Δύο λόγια από τη συγγραφέα

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Δύο λόγια από τη συγγραφέα"

Transcript

1 Δύο λόγια από τη συγγραφέα Τα μαθηματικά ή τα λατρεύεις ή τα μισείς! Για να λατρέψεις κάτι πρέπει να το κατανοήσεις, για τη δεύτερη περίπτωση τα πράγματα μάλλον είναι λίγο πιο απλά. Στόχος αυτού του βιβλίου είναι προφανώς να κάνει τον αναγνώστη να τα λατρέψει. Κι αυτό γιατί, πέρα από τις απλουστευτικές δηλώσεις ότι «τα μαθηματικά είναι δύσκολα», υπάρχει μια αδιαμφισβήτητη αλήθεια: τα μαθηματικά έχουν λογική, και το μόνο που χρειάζεται να κάνει κανείς για να τα κατανοήσει είναι να ακολουθήσει τη λογική τους. Η συνέχεια απλά είναι απολαυστική. Το βιβλίο αυτό απευθύνεται τόσο σε φοιτητές που νιώθουν μια έλξη από τον χώρο του Λογισμού όσο και σε φοιτητές που «πρέπει» να παρακολουθήσουν ένα μάθημα «μαθηματικών» προκειμένου να ολοκληρώσουν επιτυχώς το πρόγραμμα σπουδών που παρακολουθούν. Το συγκεκριμένο βιβλίο έχει διπλή ταυτότητα, να παρουσιάσει τις έννοιες της συνάρτησης, της συνέχειας, της παραγώγισης της ολοκλήρωσης και της άλγεβρας με τρόπο ώστε αυτές να γίνουν κατανοητές από τον φοιτητή και εν συνεχεία να τις αναδείξει ως βασικά εργαλεία για τη μελέτη της συμπεριφοράς οικονομικών συναρτήσεων και υποδειγμάτων. Τα μαθηματικά μπορούν να είναι αυτοσκοπός, μπορούν όμως να είναι και μέσο, και αυτή είναι η βασική φιλοσοφία του βιβλίου που κρατάτε στα χέρια σας. Ο Πυθαγόρας, ο Fermat, ο Leibnitz, o Gauss, ο Euler, o Jacobi και o Riemann μπορούν άνετα να συνδιαλέγουν με τον Keynes, τον Smith, τον Samuelson και τον Leontief πάνω στο προνομιακό πεδίο που τους προσφέρει η αλληλεπίδραση των μαθηματικών και της οικονομικής επιστήμης. Η καλύτερη κατανόηση των μαθηματικών εννοιών συνεπάγεται και μεγαλύτερη κατανόηση των μεταβολών των οικονομικών μεγεθών. Έτσι, σε κάθε κεφάλαιο παρουσιάζονται αναλυτικά οι έννοιες, οι μέθοδοι και οι αντίστοιχες μαθηματικές τεχνικές και εν συνεχεία περιγράφεται η εφαρμογή τους στην οικονομική επιστήμη. Σε κάποια κεφάλαια, όπως αυτά των παραγώγων και των συναρτήσεων πολλών μεταβλητών, παρουσιά ζονται σ ένα κεφάλαιο οι μαθηματικές έννοιες και σε επόμενο κεφάλαιο οι αντίστοιχες οικονομικές εφαρμογές. Με περισσότερα από 00 λυμένα παραδείγματα, 150 διαγράμματα και με αναλυτική παρουσίαση όλων των δύσκολων σημείων των εννοιών που μοιάζουν αφηρημένες, το συγκεκριμένο βιβλίο φιλοδοξεί να αποτελέσει ένα σύγγραμμα αναφοράς για τους φοιτητές, στο οποίο μπορούν να ανατρέξουν οποιαδήποτε στιγμή για να βρουν και να χρησιμοποιήσουν μαθηματικές έννοιες (βασικές ή και προχωρημένες) και οικονομικά υποδείγματα. Μετά την πρώτη ανάγνωση του βιβλίου, ο αναγνώστης θα έχει καταλάβει ότι η επιστήμη και τα γνωστικά αντικείμενα δεν περιχαρακώνονται πίσω από λέξεις και νοητικές γραμμές. Η αλληλεπίδραση των αντικειμένων αποτελεί βασική κινητήρια δύναμη στην ιστορία της επιστήμης. Η από κοινού πορεία και εξέλιξη των μαθηματικών και της οικονομικής επιστήμης είναι το βασικό χαρακτηριστικό αυτού του συγγράμματος. Καλή ανάγνωση!

