ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 3/ΣΕΜΦΕ/ y x= ( ) ( ) .( ) , τότε

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 3/ΣΕΜΦΕ/ y x= ( ) ( ) .( ) , τότε"

Transcript

1 ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 3/ΣΕΜΦΕ/ (i) S =, : 0 =, :, με + 0 {( ) } {( ) ( )( ) } {(, ):, με 0, 0 } {(, ):, με 0, 0} = + + = 0 + = 0 = (ii). 3 {( ) ( )} ( ) ( ) {(, ):, με 0 ή. } { = } S=, :, με = + =, :, με 0 = = = Για κάθε ισχύει ότι: = 0 = πολ. ( n) ( mod ) αληθεύει η ανακλαστική ιδιότητα. Αν (mod n), τότε ( ) ( ) ( ) = πολ. n και = πολ. n modn, n, δηλαδή δηλαδή ισχύει η συμμετρική ιδιότητα. mod z mod n, τότε = kn, z = mn, k, m Αν ( n ) και ( ) z = ( ) + ( z) = ( k+ m) n= πολ. ( n), δηλαδή z( mod n), δηλαδή ισχύει η μεταβατική ιδιότητα. Είναι γνωστή η ισοδυναμία: = πολ n οι, διαιρούμενοι με το n δίνουν το ίδιο υπόλοιπο..( ) Τα δυνατά υπόλοιπα μιας διαίρεσης με το φυσικό αριθμό n είναι τα,,, n-, οπότε οι κλάσεις ισοδυναμίας που ορίζονται είναι οι εξής: 0 = : 0 = kn, k = : = kn, k { } { } { kn k } { kn k = : =, = : = +, }..

2 { : ( n ) = kn, k } = { : = kn+ n } n =, k. Για παράδειγμα, για n =, έχουμε τις κλάσεις ισοδυναμίας: { k k } { k k } 0 = : =, = σύνολο αρτίων = : = +, = σύνολο περιττών. * 3. Η σχέση είναι σχέση ισοδυναμίας στο, αφού είναι ανακλαστική z z z ( z + ) = z ( z + ), που ισχύει, συμμετρική [ αφού z w ( ) ( ) ( ) ( ) z w + = w z + w z + = z w + w z] z w w u και μεταβατική [ z w και w u = και = z + w + w + u + z u = z u]. z + u + Έστω α,0< α <. Τότε για z = + i,, έχουμε * * z α * + α α = { z : α z} = z : = = + i : = z + α α + * ρ α = + i : + = ρ με = ρ + α +. Όμως, ισχύει: ρ α αρ ( α ) ρ α 0 ( ρ α ) = + + = ρ = 0 ρ + α + α ρ = α ή ρ = α + = α ή + =, α οπότε η κλάση ισοδυναμίας του α,0< α < είναι η ένωση δύο κύκλων με κέντρο το α α Ο ( 0,0) και ακτίνες α και. α 4. (i) Η πρόσθεση πινάκων είναι εσωτερική πράξη στο G, αφού για a b + a + b Α= G και = G G Β b a Α+Β= ( + b) + a.

3 Επιπλέον, η προσεταιριστική ιδιότητα αληθεύει γενικά στη πρόσθεση πινάκων, 0 0 όπως και η αντιμεταθετική ιδιότητα, ενώ ο πίνακας 0 0 είναι το μηδενικό στοιχείο της πρόσθεσης. Ακόμη, αν G, τότε το στοιχείο G, είναι το συμμετρικό του ως προς την πρόσθεση. 0 0 (ii) Ομοίως, αποδεικνύεται ότι το σύνολο G { O}, όπου Ο= 0 0, είναι ομάδα ως προς τον πολλαπλασιασμό πινάκων, ο οποίος είναι εσωτερική πράξη στο G. Ο αντίστροφος του πίνακα G, (, ) ( 0, ) με 0 είναι ο πίνακας = Έχουμε τον πίνακα πολλαπλασιασμού - i i - i i - - i i i i i - i i i - οπότε ο πολλαπλασιασμός στο σύνολο Α = {,, i, i} είναι εσωτερική πράξη. Η προσεταιριστική ιδιότητα αληθεύει γενικώς στ ο πολλαπλασιασμό μιγαδικών, άρα αληθεύει και στο σύνολο Α. Επιπλέον, το στοιχείο Α είναι ουδέτερο στοιχείο και κάθε στοιχείο του Α έχει αντίστροφο, για παράδειγμα =, ( ) =, i = i και ( i) = i. ( ) ( b ) ( ) ( ) ( ) ( ) ab a = a bb a = aea = aa = e 6. Ισχύει ότι: και Άρα το στοιχείο b b a a b b a a b b e b b b e = = = =. a είναι το αντίστροφο του ab. 7. ( ) ( ) ( ) ( ) ( ) ab = a b ab ab = aa bb a b a b= aabb a abab = a aabb bab = abb = babb = abbb b a e= a b e b a = a b, για κάθε ab, G. Άρα η ομάδα είναι αβελιανή. ( G, ) 8. Ι. Αν Η υποομάδα της G, τότε από τον ορισμό, η Η είναι ομάδα με την ίδια πράξη, οπότε Η, για κάθε, Η και Η, για κάθε Η.

