c-a,b*d,e+1,a-d} {b*d,c-a} In2 = {a+b,e+1} {a+b} In1 = {e+1} Out6 = {a+b,c-a,b*d,e+1,a-d} Out5 = {a+b,c-a,b*d,e+1,a-d} {e+1} Out4 = {a+b,c-a,b*d,e+1,a-d} {c-a,b*d,e+1,a-d} {b*d,c-a} Out3 = {a+b,c-a} {a+b,c-a,b*d,e+1,a-d} Out2 = {a+b,c-a,b*d,e+1,a-d} {c-a,a-d} {c-a} Out1 = {a+b,c-a,b*d,e+1,a-d} {a+b,e+1} {a+b} Outentry = {a+b,c-a,b*d,e+1,a-d} {e+1}

50 Παράδειγμα 2 var x,a,b; x = input; a = x-1; b = x-2; while (x>0) { output a*b-x; x = x-1; } output a*b; var x,a,b,atimesb; x = input; a = x-1; b = x-2; atimesb = a*b; while (x>0) { output atimesb-x; x = x-1; } output atimesb;

51 Παράδειγμα Ανάλυσης Προσήμου Ανάλυση προσήμου εύρεση προσήμου κάθε μεταβλητής v Βασικό πλέγμα: P = επίπεδο πλέγμα στο σύνολο {-,0,+} TOP (οποιοδήποτε πρόσημο) Δημιουργούμε ένα πλέγμα με τις τιμές όλων των μεταβλητών Παράδειγμα σημείου: [a +, b 0, c -] BOT (άγνοια)

52 Συναρτήσεις Διάδοσης Εάν ο κόμβος n είναι η εντολή v = c, τότε: f n (x) = x[v +] εάν c > 0 f n (x) = x[v 0] εάν c = 0 f n (x) = x[v -] εάν c < 0 Εάν όμως ο κόμβος n είναι εντολή της μορφής v 1 = v 2 *v 3 f n (x) = x[v 1 x[v 2 ] x[v 3 ]] I = TOP (μη αρχικοποιημένες μεταβλητές μπορούν να έχουν οποιοδήποτε πρόσημο)

53 Πράξη Προσήμων στο Πλέγμα BOT TOP BOT BOT BOT 0 BOT BOT - BOT TOP BOT TOP TOP BOT TOP 0 TOP TOP

54 Παράδειγμα a = 1 [a +] [a +] b = -1 b = 1 [a +, b -] [a +, b +] [a +, b TOP] c = a*b [a +, b TOP,c TOP]

55 Έλλειψη Ακρίβειας Λόγω αφαιρετικότητας: Η τιμή [a 1] απεικονίζεται αφαιρετικά ως [a +] [a +] a = 1 [a +] b = -1 b = 1 [a +, b -] [a +, b +] [a +, b TOP] c = a*b Λόγω ροής ελέγχου: Η τιμή προσήμου [b TOP] συνδυάζει όλες τις εκτελέσεις, ενώ σε κάθε εκτέλεση η τιμή είναι συγκεκριμένη και TOP

56 Έλλειψη Ακρίβειας Παρόλο που δυσχεραίνει τις βελτιστοποιήσεις, η έλλειψη ακρίβειας είναι αποδεκτή όταν: Με ακρίβεια το πρόβλημα έχει εκθετική πολυπλοκότητα Το σύνολο τιμών είναι απεριόριστο οπότε δίνουμε αφαιρετικές τιμές μέσα από ένα πεπερασμένο πλέγμα Η εκτέλεση μπορεί να περάσει από απεριόριστο πλήθος καταστάσεων προγράμματος οπότε οι καταστάσεις υπολογίζονται αφαιρετικά με κατάλληλη πράξη σύγκλισης μονοπατιών

57 Συντηρητική Ανάλυση Οι ορισμοί χρήσεων χρησιμοποιούν την ένωση συνόλων ως πράξη σύγκλισης Οι σχετικές βελτιστοποιήσεις πρέπει να λάβουν υπόψη τους ορισμούς που φτάνουν από κάθε μονοπάτι Οι διαθέσιμες εκφράσεις χρησιμοποιούν την τομή συνόλων ως πράξη σύγκλισης Οι σχετικές βελτιστοποιήσεις απαιτούν τις εκφράσεις να φτάνουν από όλα τα μονοπάτια Οι βελτιστοποιήσεις πρέπει να λειτουργούν συντηρητικά και να λαμβάνουν υπόψη όλα τα πιθανά μονοπάτια εκτέλεσης!

58 Λύση «Meet-Over-Paths» (MOP) Ποια θα ήταν η ιδανική λύση σε ένα πρόβλημα DFA προς τα εμπρός; Έστω το μονοπάτι p = n 0, n 1,, n k, n προς έναν κόμβο n (όπου i n i pred(n i+1 )) Η λύση πρέπει να λάβει υπόψη το μονοπάτι: f p ( ) = (f nk (f nk-1 ( f n1 (f n0 ( )) )) in n Που σημαίνει ότι για τη λύση πρέπει να ισχύει: {f p ( ) p μονοπάτι προς το n} in n και ιδανικά: {f p ( ) p μονοπάτι προς το n} = in n

59 Ο Ρόλος της Επιμεριστικότητας Αν το πλαίσιο ανάλυσης είναι επιμεριστικό, τότε ο αλγόριθμος με λίστα εργασίας δίνει τη λύση MOP

60 Έλλειψη Επιμεριστικότητας Υπολογισμός σταθερών εκφράσεων Επίπεδο πλέγμα ακεραίων TOP Το πλέγμα αποδίδει τιμές σε κάθε μεταβλητή Για παράδειγμα: [a 3, b 2, c 5] BOT