2

3 ΚΕΦΑΛΑΙΟ 1 Το σύνολο των πραγματικών αριθμών Στόχος του συγκεκριμένου κεφαλαίου είναι η παρουσίαση του συνόλου των πραγματικών αριθμών και των ιδιοτήτων τους. 1.1 Σύνολα αριθμών Ως σύνολο ορίζεται μια συλλογή διακριτών αντικειμένων, τα οποία ονομάζονται στοιχεία του συνόλου. Στο κεφάλαιο αυτό, θα εξετάσουμε το σύνολο των πραγματικών αριθμών, το οποίο συμβολίζεται με και αποτελείται από τα εξής υποσύνολα: Το σύνολο των φυσικών αριθμών 1,,3,... Το σύνολο των ακέραιων αριθμών x y : x, y..., 1,0,1,,... Το σύνολο των ρητών αριθμών x : x, y, y 0 y Το σύνολο των άρρητων αριθμών Επειδή κάθε ακέραιος αριθμός x μπορεί να εκφραστεί ως ρητός της μορφής 1 x το σύνολο των πραγματικών αριθμών αποτελείται από ρητούς και άρρητους αριθμούς. Στο σύνολο των πραγματικών αριθμών εισάγονται: Οι πράξεις της πρόσθεσης (+) και του πολλαπλασιασμού (.) Οι σχέσεις ολικής διάταξης (< ή >) Στο τέλος του συγκεκριμένου κεφαλαίου θα έχεις μάθει: Τα υποσύνολα των πραγματικών αριθμών Την αλγεβρική δομή του συνόλου των πραγματικών αριθμών

4 0 Οικονομικά Μαθηματικά Για κάθε δύο πραγματικούς αριθμούς x και y, ορίζεται το άθροισμά τους x y, το γινόμενο x y και η σχέση διάταξης (ο x είναι μικρότερος από τον y, ή αντίστοιχα ο x είναι μεγαλύτερος από τον y. Οι παραπάνω πράξεις δίνουν στο την αλγεβρική δομή. 1. Αλγεβρική δομή του 1..1 Ιδιότητες πρόσθεσης Η πράξη της πρόσθεσης εκτελείται κάθε φορά που δίνεται ένα ζεύγος αριθμών x και y. Το άθροισμα x + y υπάρχει πάντοτε ακόμη και σε περιπτώσεις που οι αριθμοί είναι είτε ίσοι είτε αντίθετοι. Για κάθε πραγματικό αριθμό x, ισχύουν τα εξής: 1) Ύπαρξη ουδέτερου στοιχείου x 0 x υπάρχει αριθμός που τον ονομάζουμε μηδέν και είναι το ουδέτερο στοιχείο της πρόσθεσης. ) Ύπαρξη αντίθετου x x x x 0, υπάρχει ο αντίθετος πραγματικός αριθμός. Έστω x, y, z, πραγματικοί αριθμοί, ισχύουν τα εξής: 3) Προσεταιριστική ιδιότητα x y z x y z x, y, z 4) Αντιμεταθετική ιδιότητα x y yx x, y 1.. Ιδιότητες πολλαπλασιασμού Για κάθε πραγματικό αριθμό x, ισχύουν τα εξής: 5) Ύπαρξη μονάδας x11 x x, 1 x, υπάρχει πραγματικός αριθμός που τον ομομάζουμε «μονάδα» (1) και είναι το ουδέτερο στοιχείο του πολλαπλασιασμού. 6) Ύπαρξη αντίστροφου 1 1 x x xx 1, με x 0 υπάρχει ο αντίστροφος αριθμός. Έστω x, y, z πραγματικοί αριθμοί, ισχύουν τα εξής: 7) Προσεταιριστική Ιδιότητα x y z x y z, x, y, z 8) Αντιμεταθετική Iδιότητα x y yx x, y