4 Έστω τώρα ότι αληθεύουν τα (α) και (β). Τότε το σύνο λο Η είναι εφοδιασμένο μ ε μία εσωτερική πράξη για την οποία ισχύουν: (i) Η προσεταιριστική ιδιότητα, αφού αυτή αληθεύει στο G και έχουμε Η G. (ii) Επειδή Η, υπάρχει Η για το οποίο από τη (β) έπεται ότι και Η, οπότε από το (α) προκύπτει και ότι = e Η, δηλαδή η μονάδα του G ανήκει στο Η και είναι μονάδα για το Η, αφού ισχύει ότι e= e =, για κάθε Η G. (iii) Αν Η, τότε λόγω της (β) και Η και = = e. ΙΙ. Αν Η υπο ομάδα της G, τότε από τον ορι σμό, για κάθε, Η θα ισχύει ότι Η και Η, οπότε θα ισχύει και ότι Η. Αντίστροφα, έστω ότι Η, για κάθε, Η. Τότε, αφού Η, θα υπάρχει Η, οπότε θεωρώντας = λαμβάνουμε από την υπόθεση ότι Η e Η. Επομένως, για κάθε Η θα ισχύει ότι e και επίση υπόθεση ( ) ς από Η Η. = Η Επομένως, ικανοποιούνται οι υποθέσεις της Ι. Άρα Η είναι υποομάδα της G. 9. Αν R, τότε R Αν, R, τότε R + και ( ) ( ) ( ) + = = = = + + = 0, για κάθε R. () + και ( ) + = = = + + = 0. () Λόγ ω της () θα έχ ουμε και + = 0 (3) Από τις () και (3) έχουμε + = + =, για κάθε, R. 0. Αν +, z+ w Α, τότε ( + ) + ( z+ w ) z+ ( w) ( )( z w ) ( z + w) ( w z) = + + Α και + + = + + Α, οπότε οι πράξεις της πρόσθεσης και του πολλαπλασιασμού είναι εσωτερικές στο Α. Επιπλέον για την πρόσ θεση και τον πολλαπλασιασμό ισχύει η αντιμεταθετική και η προσεταιριστική ιδιότητα καθώς και η επιμεριστική ιδιότητα, αφού αυτές ισχύουν στο. Το ουδέτερο στοιχείο της πρόσθεσης είναι το 0+ 0 Α, ενώ το αντίθετο στοιχείο του + είναι το ( ) + ( ) Α. Η μονάδα του πολλαπλασιασμού προκύπτει από την ισότητα ( )( ) a+ b + = a+ b, για κάθε a+ b Α, που είναι ισοδύναμη με το σύστημα a + b = a, b + a = b, για κάθε ab,, από το οποίο προκύπτει ότι: = και = 0.

5 { } Το αντίστροφο στοιχείο του a+ b Α 0+ 0 υπάρχει, όπως προκύπτει από την εξίσωση ( )( ) 0 a + b = a, b a+ b + = + = =. b + a = 0 a b a b a b a+ b = +. a b a b Άρα ισχύει: ( )

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 8: Σχέσεις - Πράξεις Δομές Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 9: Εσωτερική πράξη και κλάσεις ισοδυναμίας - Δομές Ισομορφισμοί Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 1

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 1 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 10 Μαρτίου 2017 Ασκηση 1.

Διαβάστε περισσότερα

0 + a = a + 0 = a, a k, a + ( a) = ( a) + a = 0, 1 a = a 1 = a, a k, a a 1 = a 1 a = 1,

0 + a = a + 0 = a, a k, a + ( a) = ( a) + a = 0, 1 a = a 1 = a, a k, a a 1 = a 1 a = 1, I ΠΙΝΑΚΕΣ 11 Σώμα 111 Ορισμός: Ενα σύνολο k εφοδιασμένο με δύο πράξεις + και ονομάζεται σώμα αν ικανοποιούνται οι παρακάτω ιδιότητες: (Α (α (Προσεταιριστική ιδιότητα της πρόσθεσης (a + b + c = a + (b +

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 3

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 3 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 3 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Παρασκευή 2 Οκτωβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

a. a + b = 3. b. a διαιρεί τ ο b. c. a - b = 0. d. ΜΚΔ(a, b) = 1. e. ΕΚΠ(a, b) = 6.

a. a + b = 3. b. a διαιρεί τ ο b. c. a - b = 0. d. ΜΚΔ(a, b) = 1. e. ΕΚΠ(a, b) = 6. ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο 2016 4 η Σειρά Ασκήσεων - Λύσεις Άσκηση 4.1 [1 μονάδα] Βρείτε όλα τα διατεταγμένα ζεύγη στη σχέση R από το Α={0,1,2,3} στο Β={0,1,2,3,4} όπου (a,b) R αν και μόνο

Διαβάστε περισσότερα

ΡΗΤΟΙ ΑΡΙΘΜΟΙ - ΘΕΩΡΙΑ

ΡΗΤΟΙ ΑΡΙΘΜΟΙ - ΘΕΩΡΙΑ ΡΗΤΟΙ ΑΡΙΘΜΟΙ - ΘΕΩΡΙΑ Α. ΟΡΙΣΜΟΙ Θετικοί αριθµοί είναι οι αριθµοί που έχουν πρόσηµο το + (πολλές φορές το + παραλείπεται) π.χ. +3, +105, +, + 0,7, 326. Αρνητικοί αριθµοί είναι οι αριθµοί που έχουν πρόσηµο

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Πίνακες Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Πίνακες Μητρώα Πίνακας: Ορθογώνια διάταξη αριθμών σε γραμμές και στήλες

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Θεωρία αριθμών Αλγεβρικές δομές. Χρήστος Ξενάκης

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Θεωρία αριθμών Αλγεβρικές δομές. Χρήστος Ξενάκης Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Θεωρία αριθμών Αλγεβρικές δομές Χρήστος Ξενάκης Το σύνολο των ακεραίων Ζ = {..., -2, -1, 0, 1, 2,...} Το σύνολο των φυσικών Ν = {0, 1, 2,...}

Διαβάστε περισσότερα

R={α/ αρητός ή άρρητος αριθμός }

R={α/ αρητός ή άρρητος αριθμός } o ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ Οι ρητοί και οι άρρητοι αριθμοί λέγονται πραγματικοί αριθμοί. Το σύνολο που περιέχει όλους τους πραγματικούς αριθμούς λέγεται σύνολο των πραγματικών αριθμών και συμβολίζεται με R.