61 Συναρτήσεις Διάδοσης Αν ο κόμβος n είναι της μορφής v = c f n (x) = x[v c] Αν ο κόμβος n είναι της μορφής v 1 = v 2 +v 3 f n (x) = x[v 1 x[v 2 ] + x[v 3 ]]

62 Έλλειψη Επιμεριστικότητας [a 2, b 3] a = 2 b = 3 a = 3 b = 2 [a 3, b 2] [a TOP, b TOP] c = a+b [a TOP, b TOP, c TOP] Πρόβλημα έλλειψης επιμεριστικότητας: Η λύση [a TOP, b TOP, c 5] θα ήταν καλύτερη Ποια είναι εδώ η λύση ΜΟΡ;

63 Εφαρμογή Επιμεριστικότητας Διατήρησε όλους τους συνδυασμούς τιμών στα διαφορετικά μονοπάτια! a = 2 b = 3 {[a 2, b 3]} a = 3 b = 2 {[a 3, b 2]} {[a 2, b 3], [a 3, b 2]} c = a+b {[a 2, b 3,c 5], [a 3, b 2,c 5]}

Θέματα Μεταγλωττιστών

Θέματα Μεταγλωττιστών Γιώργος Δημητρίου Ενότητα 7 η : Περιοχές: Εναλλακτική Μέθοδος Ανάλυσης Ροής Δεδομένων Περιοχές (Regions) Σε κάποιες περιπτώσεις βρόχων η ανάλυση ροής δεδομένων με τον επαναληπτικό αλγόριθμο συγκλίνει αργά

Διαβάστε περισσότερα

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης Μάθημα 7α Δρ. Βασίλειος Γ. Καμπουρλάζος Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΤΕΙ Ανατολικής Μακεδονίας και Θράκης 2017-2018 Μια Ενοποιητική Προσέγγιση στην ΥΝ Η Θεωρία Πλεγμάτων στην ΥΝ. Υπολογιστικές Μεθοδολογίες

Διαβάστε περισσότερα

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης Μάθημα 7 ο Δρ. Βασίλειος Γ. Καμπουρλάζος Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΤΕΙ Ανατολικής Μακεδονίας και Θράκης 2016-2017 Μια Ενοποιητική Προσέγγιση στην ΥΝ Η Θεωρία Πλεγμάτων στην ΥΝ. Υπολογιστικές Μεθοδολογίες

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 8: Σχέσεις - Πράξεις Δομές Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (1)

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (1) Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες () Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Πεπερασμένα Αυτόματα (Κεφάλαιο., Sipser) Ορισμός πεπερασμένων αυτομάτων και ορισμός του

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνολα Συναρτήσεις και Σχέσεις Γραφήματα Λέξεις και Γλώσσες Αποδείξεις ΕΠΛ 211 Θεωρία

Διαβάστε περισσότερα

Θέματα Μεταγλωττιστών

Θέματα Μεταγλωττιστών Γιώργος Δημητρίου Ενότητα 3 η : Ενδιάμεση Αναπαράσταση / SSA Ενδιάμεση Αναπαράσταση (IR) Η ενδιάμεση αναπαράσταση αποθηκεύει τη συγκεντρωμένη πληροφορία από την ανάλυση ενός προγράμματος Από την ενδιάμεση

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 4+5: Άλγεβρα Boole

K15 Ψηφιακή Λογική Σχεδίαση 4+5: Άλγεβρα Boole K15 Ψηφιακή Λογική Σχεδίαση 4+5: Άλγεβρα Boole Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Ορισμός της δίτιμης άλγεβρας Boole Περιεχόμενα 1 Ορισμός της

Διαβάστε περισσότερα

Θέματα Μεταγλωττιστών

Θέματα Μεταγλωττιστών Θέματα Μεταγλωττιστών Γιώργος Δημητρίου Ενότητα 3 η : Ενδιάμεση Αναπαράσταση/ SSA Πανεπιστήμιο Θεσσαλίας - Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Ενδιάμεση Αναπαράσταση (IR) Η ενδιάμεση αναπαράσταση

Διαβάστε περισσότερα

Ηλεκτρονικοί Υπολογιστές ΙΙ

Ηλεκτρονικοί Υπολογιστές ΙΙ Ηλεκτρονικοί Υπολογιστές ΙΙ Ενότητα 3: Eφαρμογές Άλγεβρας Boole Τμήμα Οικονομικών Επιστημών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

Ισότητα, Αλγεβρικές και Αναλυτικές Ιδιότητες Πραγματικών Ακολουθιών

Ισότητα, Αλγεβρικές και Αναλυτικές Ιδιότητες Πραγματικών Ακολουθιών Ισότητα, Αλγεβρικές και Αναλυτικές Ιδιότητες Πραγματικών Ακολουθιών Συμβολισμοί Σε αναλογία με τους ορισμούς συμβολίζουμε μια ακολουθία: 1 είτε μέσω του διανυσματικού ορισμού, παραθέτοντας αναγκαστικά

Διαβάστε περισσότερα

Σχέση Μερικής ιάταξης Σχέση Μερικής ιάταξης (ή µερική διάταξη): ανακλαστική, αντισυµµετρική, και µεταβατική. Αριθµοί: α β (αλλά όχι α < β), α β, Σύνολ

Σχέση Μερικής ιάταξης Σχέση Μερικής ιάταξης (ή µερική διάταξη): ανακλαστική, αντισυµµετρική, και µεταβατική. Αριθµοί: α β (αλλά όχι α < β), α β, Σύνολ Σχέσεις Μερικής ιάταξης ιδάσκοντες: Φ. Αφράτη, Σ. Ζάχος,. Σούλιου Επιµέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Σχέση Μερικής ιάταξης

Διαβάστε περισσότερα

d k 10 k + d k 1 10 k d d = k i=0 d i 10 i.