5 9) Επιμεριστική ιδιότητα 1. Το σύνολο των πραγματικών αριθμών 1 Ιδιότητα πρόσθεσης & πολλαπλασιασμού x y z x y x z, x, y, z Με βάση τα παραπάνω μπορούμε να ορίσουμε τις πράξεις της αφαίρεσης και της διαίρεσης. Ορισμός της πράξης της αφαίρεσης: Αν x και y είναι δύο πραγματικοί αριθμοί, τότε x y x y. Το είναι το σύμβολο της αφαίρεσης. Ορισμός της πράξης της διαίρεσης: Αν x και y είναι δύο πραγματικοί αριθμοί, με y 0, τότε x y Το / είναι το σύμβολο της διαίρεσης Ιδιότητες διάταξης Ορισμός: Με τη σχέση διάταξης που ορίζεται στο σύνολο χαρακτηρίζεται ένας αριθμός x ως μικρότερος (ή μεγαλύτερος) από έναν άλλο αριθμό y x y [ή x y ] 10) Μεταβατική ιδιότητα Αν x, y, z είναι πραγματικοί αριθμοί και ισχύουν x y και y z, τότε x z 11) Ιδιότητα τριχοτομίας Για κάθε ζεύγος πραγματικών αριθμών x, y ισχύουν τα παρακάτω: i. x y ii. x y iii. x y Οι πραγματικοί αριθμοί για τους οποίους ισχύει x 0 ονομάζονται θετικοί αριθμοί και οι πραγματικοί αριθμοί για τους οποίους ισχύει x 0 ονομάζονται αρνητικοί α- ριθμοί. Πρόταση: Ισχύουν τα παρακάτω: i. Αν x, y είναι πραγματικοί αριθμοί με x y, τότε x z yz για κάθε πραγματικό αριθμό z ii. Αν x, y, z και k είναι πραγματικοί αριθμοί με x y και z k, τότε x z y k iii. Αν x, y, z είναι πραγματικοί αριθμοί με x y και z 0, τότε x z yz iv. Αν x 0, τότε x 0 v. Αν x 0 και y 0, τότε x y 0 vi. Αν x 0 και y 0 τότε x y 0

6 Οικονομικά Μαθηματικά 1 1 vii. Αν 0 x y, τότε x y viii. Αν x 0 και y 0, τότε x y 0 ix. Aν x 0, τότε x 0, όπου x x x x. Αν x y, τότε x y Βοηθητικές προτάσεις Πρόταση 1: Το ουδέτερο στοιχείο 0 στην πρόσθεση είναι μοναδικό. Πρόταση : Για κάθε πραγματικό αριθμό x, ο αντίθετός του x είναι μοναδικός πραγματικός αριθμός. Πρόταση 3: x 00 για κάθε πραγματικό αριθμό x. Πόρισμα 1: Ο αριθμός 0 δεν έχει αντίστροφο. Δηλαδή δεν υπάρχει πραγματικός αριθμός x ώστε x 0 1. Πρόταση 4: To ουδέτερο στοιχείο 1 του πολλαπλασιασμού είναι μοναδικό. Πρόταση 5: Για κάθε πραγματικό αριθμός x, με x 0, ο αντίστροφός του 1 x είναι μοναδικός πραγματικός αριθμός. Ορισμός: Έστω πραγματικός αριθμό x. Θέτουμε x 0. Ο αριθμός x ονο- x 0 μάζεται απόλυτη τιμή του x και είναι μοναδικός. x x x Πρόταση 6: Για κάθε πραγματικό αριθμό x, ισχύουν τα ακόλουθα: i. x θ θ x θ όπου θ 0 ii. x θ x θ ή x θ όπου θ 0 Πρόταση 7: Έστω x, y είναι πραγματικοί αριθμοί, τότε ισχύουν τα ακόλουθα: i. x y x y ii. (Τριγωνική ανισότητα) x y x y a b Παράδειγμα 1.1: Αν a b c, να αποδείξετε ότι a b a b a b Θα αποδείξω τις δύο ανισότητες χωριστά, δηλαδή τις a (1) και b ()

7 1. Το σύνολο των πραγματικών αριθμών 3 Για την (1): Από υπόθεση a b. Προσθέτω το a και στα δύο μέλη b a aa ba a ba a Για τη (): Από υπόθεση a b. Προσθέτω το b και στα δύο μέλη a b ab bb ab b b a b Οπότε από (1) και () έχουμε a b Παράδειγμα 1.: Να δείξετε ότι a b 4ab ab, Αναπτύσσω το πρώτο μέλος της a b 4ab a b ab4aba b ab0 ab 0 που ισχύει, άρα ισχύει και η αρχική. 1.3 Πληρότητα πραγματικών αριθμών Το σύνολο των πραγματικών αριθμών απεικονίζεται γραφικά με τον παρακάτω άξονα 0 Σχήμα 1.1: Ο άξονας των πραγματικών αριθμών Βασισμένοι στις ιδιότητες της διάταξης των πραγματικών αριθμών όπως τις ορίσαμε στην Παράγραφο 1..3, μπορούμε να ορίσουμε ως διάστημα το σύνολο όλων των πραγματικών αριθμών μεταξύ δύο τυχαίων αριθμών ab,. Ορισμός: Έστω δύο πραγματικοί αριθμοί a, bγια τους οποίους ισχύει μπορούμε να ορίσουμε τα παρακάτω διαστήματα: a b. Τότε