Διαβάστε περισσότερα

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012 ιδασκοντες: Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 1 Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 10 Οκτωβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 3

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 3 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 3 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 31 Μαρτίου 2017 Υπενθυµίζουµε

Διαβάστε περισσότερα

ΠΛΗ 12- Σχέση ισοδυναμίας, γραμμικά συστήματα και απαλοιφή Gauss

ΠΛΗ 12- Σχέση ισοδυναμίας, γραμμικά συστήματα και απαλοιφή Gauss .4 Σχέση ισοδυναμίας, γραμμικά συστήματα και απαλοιφή Gauss Σχέση ισοδυναμίας. Έστω το σύνολο των ρητών αριθμών Q και η σχέση της ισότητας σε αυτό που ορίζεται ως εξής: Δύο στοιχεία α, γ Q είναι ίσα αν

Διαβάστε περισσότερα

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΕΠΑΝΑΛΗΨΗΣ ΓΙΑ ΤΙΣ ΓΙΟΡΤΕΣ (ΑΡΙΘΜΗΤΙΚΗ)

ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΕΠΑΝΑΛΗΨΗΣ ΓΙΑ ΤΙΣ ΓΙΟΡΤΕΣ (ΑΡΙΘΜΗΤΙΚΗ) ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΕΠΑΝΑΛΗΨΗΣ ΓΙΑ ΤΙΣ ΓΙΟΡΤΕΣ (ΑΡΙΘΜΗΤΙΚΗ) 1. Ένα κεφάλαιο ενός βιβλίου ξεκινάει από τη σελίδα 32 και τελειώνει στη σελίδα 75. Από πόσες σελίδες αποτελείται το κεφάλαιο; Αν το κεφάλαιο

Διαβάστε περισσότερα

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Στους πραγματικούς αριθμούς ορίστηκαν οι

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ασύμμετρα Κρυπτοσυστήματα κλειδί κρυπτογράφησης k1 Αρχικό κείμενο (m) (δημόσιο κλειδί) Αλγόριθμος

Διαβάστε περισσότερα

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 1 Εισαγωγη : Πραξεις επι Συνολων και Σωµατα Αριθµων

Διαβάστε περισσότερα

Ι. ΠΡΑΞΕΙΣ. Ορισµός 2 A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ. Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E.

Ι. ΠΡΑΞΕΙΣ. Ορισµός 2 A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ. Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E. Ι. ΠΡΑΞΕΙΣ A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ Ορισµός Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E. Παραδείγµατα:. Η ισότητα x y = x y είναι µια πράξη επί του *. 2. Η ισότητα

Διαβάστε περισσότερα

Γραμμική Αλγεβρα ΙΙ Διάλεξη 1 Εισαγωγή Χρήστος Κουρουνιώτης Πανεπισ τήμιο Κρήτης 19/2/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 1 19/2/ / 13

Γραμμική Αλγεβρα ΙΙ Διάλεξη 1 Εισαγωγή Χρήστος Κουρουνιώτης Πανεπισ τήμιο Κρήτης 19/2/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 1 19/2/ / 13 Γραμμική Άλγεβρα ΙΙ Διάλεξη 1 Εισαγωγή Χρήστος Κουρουνιώτης Πανεπιστήμιο Κρήτης 19/2/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 1 19/2/2014 1 / 13 Εισαγωγή Τι έχουμε μάθει; Στο πρώτο μάθημα Γραμμικής Άλγεβρας

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» 1 2.1 ΟΙ ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ιδιότητες των πράξεων Στους πραγματικούς αριθμούς ορίστηκαν οι πράξεις της πρόσθεσης και του πολλαπλασιασμού και με την οήθειά τους η αφαίρεση και η διαίρεση. Για

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Παρασκευή 16 & Τετάρτη 21 Νοεµβρίου

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Προτεινοµενες Ασκησεις - Φυλλαδιο 1

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Προτεινοµενες Ασκησεις - Φυλλαδιο 1 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Προτεινοµενες Ασκησεις - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 25 Φεβρουαβρίου

Διαβάστε περισσότερα

β) 3 n < n!, n > 6 i i! = (n + 1)! 1, n 1 i=1

β) 3 n < n!, n > 6 i i! = (n + 1)! 1, n 1 i=1 Κεφάλαιο 2: Στοιχεία Λογικής - Μέθοδοι Απόδειξης 1. Να αποδειχθεί ότι οι λογικοί τύποι: (p ( (( p) q))) (p q) και p είναι λογικά ισοδύναμοι. Θέλουμε να αποδείξουμε ότι: (p ( (( p) q))) (p q) p, ή με άλλα

Διαβάστε περισσότερα

Αλγεβρικές Παραστάσεις

Αλγεβρικές Παραστάσεις Αλγεβρικές Παραστάσεις 1.1 Πράξεις με πραγματικούς αριθμούς (Επαναλήψεις-συμπληρώσεις) 1 1.1 Πράξεις με πραγματικούς αριθμούς (Επαναλήψεις-συμπληρώσεις) Α Οι πραγματικοί αριθμοί και οι πράξεις τους Πραγματικοί

Διαβάστε περισσότερα

f : G G G = 7 12 = 5 / N. x 2 +1 (x y) z = (x+y+xy) z = x+y+xy+z+(x+y+xy)z = x+y+z+xy+yz+xz+xyz.

f : G G G = 7 12 = 5 / N. x 2 +1 (x y) z = (x+y+xy) z = x+y+xy+z+(x+y+xy)z = x+y+z+xy+yz+xz+xyz. Σ.Παπαδόπουλος 1 1 Βασικές έννοιες ομάδας Εστω G ένα σύνολο με G. Μία πράξη στο G είναι μία συνάρτηση f : G G G. Αντί f(x, y) γράφουμε x y και αν δεν υπάρχει περίπτωση σύγχυσης xy. Είναι φανερό ότι σε

Διαβάστε περισσότερα

(β ) ((X c Y ) (X c Y c )) c

(β ) ((X c Y ) (X c Y c )) c Λύσεις Ασκήσεων στα Θεμέλια των Μαθηματικών II Ρωμανός-Διογένης Μαλικιώσης Παρασκευή, 29 Οκτωβρίου 2010 Άσκηση 1. Απλοποιήστε τις ακόλουθες εκφράσεις (α ) (D c F ) c (D F ) (β ) ((X c Y ) (X c Y c )) c