d k 10 k + d k 1 10 k d d = k i=0 d i 10 i. Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Προτεινοµενες Ασκησεις - Φυλλαδιο 1

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Προτεινοµενες Ασκησεις - Φυλλαδιο 1 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Προτεινοµενες Ασκησεις - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 25 Φεβρουαβρίου

Διαβάστε περισσότερα

Σχέσεις Μερικής ιάταξης

Σχέσεις Μερικής ιάταξης Σχέσεις Μερικής ιάταξης ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Σχέση Μερικής ιάταξης Σχέση Μερικής

Διαβάστε περισσότερα

Pascal, απλοί τύποι, τελεστές και εκφράσεις

Pascal, απλοί τύποι, τελεστές και εκφράσεις Pascal, απλοί τύποι, τελεστές και εκφράσεις 15 Νοεμβρίου 2011 1 Γενικά Στην standard Pascal ορίζονται τέσσερις βασικοί τύποι μεταβλητών: integer: Παριστάνει ακέραιους αριθμούς από το -32768 μέχρι και το

Διαβάστε περισσότερα

a. a + b = 3. b. a διαιρεί τ ο b. c. a - b = 0. d. ΜΚΔ(a, b) = 1. e. ΕΚΠ(a, b) = 6.

a. a + b = 3. b. a διαιρεί τ ο b. c. a - b = 0. d. ΜΚΔ(a, b) = 1. e. ΕΚΠ(a, b) = 6. ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο 2016 4 η Σειρά Ασκήσεων - Λύσεις Άσκηση 4.1 [1 μονάδα] Βρείτε όλα τα διατεταγμένα ζεύγη στη σχέση R από το Α={0,1,2,3} στο Β={0,1,2,3,4} όπου (a,b) R αν και μόνο

Διαβάστε περισσότερα

Σχέσεις Μερικής ιάταξης

Σχέσεις Μερικής ιάταξης Σχέσεις Μερικής ιάταξης ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Σχέση Μερικής ιάταξης Σχέση Μερικής

Διαβάστε περισσότερα

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΜΟΣ Εντολές επιλογής και αποφάσεων 1 ο Φύλλο Εργασιών Εισαγωγικές ασκήσεις για την εντολή if ΑΠΑΝΤΗΣΕΙΣ

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΜΟΣ Εντολές επιλογής και αποφάσεων 1 ο Φύλλο Εργασιών Εισαγωγικές ασκήσεις για την εντολή if ΑΠΑΝΤΗΣΕΙΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΜΟΣ Κεφάλαιο 10 : Εντολές επιλογής και αποφάσεων 1 ο Φύλλο Εργασιών Εισαγωγικές ασκήσεις για την εντολή if ΑΠΑΝΤΗΣΕΙΣ 1. Ποιες από τις παρακάτω εντολές είναι σωστές; α) if A + B

Διαβάστε περισσότερα

Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων

Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων Άσκηση 1 α) Η δομή σταθμισμένης ένωσης με συμπίεση διαδρομής μπορεί να τροποποιηθεί πολύ εύκολα ώστε να υποστηρίζει τις

Διαβάστε περισσότερα

Σχέσεις Μερικής ιάταξης

Σχέσεις Μερικής ιάταξης Σχέσεις Μερικής ιάταξης ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Σχέση Μερικής ιάταξης Σχέση Μερικής

Διαβάστε περισσότερα

Λύσεις 4ης Σειράς Ασκήσεων

Λύσεις 4ης Σειράς Ασκήσεων Λύσεις 4ης Σειράς Ασκήσεων Άσκηση 1 Αναγάγουμε τν Κ 0 που γνωρίζουμε ότι είναι μη-αναδρομική (μη-επιλύσιμη) στην γλώσσα: L = {p() η μηχανή Turing Μ τερματίζει με είσοδο κενή ταινία;} Δοσμένης της περιγραφής

Διαβάστε περισσότερα

Ισοδυναµίες, Μερικές ιατάξεις

Ισοδυναµίες, Μερικές ιατάξεις Ισοδυναµίες, Μερικές ιατάξεις Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Σχέσεις 1 / 18 Σύνοψη Προηγούµενου Σχέσεις, Ιδιότητες, Αναπαράσταση

Διαβάστε περισσότερα

β) 3 n < n!, n > 6 i i! = (n + 1)! 1, n 1 i=1

β) 3 n < n!, n > 6 i i! = (n + 1)! 1, n 1 i=1 Κεφάλαιο 2: Στοιχεία Λογικής - Μέθοδοι Απόδειξης 1. Να αποδειχθεί ότι οι λογικοί τύποι: (p ( (( p) q))) (p q) και p είναι λογικά ισοδύναμοι. Θέλουμε να αποδείξουμε ότι: (p ( (( p) q))) (p q) p, ή με άλλα

Διαβάστε περισσότερα

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2016 Λύσεις ασκήσεων προόδου

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2016 Λύσεις ασκήσεων προόδου ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 016 Λύσεις ασκήσεων προόδου Θέμα 1: [16 μονάδες] [8] Έστω ότι μας δίνουν τα παρακάτω δεδομένα: Εάν αυτό το πρόγραμμα ΗΥ είναι αποδοτικό, τότε εκτελείται γρήγορα.