Διαβάστε περισσότερα

a = a a Z n. a = a mod n.

a = a a Z n. a = a mod n. Αλγεβρα Ι Χειμερινο Εξαμηνο 2017 18 Διάλεξη 1 Ενότητα 1. Πράξεις: Πράξεις στο σύνολο S, ο πίνακας της πράξης, αντιμεταθετικές πράξεις. Προσεταιριστικές πράξεις, το στοιχείο a 1 a 2 a n. Η πράξη «σύνθεση

Διαβάστε περισσότερα

2 Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ

2 Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΧΟΛΙΚΟ ΕΤΟΣ 016-017 ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΟΙ ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ Ι ΙΟΤΗΤΕΣ ΤΟΥΣ ΡΗΤΟΙ λέγονται οι αριθµοί : ΟΙ ΠΕΡΙΟ ΙΚΟΙ αριθµοί είναι :. ΑΡΡΗΤΟΙ

Διαβάστε περισσότερα

ΜΑΣ121: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ I Εαρινό εξάμηνο , Διδάσκων: Γιώργος Γεωργίου ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ, Διάρκεια: 2 ώρες 18 Νοεμβρίου, 2017

ΜΑΣ121: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ I Εαρινό εξάμηνο , Διδάσκων: Γιώργος Γεωργίου ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ, Διάρκεια: 2 ώρες 18 Νοεμβρίου, 2017 ΜΑΣ: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ I Εαρινό εξάμηνο 07-08, Διδάσκων: Γιώργος Γεωργίου ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ, Διάρκεια: ώρες 8 Νοεμβρίου, 07 Δίνονται 4 προβλήματα που αντιστοιχούν σε 0 μονάδες με άριστα το 00! ΟΝΟΜΑ: Αρ.

Διαβάστε περισσότερα

Ερωτήσεις επί των ρητών αριθµών

Ερωτήσεις επί των ρητών αριθµών Σελ. 1 Ερωτήσεις επί των ρητών αριθµών 1. Ποια είναι τα πρόσηµα των ακεραίων αριθµών; Ζ={... -3,-2,-1,0,+1,+2,+3,... } 2. Ποιοι αριθµοί λέγονται θετικοί και ποιοι αρνητικοί; Γράψε από έναν. 3. Στον άξονα

Διαβάστε περισσότερα

Α Δ Ι. Δευτέρα 13 Ιανουαρίου 2014

Α Δ Ι. Δευτέρα 13 Ιανουαρίου 2014 Α Δ Ι Α - Φ 9 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Δευτέρα 13 Ιανουαρίου

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Πίνακες Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Πίνακες Μητρώα Πίνακας: Ορθογώνια διάταξη αριθμών σε γραμμές και στήλες

Διαβάστε περισσότερα

2. Να γράψετε έναν αριθμό που είναι μεγαλύτερος από το 3,456 και μικρότερος από το 3,457.

2. Να γράψετε έναν αριθμό που είναι μεγαλύτερος από το 3,456 και μικρότερος από το 3,457. 1. Ένα κεφάλαιο ενός βιβλίου ξεκινάει από τη σελίδα 32 και τελειώνει στη σελίδα 75. Από πόσες σελίδες αποτελείται το κεφάλαιο; Αν το κεφάλαιο ξεκινάει από τη σελίδα κ και τελειώνει στη σελίδα λ, από πόσες

Διαβάστε περισσότερα

Δοκιμασίες πολλαπλών επιλογών

Δοκιμασίες πολλαπλών επιλογών Δοκιμασίες πολλαπλών επιλογών ) Η απόλυτη τιμή θετικού αριθμού είναι: Α. Ο αντίθετός του Β. Ο ίδιος ο αριθμός Γ. Ο αντίστροφός του 2) Αν x =3, τότε Α. x=3 Β. x 0 Γ. x=-3 Δ. x=3 ή x=-3 3) Με το -x συμβολίζουμε

Διαβάστε περισσότερα

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ρητός ονομάζεται κάθε αριθμός που έχει ή μπορεί να πάρει τη μορφή κλάσματος, όπου, είναι ακέραιοι με 0. Ρητοί αριθμοί : Q /, 0. Έτσι π.χ.

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 7 Ο ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 1. Όταν μπροστα" (αριστερα") απο" ε"ναν αριθμο" γραφει" το συ"μβολο + το"τε ο αριθμο"ς

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδες Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2014/asi2014.html, https://sites.google.com/site/maths4edu/home/algdom114

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 25 Οκτωβρίου Ασκηση 1. Στο σύνολο των πραγματικών αριθμών R ορίζουμε μια σχέση R R R ως εξής:

Α Δ Ι. Παρασκευή 25 Οκτωβρίου Ασκηση 1. Στο σύνολο των πραγματικών αριθμών R ορίζουμε μια σχέση R R R ως εξής: Α Δ Ι Α - Φ 1 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 25 Οκτωβρίου 2013 Ασκηση

Διαβάστε περισσότερα

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C Κεφάλαιο 1 Εισαγωγικές έννοιες Στο κεφάλαιο αυτό θα αναφερθούμε σε ορισμένες έννοιες, οι οποίες ίσως δεν έχουν άμεση σχέση με τους διανυσματικούς χώρους, όμως θα χρησιμοποιηθούν αρκετά κατά τη μελέτη τόσο

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος 3. Αν A 5 4, B 4, C να υπολογίσετε τις ακόλουθες πράξεις 4 3 8 3 7 3 (αν έχουν νόημα): α) AB, b) BA, c) CB, d) C B,

Διαβάστε περισσότερα

( ) Ίσες συναρτήσεις. = g, Οι συναρτήσεις f, g λέμε ότι είναι ίσες και συμβολίζουμε f. όταν: Έχουν το ίδιο πεδία ορισμού Α

( ) Ίσες συναρτήσεις. = g, Οι συναρτήσεις f, g λέμε ότι είναι ίσες και συμβολίζουμε f. όταν: Έχουν το ίδιο πεδία ορισμού Α .5.. Ίσες συναρτήσεις ΣΥΝΑΡΤΗΣΕΙΣ 7 Ο ΜΑΘΗΜΑ Οι συναρτήσεις f, g λέμε ότι είναι ίσες και συμβολίζουμε f = g, Έχουν το ίδιο πεδία ορισμού Α Για κάθε x Α ισχύει f ( x) = g( x) Αν για τις συναρτήσεις: f:

Διαβάστε περισσότερα

1 Οι πραγµατικοί αριθµοί

1 Οι πραγµατικοί αριθµοί 1 Οι πραγµατικοί αριθµοί 1.1 Σύνολα αριθµών Το σύνολο των ϕυσικών αριθµών N = {1, 2, 3,...} Το σύνολο των ακεραίων Z = {... 3, 2, 1, 0, 1, 2, 3,...}. Οι ακέραιοι διαµερίζονται σε άρτιους και περιττούς

Διαβάστε περισσότερα

Γραμμικά Χρονικά Αμετάβλητα Συστήματα. Ψ.Ε.Σ.Ε. Σ. Θεοδωρίδης 1

Γραμμικά Χρονικά Αμετάβλητα Συστήματα. Ψ.Ε.Σ.Ε. Σ. Θεοδωρίδης 1 Γραμμικά Χρονικά Αμετάβλητα Συστήματα x T [ ] y x y Ψ.Ε.Σ.Ε. Σ. Θεοδωρίδης Γραμμικά Χρονικά Αμετάβλητα Συστήματα x T [ ] y x y Συνέλιξη y x, όπου y x η κρουστική απόκριση Ψ.Ε.Σ.Ε. Σ. Θεοδωρίδης 2 Ιδιότητες

Διαβάστε περισσότερα

Αλγεβρικές Δομές Ι. 1 Ομάδα I

Αλγεβρικές Δομές Ι. 1 Ομάδα I Αλγεβρικές Δομές Ι 1 Ομάδα I Ά σ κ η σ η 1.1 Έστω G μια προσθετική ομάδα S ένα μη κενό σύνολο και M(S G το σύνολο όλων των συναρτήσεων f : S G. Δείξτε ότι το σύνολο M(S G είναι ομάδα με πράξη την πρόσθεση

Διαβάστε περισσότερα

1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΔΑΜΑΝΤΙΟΣ ΣΧΟΛΗ ΤΑΞΗ Δ ΟΝΟΜΑ α. Αντιμεταθετική ιδιότητα 1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Π Ρ Ο Σ Θ Ε Σ Η Α. ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΠΡΟΣΘΕΣΗΣ 8 + 7 = 15 ή 7 + 8 = 15 346 ή 517 ή 82 + 517 + 82 + 346 82 346 517 945 945

Διαβάστε περισσότερα

Εις άτοπον απαγωγή. Απόδειξη διά τ ης εἰς ἄτοπον απαγωγ ης / proof by contradiction

Εις άτοπον απαγωγή. Απόδειξη διά τ ης εἰς ἄτοπον απαγωγ ης / proof by contradiction Εις άτοπον απαγωγή Απόδειξη διά τ ης εἰς ἄτοπον απαγωγ ης / proof by contradiction Για να αποδείξουμε την συνεπαγωγή των προτάσεων P Q αρκεί να αποδείξουμε ότι η υπόθεση { P αληθής και Q αναληθής } συνεπάγεται

Διαβάστε περισσότερα

Ισότητα, Αλγεβρικές και Αναλυτικές Ιδιότητες Πραγματικών Ακολουθιών

Ισότητα, Αλγεβρικές και Αναλυτικές Ιδιότητες Πραγματικών Ακολουθιών Ισότητα, Αλγεβρικές και Αναλυτικές Ιδιότητες Πραγματικών Ακολουθιών Συμβολισμοί Σε αναλογία με τους ορισμούς συμβολίζουμε μια ακολουθία: 1 είτε μέσω του διανυσματικού ορισμού, παραθέτοντας αναγκαστικά

Διαβάστε περισσότερα

Διάταξη Πραγματικών Αριθμών. Έστω α, β πραγματικοί αριθμοί. Τι σχέση μπορεί να έχουν αυτοί οι αριθμοί; Μπορεί, να είναι ίσοι: Να είναι άνισοι, δηλαδή:

Διάταξη Πραγματικών Αριθμών. Έστω α, β πραγματικοί αριθμοί. Τι σχέση μπορεί να έχουν αυτοί οι αριθμοί; Μπορεί, να είναι ίσοι: Να είναι άνισοι, δηλαδή: Διάταξη Πραγματικών Αριθμών Έστω α, β πραγματικοί αριθμοί. Τι σχέση μπορεί να έχουν αυτοί οι αριθμοί; Μπορεί, να είναι ίσοι: α=β ή Να είναι άνισοι, δηλαδή: Πρόσθεση πραγματικών αριθμών Αν α, β ομόσημοι

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 10: Αριθμητική υπολοίπων - Κυκλικές ομάδες: Διαιρετότητα - Ευκλείδειος αλγόριθμος - Κατάλοιπα Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ. Να εξετάσετε αν είναι ίσες οι συναρτήσεις f, g όταν: x x 2 x x. x x g x. ln x ln x 1 και

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ. Να εξετάσετε αν είναι ίσες οι συναρτήσεις f, g όταν: x x 2 x x. x x g x. ln x ln x 1 και Α ΟΜΑΔΑ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Να εξετάσετε αν είναι ίσες οι συναρτήσεις, όταν: () με R και (). Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ Το πεδίο ορισμού της είναι A R. Επομένως A A R Α Θα εξετάσουμε αν για κάθε R ισχύει.