Διαβάστε περισσότερα

HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά HY118-Διακριτά Μαθηματικά Παρασκευή, 16/03/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 17-Mar-18

Διαβάστε περισσότερα

HY Λογική Διδάσκων: Δ. Πλεξουσάκης Εαρινό Εξάμηνο. Φροντιστήριο 6

HY Λογική Διδάσκων: Δ. Πλεξουσάκης Εαρινό Εξάμηνο. Φροντιστήριο 6 HY-180 - Λογική Διδάσκων: Δ. Πλεξουσάκης Εαρινό Εξάμηνο 2015-2016 Φροντιστήριο 6 Α) ΘΕΩΡΙΑ Μέθοδος Επίλυσης (Resolution) Στη μέθοδο της επίλυσης αποδεικνύουμε την ικανοποιησιμότητα ενός συνόλου προτάσεων,

Διαβάστε περισσότερα

Σχέσεις. Διμελής Σχέση. ΣτοΊδιοΣύνολο. Αναπαράσταση

Σχέσεις. Διμελής Σχέση. ΣτοΊδιοΣύνολο. Αναπαράσταση Διμελής Σχέση Σχέσεις Διδάσκοντες: Φ. Αφράτη, Δ. Επιμέλεια διαφανειών: Δ. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διατεταγμένο ζεύγος (α, β): Δύο αντικείμενα

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2)

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2) Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Κανονικές Εκφράσεις (1.3) Τυπικός Ορισμός Ισοδυναμία με κανονικές γλώσσες Μη Κανονικές

Διαβάστε περισσότερα

Δύο λόγια από τη συγγραφέα

Δύο λόγια από τη συγγραφέα Δύο λόγια από τη συγγραφέα Τα μαθηματικά ή τα λατρεύεις ή τα μισείς! Για να λατρέψεις κάτι πρέπει να το κατανοήσεις, για τη δεύτερη περίπτωση τα πράγματα μάλλον είναι λίγο πιο απλά. Στόχος αυτού του βιβλίου

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 2:Στοιχεία Μαθηματικής Λογικής Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C Κεφάλαιο 1 Εισαγωγικές έννοιες Στο κεφάλαιο αυτό θα αναφερθούμε σε ορισμένες έννοιες, οι οποίες ίσως δεν έχουν άμεση σχέση με τους διανυσματικούς χώρους, όμως θα χρησιμοποιηθούν αρκετά κατά τη μελέτη τόσο

Διαβάστε περισσότερα

Κατώτερα φράγματα Κατώτερο φράγμα: εκτίμηση της ελάχιστης εργασίας που απαιτείται για την επίλυση ενός προβλήματος. Παραδείγματα: Αριθμός συγκρίσεων π

Κατώτερα φράγματα Κατώτερο φράγμα: εκτίμηση της ελάχιστης εργασίας που απαιτείται για την επίλυση ενός προβλήματος. Παραδείγματα: Αριθμός συγκρίσεων π Περιορισμοί Αλγοριθμικής Ισχύος Κατηγοριοποίηση πολυπλοκοτήτων Κατώτερα φράγματα Κατώτερο φράγμα: εκτίμηση της ελάχιστης εργασίας που απαιτείται για την επίλυση ενός προβλήματος. Παραδείγματα: Αριθμός

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος 3

Περιεχόμενα. Πρόλογος 3 Πρόλογος Τα πρώτα μαθήματα, σχεδόν σε όλους τους κλάδους των μαθηματικών, περιέχουν, ή θεωρούν γνωστές, εισαγωγικές έννοιες που αφορούν σύνολα, συναρτήσεις, σχέσεις ισοδυναμίας, αλγεβρικές δομές, κλπ.

Διαβάστε περισσότερα

Σχέσεις Μερικής Διάταξης

Σχέσεις Μερικής Διάταξης Σχέση Μερικής Διάταξης Σχέσεις Μερικής Διάταξης Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχέση Μερικής Διάταξης (ή μερική

Διαβάστε περισσότερα

Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχέσεις Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διμελής Σχέση Διατεταγμένο ζεύγος (α, β):

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 4: Μη Ντετερμινιστικά (Αντιαιτιοκρατικά) Πεπερασμένα Αυτόματα (ΝFA)

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 4: Μη Ντετερμινιστικά (Αντιαιτιοκρατικά) Πεπερασμένα Αυτόματα (ΝFA) ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 4: Μη Ντετερμινιστικά (Αντιαιτιοκρατικά) Πεπερασμένα Αυτόματα (ΝFA) Τι θα κάνουμε σήμερα Εισαγωγή στα Μη Ντετερμινιστικά Πεπερασμένα Αυτόματα Τυπικός

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { G,k η G είναι μια ασυμφραστική γραμματική η οποία παράγει κάποια λέξη 1 n όπου n k } (β) { Μ,k η Μ είναι

Διαβάστε περισσότερα

HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems

HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems Ημερομηνία Παράδοσης: 0/1/017 την ώρα του μαθήματος ή με email: mkarabin@csd.uoc.gr Γενικές Οδηγίες α) Επιτρέπεται η αναζήτηση στο Internet και στην βιβλιοθήκη

Διαβάστε περισσότερα

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Εισαγωγή στην Επεξεργασία Ερωτήσεων 1 Επεξεργασία Ερωτήσεων Θα δούμε την «πορεία» μιας SQL ερώτησης (πως εκτελείται) Ερώτηση SQL Ερώτηση ΣΒΔ Αποτέλεσμα 2 Βήματα Επεξεργασίας Τα βασικά βήματα στην επεξεργασία

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τμήμα Εφαρμοσμένης Πληροφορικής & Πολυμέσων. Ψηφιακή Σχεδίαση. Κεφάλαιο 2: Συνδυαστικά Λογικά

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τμήμα Εφαρμοσμένης Πληροφορικής & Πολυμέσων. Ψηφιακή Σχεδίαση. Κεφάλαιο 2: Συνδυαστικά Λογικά ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τμήμα Εφαρμοσμένης Πληροφορικής & Πολυμέσων Ψηφιακή Σχεδίαση Κεφάλαιο 2: Συνδυαστικά Λογικά Κυκλώματα Γ. Κορνάρος Περίγραμμα Μέρος 1 Κυκλώματα Πυλών και