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 17 Οκτωβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

Η ΑΞΙΩΜΑΤΙΚΉ ΘΕΜΕΛΙΩΣΗ ΤΩΝ ΠΡΑΓΜΑΤΙΚΏΝ ΑΡΙΘΜΩΝ ΚΑΙ Η ΕΙΣΑΓΩΓΗ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ. Αργύρης Φελλούρης Καθηγητής Ε.Μ.Π.

Η ΑΞΙΩΜΑΤΙΚΉ ΘΕΜΕΛΙΩΣΗ ΤΩΝ ΠΡΑΓΜΑΤΙΚΏΝ ΑΡΙΘΜΩΝ ΚΑΙ Η ΕΙΣΑΓΩΓΗ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ. Αργύρης Φελλούρης Καθηγητής Ε.Μ.Π. Η ΑΞΙΩΜΑΤΙΚΉ ΘΕΜΕΛΙΩΣΗ ΤΩΝ ΠΡΑΓΜΑΤΙΚΏΝ ΑΡΙΘΜΩΝ ΚΑΙ Η ΕΙΣΑΓΩΓΗ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ Αργύρης Φελλούρης Καθηγητής Ε.Μ.Π. Στις σύντομες σημειώσεις που ακολουθούν θα περιγράψουμε την αξιωματική θεμελίωση των

Διαβάστε περισσότερα

Θεωρητικά Θέµατα. Ι. Θεωρία Οµάδων. x R y ή x R y ή x y(r) [x] R = { y X y R x } X. Μέρος Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις

Θεωρητικά Θέµατα. Ι. Θεωρία Οµάδων. x R y ή x R y ή x y(r) [x] R = { y X y R x } X. Μέρος Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις 202 Μέρος 4. Θεωρητικά Θέµατα Ι. Θεωρία Οµάδων 1. Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις 1.1. Σχέσεις ισοδυναµίας. Εστω X ένα µη-κενό σύνολο. Ορισµός 1.1. Μια σχέση ισοδυναµίας επί του X είναι ένα

Διαβάστε περισσότερα

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου Η ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου Η ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Η ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Το Σύνολο C των Μιγαδικών Αριθμών Είναι γνωστό ότι η εξίσωση x δεν έχει λύση στο σύνολο IR των πραγματικών αριθμών, αφού το τετράγωνο κάθε πραγματικού αριθμού είναι μη αρνητικός

Διαβάστε περισσότερα

1.1 A. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ

1.1 A. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ . A. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ ΠΡΑΞΕΙΣ ΤΟΥΣ ΘΕΩΡΙΑ. Τα σύνολα των αριθµών Το σύνολο των φυσικών αριθµών. Το σύνολο των ακεραίων αριθµών. N {0,,, 3 } Z { 3,,, 0,,, 3 } Το σύνολο των ρητών αριθµών. Q

Διαβάστε περισσότερα

Aπάντηση Απόλυτη τιμή αριθμού είναι η απόσταση του αριθμού από το 0. Συμβολίζεται με 3 = 3-3 = 3 + και και είναι πάντα θετικός αριθμός. Π.

Aπάντηση Απόλυτη τιμή αριθμού είναι η απόσταση του αριθμού από το 0. Συμβολίζεται με 3 = 3-3 = 3 + και και είναι πάντα θετικός αριθμός. Π. ΜΕΡΟΣ Α : Α Λ Γ Ε Β ΡΑ ΚΕΦΑΛΑΙΟ 1ο ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και πράξεις τους 1. Γράψε τα βασικότερα σύνολα τιμών: Aπάντηση Ν{0,1,,,4,5,6,..+

Διαβάστε περισσότερα

Αριθμοθεωρητικοί Αλγόριθμοι

Αριθμοθεωρητικοί Αλγόριθμοι Αλγόριθμοι που επεξεργάζονται μεγάλους ακέραιους αριθμούς Μέγεθος εισόδου: Αριθμός bits που απαιτούνται για την αναπαράσταση των ακεραίων. Έστω ότι ένας αλγόριθμος λαμβάνει ως είσοδο έναν ακέραιο Ο αλγόριθμος

Διαβάστε περισσότερα

LÔseic Ask sewn sta Jemèlia twn Majhmatik n I

LÔseic Ask sewn sta Jemèlia twn Majhmatik n I LÔseic Ask sewn sta Jemèlia twn Majhmatik n I Rwmanìc-Diogènhc Maliki shc Tetˆrth, 6 OktwbrÐou 2010 Άσκηση 1. Για τυχόντα σύνολα A, B, C, D, να δειχθεί ότι (α ) A (B \ C) = ((A B) \ C) (A C). (β ) (A \

Διαβάστε περισσότερα

Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος)

Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος) Μαθηματικά Γ Γυμνασίου Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος) 1. Πως προσθέτουμε δυο πραγματικούς αριθμούς; Για να προσθέσουμε δύο ομόσημους αριθμούς, προσθέτουμε τις απόλυτες τιμές τους και στο άθροισμά

Διαβάστε περισσότερα

2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ

2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΚΕΦΑΛΑΙΟ Ο : ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ - ΕΝΟΤΗΤΕΣ :.... ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΜΕΘΟΔΟΛΟΓΙΑ : ΠΡΑΓΜΑΤΙΚΟ & ΦΑΝΤΑΣΤΙΚΟ ΜΕΡΟΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Έστω ένας μιγαδικός αριθμός,

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i ΙΔΙΟΤΗΤΕΣ

Διαβάστε περισσότερα

Αρβανιτίδης Θεόδωρος, - Μαθηματικά Ε

Αρβανιτίδης Θεόδωρος,  - Μαθηματικά Ε Πρόσθεση Φυσικών Αριθμών Μάθημα 5 ο Για να προσθέσω φυσικούς αριθμούς πρέπει να προσθέσω τις μονάδες των αριθμών αυτών, μετά τις δεκάδες των αριθμών, μετά τις εκατοντάδες κλπ. Η πρόσθεση φυσικών αριθμών

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥΣΤΗΝ ΑΛΓΕΒΡΑ. Άρτιοι αριθμοί ονομάζονται οι αριθμοί που διαιρούνται με το 2 και περιττοί εκείνοι

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥΣΤΗΝ ΑΛΓΕΒΡΑ. Άρτιοι αριθμοί ονομάζονται οι αριθμοί που διαιρούνται με το 2 και περιττοί εκείνοι ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥΣΤΗΝ ΑΛΓΕΒΡΑ 1)Ποιοι αριθμοί ονομάζονται άρτιοι και ποιοι περιττοί ; Άρτιοι αριθμοί ονομάζονται οι αριθμοί που διαιρούνται με το 2 και περιττοί εκείνοι που δεν διαιρούνται

Διαβάστε περισσότερα

Μαθηματική Ανάλυση Ι

Μαθηματική Ανάλυση Ι Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση Ι Ενότητα 1: Σύνολα, Πραγματικοί αριθμοί Επίκ. Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

Thanasis Xenos ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΗΜΑΘΙΑΣ

Thanasis Xenos ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΗΜΑΘΙΑΣ thanasisenos@yahoo.gr Thanasis Xenos )Αν µια συνάρτηση f είναι, τότε είναι γνησίως µονότονη; Η πρόταση δεν αληθεύει, διότι για παράδειγµα η συνάρτηση, f ( ) = είναι - και δεν είναι γνησίως µονότονη., >

Διαβάστε περισσότερα

Α Δ Ι Ε Υ Μ. Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης

Α Δ Ι Ε Υ Μ. Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Α Δ Ι Ε Υ Μ Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 28 Ι 2014 Το παρόν κείμενο

Διαβάστε περισσότερα

qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj

qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ klzxcvλοπbnαmqwertyuiopasdfghjklz

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ 2: ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ. 2.3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 1ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ 2: ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ. 2.3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ..3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Παράδειγμα. Να βρείτε το μέτρο των μιγαδικών

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β. 0και 4 x 3 0.

ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β. 0και 4 x 3 0. ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΡΑΓΜΑΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. IΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ [Ενότητα

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 1 ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ / Γραμμική Άλγεβρα

ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 1 ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ / Γραμμική Άλγεβρα ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ /00- Γραμμική Άλγεβρα Διανυσματικά γινόμενα Να αποδείξετε ότι για τα διανύσματα, b,cισχύουν : (i) 0b, = c και b= c b= c (ii) +b+c= 0 b=b c= c (iii) ( b) ( c ) = (,b,c)

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 1. Μαθηματικό Υπόβαθρο 23, 26 Ιανουαρίου 2007 Δρ. Παπαδοπούλου Βίκη 1 1.1. Σύνολα Ορισμός : Σύνολο μια συλλογή από αντικείμενα Στοιχεία: Μέλη συνόλου Τα στοιχεία

Διαβάστε περισσότερα

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ [Κεφ. 1.3: Μονότονες Συναρτήσεις - Αντίστροφη Συνάρτηση σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ Μονοτονία

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ

ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμών αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται

Διαβάστε περισσότερα

άρα ο γεωµετρικός τόπος είναι κύκλος µε κέντρο την αρχή Ο (0,0) και ακτίνα ρ = 2. αυτό σηµαίνει ότι οι εικόνες των µιγαδικών w

άρα ο γεωµετρικός τόπος είναι κύκλος µε κέντρο την αρχή Ο (0,0) και ακτίνα ρ = 2. αυτό σηµαίνει ότι οι εικόνες των µιγαδικών w ΘΕΜΑ ο Α.. Θεωρία Σχολ. σελ. 5 Α.. Θεωρία Σχολ. σελ. 9 Β. α) Σ γ) Λ β) Σ δ) Λ ΘΕΜΑ ο ε) Σ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ ΜΑΪΟΥ 8 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Οι Οµάδες τάξης pq, p, q: πρώτοι αριθµοί Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 246 6. Οι Οµάδες τάξης

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ ΠΙΝΑΚΩΝ ή ΜΗΤΡΩΝ

ΑΛΓΕΒΡΑ ΠΙΝΑΚΩΝ ή ΜΗΤΡΩΝ ΑΛΓΕΒΡΑ ΠΙΝΑΚΩΝ ή ΜΗΤΡΩΝ Η άλγεβρα πινάκων μας επιτρέπει: Να γράψουμε με περιεκτικό τρόπο ένα μεγάλο σύστημα γραμμικών εξισώσεων Να ελέγξουμε την ύπαρξη λύσης σε ένα σύστημα γραμμικών εξισώσεων με τη χρησιμοποίηση

Διαβάστε περισσότερα

Κεφάλαιο 1. Βασικές Εννοιες. 1.1 Ορισµός οµάδας - Παραδείγµατα

Κεφάλαιο 1. Βασικές Εννοιες. 1.1 Ορισµός οµάδας - Παραδείγµατα Κεφάλαιο 1 Βασικές Εννοιες 1.1 Ορισµός οµάδας - Παραδείγµατα Συχνά στα µαθηµατικά µας ενδιαφέρει να εξετάσουµε αν κάποια ϕαινόµενα που ισχύουν σε αριθµητικά συστήµατα ισχύουν σε ένα γενικότερο περιβάλλον,

Διαβάστε περισσότερα

για να βρούμε το άθροισμά τους μπορούμε να δουλέψουμε με 2 τρόπους: λέγεται άθροισμα ή συνισταμένη των α,. Δηλαδή:

για να βρούμε το άθροισμά τους μπορούμε να δουλέψουμε με 2 τρόπους: λέγεται άθροισμα ή συνισταμένη των α,. Δηλαδή: α.. Πρόσθεση διιανυσμάτων Αν έχουμε δύο διανύσματα α, β για να βρούμε το άθροισμά τους μπορούμε να δουλέψουμε με 2 τρόπους: 1 0ς τρόπος!! Με αρχή ένα σημείο παίρνουμε διάνυσμα Α = α!!!!!" και στη συνέχεια