Διαβάστε περισσότερα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΚΕΦΑΛΑΙΟ 2 ο ΚΕΦΑΛΑΙΟ 7 ο ΕΡΩΤΗΣΕΙΣ ΓΕΝΙΚΑ ΠΕΡΙ ΑΛΓΟΡΙΘΜΩΝ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΚΕΦΑΛΑΙΟ 2 ο ΚΕΦΑΛΑΙΟ 7 ο ΕΡΩΤΗΣΕΙΣ ΓΕΝΙΚΑ ΠΕΡΙ ΑΛΓΟΡΙΘΜΩΝ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΚΕΦΑΛΑΙΟ 2 ο ΚΕΦΑΛΑΙΟ 7 ο ΕΡΩΤΗΣΕΙΣ ΓΕΝΙΚΑ ΠΕΡΙ ΑΛΓΟΡΙΘΜΩΝ 1. Έστω ότι ο καθηγητής σας δίνει δύο αριθμούς και σας ζητάει να του πείτε πόσο είναι το άθροισμά τους. Διατυπώστε

Διαβάστε περισσότερα

(ii) X P(X). (iii) X X. (iii) = (i):

(ii) X P(X). (iii) X X. (iii) = (i): Θεωρία Συνόλων Χειμερινό Εξάμηνο 2016 2017 Λύσεις 1. Δείξτε ότι ισχύουν τα ακόλουθα: (i) ω / ω (με άλλα λόγια, το ω δεν είναι φυσικός αριθμός). (ii) Για κάθε n ω, ισχύει ω / n. (iii) Για κάθε n ω, το n

Διαβάστε περισσότερα

Εισαγωγή στους Υπολογιστές

Εισαγωγή στους Υπολογιστές Εισαγωγή στους Υπολογιστές Ενότητα 11: Βασικές έννοιες ψηφιακής λογικής Βασίλης Παλιουράς Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Γιατί χρησιμοποιούμε

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { R η R είναι μια κανονική έκφραση η οποία παράγει μια μη πεπερασμένη γλώσσα} (β) { G η G είναι μια CFG η οποία

Διαβάστε περισσότερα

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης Μάθημα 7β Δρ. Βασίλειος Γ. Καμπουρλάζος Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΤΕΙ Ανατολικής Μακεδονίας και Θράκης 2017-2018 Μια Ενοποιητική Προσέγγιση στην ΥΝ Η Θεωρία Πλεγμάτων στην ΥΝ. Υπολογιστικές Μεθοδολογίες

Διαβάστε περισσότερα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Εισαγωγή στην Επεξεργασία Ερωτήσεων Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Επεξεργασία Ερωτήσεων Θα δούμε την «πορεία» μιας SQL ερώτησης (πως εκτελείται) Ερώτηση SQL Ερώτηση ΣΒΔ Αποτέλεσμα Βάσεις

Διαβάστε περισσότερα

Μαθηματική Ανάλυση Ι

Μαθηματική Ανάλυση Ι Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση Ι Ενότητα 1: Σύνολα, Πραγματικοί αριθμοί Επίκ. Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 3/ΣΕΜΦΕ/ y x= ( ) ( ) .( ) , τότε

ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 3/ΣΕΜΦΕ/ y x= ( ) ( ) .( ) , τότε ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 3/ΣΕΜΦΕ/008-09.(i) S =, : 0 =, :, με + 0 {( ) } {( ) ( )( ) } {(, ):, με 0, 0 } {(, ):, με 0, 0} = + + = 0 + = 0 = (ii). 3 {( ) ( )} ( ) ( ) {(, ):, με 0 ή. } { = } S=, :, με = + =, :,

Διαβάστε περισσότερα

ιµελής Σχέση ιατεταγµένο ζεύγος (α, β): ύο αντικείµενα (όχι κατ ανάγκη διαφορετικά) σε καθορισµένη σειρά. Γενίκευση: διατεταγµένη τριάδα (α, β, γ), δι

ιµελής Σχέση ιατεταγµένο ζεύγος (α, β): ύο αντικείµενα (όχι κατ ανάγκη διαφορετικά) σε καθορισµένη σειρά. Γενίκευση: διατεταγµένη τριάδα (α, β, γ), δι Σχέσεις ιδάσκοντες: Φ. Αφράτη, Σ. Ζάχος,. Σούλιου Επιµέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιµελής Σχέση ιατεταγµένο ζεύγος (α, β):

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Διαίρει και Βασίλευε Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Διαίρει και Βασίλευε Divide and Conquer Η τεχνική διαίρει και βασίλευε αναφέρεται

Διαβάστε περισσότερα

Σύνοψη Προηγούµενου. Ισοδυναµίες, Μερικές ιατάξεις. Σχέσεις Ισοδυναµίας. Σχέσεις, Ιδιότητες, Αναπαράσταση. Ανακλαστικές (a, a) R

Σύνοψη Προηγούµενου. Ισοδυναµίες, Μερικές ιατάξεις. Σχέσεις Ισοδυναµίας. Σχέσεις, Ιδιότητες, Αναπαράσταση. Ανακλαστικές (a, a) R Σύνοψη Προηγούµενου Σχέσεις, Ιδιότητες, Αναπαράσταση Ισοδυναµίες, Μερικές ιατάξεις Ορέστης Τελέλης tllis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ανακλαστικές (, ) R Συµµετρικές (, ) R

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ. Ερώτηση 1. Αν το x o δεν ανήκει στο πεδίο ορισμού μιας συνάρτησης f, έχει νόημα να μιλάμε για παράγωγο της f. στο x = x o?

ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ. Ερώτηση 1. Αν το x o δεν ανήκει στο πεδίο ορισμού μιας συνάρτησης f, έχει νόημα να μιλάμε για παράγωγο της f. στο x = x o? ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση 1 Αν το x o δεν ανήκει στο πεδίο ορισμού μιας συνάρτησης f, έχει νόημα να μιλάμε για παράγωγο της f στο x = x o? Δεν έχει νόημα Ερώτηση 2 Αν μία συνάρτηση f είναι συνεχής στο

Διαβάστε περισσότερα

Ανάλυση της Ορθότητας Προγραμμάτων (HR Κεφάλαιο 4)

Ανάλυση της Ορθότητας Προγραμμάτων (HR Κεφάλαιο 4) Ανάλυση της Ορθότητας Προγραμμάτων (HR Κεφάλαιο 4) Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Η διαδικαστική γλώσσα προγραμματισμού WHILE Τριάδες Hoare Μερική και Ολική Ορθότητα Προγραμμάτων Κανόνες

Διαβάστε περισσότερα

Σχέσεις. ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Σχέσεις. ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχέσεις ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιμελής Σχέση ιατεταγμένο ζεύγος (α, β): ύο αντικείμενα

Διαβάστε περισσότερα

Ι. ΠΡΑΞΕΙΣ. Ορισµός 2 A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ. Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E.

Ι. ΠΡΑΞΕΙΣ. Ορισµός 2 A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ. Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E. Ι. ΠΡΑΞΕΙΣ A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ Ορισµός Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E. Παραδείγµατα:. Η ισότητα x y = x y είναι µια πράξη επί του *. 2. Η ισότητα

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Παρασκευή, 04/04/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/7/2017

Διαβάστε περισσότερα

Ελεγχος, Αξιοπιστία και Διασφάλιση Ποιότητας Λογισµικού Πολυπλοκότητα

Ελεγχος, Αξιοπιστία και Διασφάλιση Ποιότητας Λογισµικού Πολυπλοκότητα Ελεγχος, Αξιοπιστία και Διασφάλιση Ποιότητας Λογισµικού Πολυπλοκότητα Τµήµα Διοίκησης Επιχειρήσεων Τει Δυτικής Ελλάδας Μεσολόγγι Δρ. Α. Στεφανή Διάλεξη 5 2 Εγκυροποίηση Λογισµικού Εγκυροποίηση Λογισµικού

Διαβάστε περισσότερα

Αριθμοθεωρητικοί Αλγόριθμοι

Αριθμοθεωρητικοί Αλγόριθμοι Αλγόριθμοι που επεξεργάζονται μεγάλους ακέραιους αριθμούς Μέγεθος εισόδου: Αριθμός bits που απαιτούνται για την αναπαράσταση των ακεραίων. Έστω ότι ένας αλγόριθμος λαμβάνει ως είσοδο έναν ακέραιο Ο αλγόριθμος

Διαβάστε περισσότερα

Ψηφιακή Σχεδίαση Εργαστήριο Τ.Ε.Ι. ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜ. ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ

Ψηφιακή Σχεδίαση Εργαστήριο Τ.Ε.Ι. ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜ. ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ Ψηφιακή Σχεδίαση Εργαστήριο Τ.Ε.Ι. ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜ. ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2015-2016 Άλγεβρα Boole (Boolean Algebra) Βασικοί ορισμοί Η άλγεβρα Boole μπορεί να οριστεί

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 1. Μαθηματικό Υπόβαθρο 23, 26 Ιανουαρίου 2007 Δρ. Παπαδοπούλου Βίκη 1 1.1. Σύνολα Ορισμός : Σύνολο μια συλλογή από αντικείμενα Στοιχεία: Μέλη συνόλου Τα στοιχεία

Διαβάστε περισσότερα

Διακριτά Μαθηματικά Ι

Διακριτά Μαθηματικά Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διακριτά Μαθηματικά Ι Θεωρία συνόλων Διδάσκων: Επίκουρος Καθηγητής Σπύρος Κοντογιάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Μερικές διατάξεις. HY118- ιακριτά Μαθηµατικά. Μερικές διατάξεις, παράδειγµα. ιαγράµµατα Hasse: Αναπαράσταση σχέσεων µερικής διάταξης

Μερικές διατάξεις. HY118- ιακριτά Μαθηµατικά. Μερικές διατάξεις, παράδειγµα. ιαγράµµατα Hasse: Αναπαράσταση σχέσεων µερικής διάταξης HY118- ιακριτά Μαθηµατικά Παρασκευή, 04/04/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/7/2017

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 13: Παραλλαγές Μηχανών Turing και Περιγραφή Αλγορίθμων

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 13: Παραλλαγές Μηχανών Turing και Περιγραφή Αλγορίθμων ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 13: Παραλλαγές Μηχανών Turing και Περιγραφή Αλγορίθμων Τι θα κάνουμε σήμερα Εισαγωγή Πολυταινιακές Μηχανές Turing (3.2.1) Μη Ντετερμινιστικές Μηχανές

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 37 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (2)

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (2) Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (2) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Αυτόματα Στοίβας (2.2) Τυπικός Ορισμός Παραδείγματα Ισοδυναμία με Ασυμφραστικές

Διαβάστε περισσότερα

Ενδεικτικές Ερωτήσεις Θεωρίας

Ενδεικτικές Ερωτήσεις Θεωρίας Ενδεικτικές Ερωτήσεις Θεωρίας Κεφάλαιο 2 1. Τι καλούμε αλγόριθμο; 2. Ποια κριτήρια πρέπει οπωσδήποτε να ικανοποιεί ένας αλγόριθμος; 3. Πώς ονομάζεται μια διαδικασία που δεν περατώνεται μετά από συγκεκριμένο