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΣΑΝΑΤΛΙΣΜΥ Β ΛΥΚΕΙΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΥ Να δώσετε τους ορισμούς: διάνυσμα, μηδενικό διάνυσμα, μέτρο διανύσματος, μοναδιαίο διάνυσμα Διάνυσμα AB ονομάζεται ένα ευθύγραμμο

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

35 Χρήσιμες Προτάσεις με αποδείξεις Γ Λυκείου Μαθηματικά Κατεύθυνσης

35 Χρήσιμες Προτάσεις με αποδείξεις Γ Λυκείου Μαθηματικά Κατεύθυνσης 4 5 35 Χρήσιμες Προτάσεις με αποδείξεις Γ Λυκείου Μαθηματικά Κατεύθυνσης Περίληψη: Στο ένθετο αυτό περιλαμβάνονται 35 βασικές προτάσεις, μικρά λήμματα χρήσιμα για τις εξετάσεις. Μας βοηθούν να «ξεκλειδώνουμε»

Διαβάστε περισσότερα

X = {(x 1, x 2 ) x 1 + 2x 2 = 0}.

X = {(x 1, x 2 ) x 1 + 2x 2 = 0}. Γραμμική Άλγεβρα ΙΙ Διάλεξη 4 Χρήστος Κουρουνιώτης Πανεπιστήμιο Κρήτης 26/2/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 4 26/2/2014 1 / 12 Υποσύνολα ενός διανυσματικού χώρου. Πότε είναι ένα υποσύνολο X ενός

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή

Διαβάστε περισσότερα

Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α. Οι πραγματικοί αριθμοί και οι πράξεις τους ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ - -. Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους. Αν + y = -, να βρείτε τις τιμές των παραστάσεων: α A = + y + ( + y β B = ( - y -( y γ Γ = -(

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 1

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 1 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 1 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδες Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2014/asi2014.html, https://sites.google.com/site/maths4edu/home/algdom114

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 2

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 2 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Επιλυση Ασκησεων - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 24 Μαρτίου 2017

Διαβάστε περισσότερα

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΤΜΗΜΑ ΔΙΕΘΝΟΥΣ ΕΜΠΟΡΙΟΥ ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΑ: ) ΠΙΝΑΚΕΣ ) ΟΡΙΖΟΥΣΕΣ ) ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4) ΠΑΡΑΓΩΓΟΙ ΜΑΡΙΑ ΡΟΥΣΟΥΛΗ ΚΕΦΑΛΑΙΟ ΠΙΝΑΚEΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΟΡΙΣΜΟΣ Πίνακας

Διαβάστε περισσότερα

(ii) X P(X). (iii) X X. (iii) = (i):

(ii) X P(X). (iii) X X. (iii) = (i): Θεωρία Συνόλων Χειμερινό Εξάμηνο 2016 2017 Λύσεις 1. Δείξτε ότι ισχύουν τα ακόλουθα: (i) ω / ω (με άλλα λόγια, το ω δεν είναι φυσικός αριθμός). (ii) Για κάθε n ω, ισχύει ω / n. (iii) Για κάθε n ω, το n

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.1.2. ΠΡΑΞΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.1.2. ΠΡΑΞΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.1.2. ΠΡΑΞΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / ΠΡΟΣΘΕΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 12+ 7 = 19 Οι αριθμοί 12 και 7 ονομάζονται ενώ το 19 ονομάζεται.. 3+5 =, 5+3 =...

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΜΑ Α Άσκηση, μιγαδικοί αριθμοί να αποδείξετε ότι: Αν = Έχουμε: = ( ) ( ) ( ) ( ) = = =. Το τελευταίο ισχύει, άρα ισχύει και η ισοδύναμη αρχική σχέση.

Διαβάστε περισσότερα

7.5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΡΗΤΩΝ

7.5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΡΗΤΩΝ 1 7.5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΡΗΤΩΝ ΘΕΩΡΙΑ 1. Κανόνας πολλαπλασιασµού : Το γινόµενο δύο οµοσήµων αριθµών είναι θετικός ενώ το γινόµενο δύο ετεροσήµων είναι αρνητικός ηλαδή (+) (+) = + και ( ) ( ) = + Ενώ (+) (

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 8

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 8 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Πέµπτη 27 εκεµβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

Basik 'Algebra Tm ma Majhmatik n Panepist mio Ajhn n Aj na 2013

Basik 'Algebra Tm ma Majhmatik n Panepist mio Ajhn n Aj na 2013 Basik 'Algebra Tm ma Majhmatik n Panepist mio Ajhn n Aj na 2013 Perieqìmena 1 Ακέραιοι 1 1.1 Διαιρετότητα.................................. 1 1.2 Ισοτιμίες..................................... 10 1.3

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Χρήστος Κούτρας Γιώργος

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ ρ Χρήστου Νικολαϊδη Δεκέμβριος Περιεχόμενα Κεφάλαιο : σελ. Τι είναι ένας πίνακας. Απλές πράξεις πινάκων. Πολλαπλασιασμός πινάκων.

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Κ. Δεμέστιχας Εργαστήριο Πληροφορικής Γεωπονικό Πανεπιστήμιο Αθηνών Επικοινωνία μέσω e-mail: cdemest@aua.gr, cdemest@cn.ntua.gr 1 4. ΑΛΓΕΒΡΑ BOOLE ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΜΕΡΟΣ Α 2 Άλγεβρα

Διαβάστε περισσότερα

Οι Μιγαδικοί Αριθμοί

Οι Μιγαδικοί Αριθμοί Οι Μιγαδικοί Αριθμοί Οι μιγαδικοί αριθμοί αρχικά βοήθησαν στην επίλυση δευτεροβάθμιων εξισώσεων των οποίων η διακρίνουσα είναι αρνητική Το γενικότερο πρόβλημα βέβαια είναι ότι δεν υπάρχει πραγματικός αριθμός

Διαβάστε περισσότερα