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ 118 ερωτήσεις θεωρίας με απάντηση 34 416 ασκήσεις για λύση ερωτήσεις κατανόησης λυμένα παραδείγματα 0 συνδυαστικά θέματα εξετάσεων Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Εισαγωγική ενότητα Το λεξιλόγιο

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα { ww w {a,b}* }. (β) Να διατυπώσετε την τυπική περιγραφή

Διαβάστε περισσότερα

Θεωρία και Αλγόριθμοι Γράφων

Θεωρία και Αλγόριθμοι Γράφων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 13: Προβλήματα Ροών σε Δίκτυα Ιωάννης Μανωλόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creaive

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ & ΥΠΟΛΟΓΙΣΤΙΚΗ ΦΥΣΙΚΗ

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ & ΥΠΟΛΟΓΙΣΤΙΚΗ ΦΥΣΙΚΗ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ & ΥΠΟΛΟΓΙΣΤΙΚΗ ΦΥΣΙΚΗ Μέρος 5ο ΝΙΚΟΛΑΟΣ ΣΤΕΡΓΙΟΥΛΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ 1 Η ΕΝΤΟΛΗ for Με την εντολή for δημιουργούμε βρόχους επανάληψης σε

Διαβάστε περισσότερα

Σχέσεις, Ιδιότητες, Κλειστότητες

Σχέσεις, Ιδιότητες, Κλειστότητες Σχέσεις, Ιδιότητες, Κλειστότητες Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Σχέσεις 1 / 26 Εισαγωγή & Ορισµοί ιµελής Σχέση R από

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Κατανεμημένα Συστήματα Ι Εκλογή αρχηγού και κατασκευή BFS δένδρου σε σύγχρονο γενικό δίκτυο Παναγιώτα Παναγοπούλου Περίληψη Εκλογή αρχηγού σε γενικά δίκτυα Ορισμός του προβλήματος Ο αλγόριθμος FloodMax

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 5: Κανονικές Εκφράσεις

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 5: Κανονικές Εκφράσεις ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 5: Κανονικές Εκφράσεις Τι θα κάνουμε σήμερα Κλειστότητα Κανονικών Πράξεων (1.2.3) Εισαγωγή στις Κανονικές Εκφράσεις Τυπικός ορισμός της κανονικής

Διαβάστε περισσότερα

Ασυμπτωτικός Συμβολισμός

Ασυμπτωτικός Συμβολισμός Ασυμπτωτικός Συμβολισμός Επιμέλεια διαφανειών: Δημήτρης Φωτάκης (λίγες προσθήκες: Άρης Παγουρτζής) Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΛΓΕΒΡΑ BOOLE 2017, Δρ. Ηρακλής Σπηλιώτης Γενικοί ορισμοί Αλγεβρική δομή είναι ένα σύνολο στοιχείων και κάποιες συναρτήσεις με πεδίο ορισμού αυτό το σύνολο. Αυτές οι συναρτήσεις

Διαβάστε περισσότερα

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2019 Λύσεις ασκήσεων προόδου

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2019 Λύσεις ασκήσεων προόδου ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2019 Λύσεις ασκήσεων προόδου Θέμα 1: a. Δείξτε κατά πόσον η πρόταση ((p q) r) ((p q) (q r)) αποτελεί ή όχι ταυτολογία. Κάποιος ιδιόρρυθμος δικαστής ρωτήθηκε κατά

Διαβάστε περισσότερα

ΘΕΜΑ 1: Αλγόριθμος Ford-Fulkerson

ΘΕΜΑ 1: Αλγόριθμος Ford-Fulkerson ΘΕΜΑ : Αλγόριθμος Ford-Fulkerson Α Να εξετάσετε αν ισχύει η συνθήκη συντήρησης της αρχικής ροής στο δίκτυο. Β Με χρήση του αλγορίθμου Ford-Fulkerson να βρεθεί η μέγιστη ροή που μπορεί να σταλεί από τον

Διαβάστε περισσότερα

Δέντρα Απόφασης (Decision(

Δέντρα Απόφασης (Decision( Δέντρα Απόφασης (Decision( Trees) Το μοντέλο που δημιουργείται είναι ένα δέντρο Χρήση της τεχνικής «διαίρει και βασίλευε» για διαίρεση του χώρου αναζήτησης σε υποσύνολα (ορθογώνιες περιοχές) Ένα παράδειγμα

Διαβάστε περισσότερα

Μεταγλωττιστές. Γιώργος Δημητρίου. Μάθημα 12 ο. Πανεπιστήμιο Θεσσαλίας - Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

Μεταγλωττιστές. Γιώργος Δημητρίου. Μάθημα 12 ο. Πανεπιστήμιο Θεσσαλίας - Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Γιώργος Δημητρίου Μάθημα 12 ο Βελτιστοποίηση Μετασχηματισμός κώδικα σε άλλον πιο αποδοτικό Ασφάλεια βελτιστοποίησης Ορθότητα μετασχηματισμών! Πολυπλοκότητα μετασχηματισμών Εντοπισμός πιθανά προβληματικού

Διαβάστε περισσότερα

Φροντιστήριο #9 Λυμένες Ασκήσεις σε Γράφους

Φροντιστήριο #9 Λυμένες Ασκήσεις σε Γράφους Φροντιστήριο #9 Λυμένες Ασκήσεις σε Γράφους Άσκηση 10.1: Στο παρακάτω σχήμα φαίνονται δέκα λατινικοί χαρακτήρες (A, F, K, M, R, S, T, V, X και Z) με τη μορφή γράφων. Ποιοι από αυτούς είναι ισομορφικοί;

Διαβάστε περισσότερα

Συνδετικότητα γραφήματος (graph connectivity)

Συνδετικότητα γραφήματος (graph connectivity) Συνδετικότητα γραφήματος (graph connectivity) Συνδετικότητα γραφήματος (graph connectivity) Υπάρχει μονοπάτι μεταξύ α και β; α Παραδείγματα: υπολογιστές ενός δικτύου ιστοσελίδες ισοδύναμες μεταβλητές ενός

Διαβάστε περισσότερα

Παράσταση αριθμών «κινητής υποδιαστολής» floating point

Παράσταση αριθμών «κινητής υποδιαστολής» floating point Παράσταση αριθμών «κινητής υποδιαστολής» floating point Με n bits μπορούμε να παραστήσουμε 2 n διαφορετικούς αριθμούς π.χ. με n=32 μπορούμε να παραστήσουμε τους αριθμούς από έως 2 32 -= 4,294,967,295 4

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ. Η συνεπαγωγή. Η Ισοδυναμία ή διπλή συνεπαγωγή. Ο σύνδεσμος «ή» Ο σύνδεσμος «και»

ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ. Η συνεπαγωγή. Η Ισοδυναμία ή διπλή συνεπαγωγή. Ο σύνδεσμος «ή» Ο σύνδεσμος «και» Η συνεπαγωγή ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ Αν P και Q είναι δύο ισχυρισμοί, τέτοιοι ώστε, όταν αληθεύει ο P να αληθεύει και ο Q, τότε λέμε ότι: «ο P συνεπάγεται τον Q» και γράφουμε P Q. Παράδειγμα: x=3 x 2 =9. Ο

Διαβάστε περισσότερα

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #3: Αρχή της Επέκτασης - Ασαφείς Σχέσεις. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #3: Αρχή της Επέκτασης - Ασαφείς Σχέσεις. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #3: Αρχή της Επέκτασης - Ασαφείς Σχέσεις Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης

Διαβάστε περισσότερα

Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο

Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο Πολλαπλασιασμός μεγάλων ακεραίων (1) Για να πολλαπλασιάσουμε δύο ακεραίους με n 1 και n 2 ψηφία με το χέρι, θα εκτελέσουμε n 1 n 2 πράξεις πολλαπλασιασμού Πρόβλημα ρβημ όταν έχουμε πολλά ψηφία: A = 12345678901357986429

Διαβάστε περισσότερα

Ανάλυση Ι και Εφαρμογές Σημειώσεις από τις παραδόσεις Α. Γιαννόπουλος Τμήμα Φυσικής Πανεπιστήμιο Αθηνών Αθήνα 2018

Ανάλυση Ι και Εφαρμογές Σημειώσεις από τις παραδόσεις Α. Γιαννόπουλος Τμήμα Φυσικής Πανεπιστήμιο Αθηνών Αθήνα 2018 Ανάλυση Ι και Εφαρμογές Σημειώσεις από τις παραδόσεις Α. Γιαννόπουλος Τμήμα Φυσικής Πανεπιστήμιο Αθηνών Αθήνα 08 Περιεχόμενα Το σύνολο των πραγματικών αριθμών. Φυσικοί, ακέραιοι και ρητοί αριθμοί............................

Διαβάστε περισσότερα

Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες

Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες Κατευθυνόμενο γράφημα Συνάρτηση χωρητικότητας 2 6 20 Ροή δικτύου Συνάρτηση αφετηρίακός κόμβος 0 με τις ακόλουθες ιδιότητες 9 7 τερματικός κόμβος Περιορισμός χωρητικότητας: Αντισυμμετρία: Διατήρηση ροής:

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { Μ η Μ είναι μια ΤΜ η οποία διαγιγνώσκει το πρόβλημα ΙΣΟΔΥΝΑΜΙΑ ΤΜ (διαφάνεια 9 25)} (α) Γνωρίζουμε ότι το

Διαβάστε περισσότερα

(a 1, b 1 ) (a 2, b 2 ) = (a 1 a 2, b 1 b 2 ).

(a 1, b 1 ) (a 2, b 2 ) = (a 1 a 2, b 1 b 2 ). ΕΜ0 - Διακριτά Μαθηματικά Ιανουαρίου 006 Άσκηση - Λύσεις Πρόβλημα [0 μονάδες] Εστω L και L δύο κυκλώματα σε ένα γράφημα G. Εστω a μία ακμή που ανήκει και στο L και στο L και έστω b μία ακμή που ανήκει

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) ({ G η G είναι μια ασυμφραστική γραμματική που δεν παράγει καμιά λέξη με μήκος μικρότερο του 2 } (β) { Μ,w

Διαβάστε περισσότερα

Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες

Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες Κατευθυνόμενο γράφημα Συνάρτηση χωρητικότητας 12 16 2 Ροή δικτύου Συνάρτηση αφετηρίακός κόμβος 13 1 με τις ακόλουθες ιδιότητες 4 14 9 7 4 τερματικός κόμβος Περιορισμός χωρητικότητας: Αντισυμμετρία: Διατήρηση

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 2: Μαθηματικό Υπόβαθρο

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 2: Μαθηματικό Υπόβαθρο ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 2: Μαθηματικό Υπόβαθρο Τι θα κάνουμε σήμερα Συναρτήσεις & Σχέσεις (0.2.3) Γράφοι (Γραφήματα) (0.2.4) Λέξεις και Γλώσσες (0.2.5) Αποδείξεις (0.3) 1

Διαβάστε περισσότερα

4.3 Ορθότητα και Πληρότητα

4.3 Ορθότητα και Πληρότητα 4.3 Ορθότητα και Πληρότητα Συστήματα αποδείξεων όπως η μορφολογική παραγωγή και η κατασκευή μοντέλων χρησιμοποιούνται για να δείξουμε την εγκυρότητα εξαγωγών συμπερασμάτων. Ένα σύστημα αποδείξεων μπορεί

Διαβάστε περισσότερα