8 4 Οικονομικά Μαθηματικά, : ab x a x b κλειστό διάστημα a b x (α), : ab x a x b ανοιχτό διάστημα a b x (β), : ab x a x b κλειστό διάστημα από δεξιά a b x (γ), : ab x a x b κλειστό διάστημα από αριστερά a b x (δ) Σχήμα 1. Ανοιχτά και κλειστά διαστήματα Τα ακραία σημεία ενός διαστήματος ονομάζονται συνοριακά σημεία και αποτελούν τα σύνορα του διαστήματος. Τα υπόλοιπα σημεία είναι εσωτερικά σημεία του διαστήματος. Το ανοιχτό διάστημα δεν περιέχει κανένα συνοριακό σημείο. Μήκος διαστήματος με άκρα a και b ονομάζουμε τον μη αρνητικό αριθμό b a. Τα παραπάνω διαστήματα, που τα άκρα τους είναι συγκεκριμένοι πραγματικοί α- ριθμοί είναι πεπερασμένα διαστήματα. Άπειρα διαστήματα έχουμε στην περίπτωση που το ένα άκρο είναι ή + Έστω a, τότε μπορούμε να ορίσουμε τα διαστήματα:

9 , : ίσοι του a 1. Το σύνολο των πραγματικών αριθμών 5 a x x a το διάστημα με όλους τους αριθμούς που είναι μικρότεροι ή (α) a x, : a x x a το διάστημα με όλους τους αριθμούς που είναι μικρότεροι του a a x (β), : a x x a το διάστημα με όλους τους αριθμούς που είναι μεγαλύτεροι ή ίσοι του a (γ) a x, : a x x a το διάστημα με όλους τους αριθμούς που είναι μεγαλύτεροι του a (δ) Σχήμα 1.3: Απειροδιαστήματα Ένα διάστημα που τα άκρα του ταυτίζονται ονομάζεται εκφυλισμένο. Αν το διάστημα είναι της μορφής: i. ab, τότε ταυτίζεται με το κενό σύνολο ab, = ii. ab, τότε ταυτίζεται με τα ακραία σημεία του a iii. ab, ή ab, δεν έχουν νόημα b Ορισμός: Έστω Y υποσύνολο των πραγματικών αριθμών. Το Y είναι: i. άνω φραγμένο αν υπάρχει a τέτοιος ώστε x a, x Y. O αριθμός a αποτελεί ένα άνω φράγμα του Y. ii. κάτω φραγμένο αν υπάρχει b τέτοιο ώστε x b, x Y. O αριθμός b αποτελεί ένα κάτω φράγμα του Y. iii. φραγμένο αν είναι άνω και κάτω φραγμένο. Σημείωση: Το σύνολο των πραγματικών αριθμών δεν είναι ούτε άνω ούτε κάτω φραγμένο. a x

10 6 Οικονομικά Μαθηματικά Το σύνολο των θετικών αριθμών είναι κάτω φραγμένο. Το σύνολο των αρνητικών αριθμών είναι άνω φραγμένο. Το κενό σύνολο είναι άνω και κάτω φραγμένο. Ορισμός: Έστω Y υποσύνολο των πραγματικών αριθμών. i. Ο αριθμός a είναι το ελάχιστο άνω φράγμα του Y (supremum) αν ισχύουν: Ο a είναι ένα άνω φράγμα του Y. Ο a είναι μικρότερος ή ίσος από κάθε άλλο αριθμό b που είναι ένα άνω φράγμα του Y ( a b). Γράφουμε α = supy. ii. Ο αριθμός a είναι το μέγιστο κάτω φράγμα του Y (infimum) αν ισχύουν: Ο a είναι ένα κάτω φράγμα του Y. Ο a είναι μεγαλύτερος ή ίσος από κάθε άλλο αριθμό b που είναι ένα κάτω φράγμα του Y ( a b). a = infy. Οι αριθμοί supremum και infimum ενός συνόλου Y αν υπάρχουν είναι μοναδικοί Αξίωμα: Πληρότητα των πραγματικών αριθμών Αν Y είναι ένα μη κενό υποσύνολο πραγματικών αριθμών και είναι άνω φραγμένο τότε το Y έχει supremum. Αν Y είναι ένα μη κενό υποσύνολο πραγματικών αριθμών και είναι κάτω φραγμένο, τότε το Y έχει infimum. Βασική προϋπόθεση αποτελεί το εξεταζόμενο σύνολο να είναι διαφορετικό από το κενό. Έστω Y =, τότε κάθε αριθμός είναι ένα άνω φράγμα, άρα αποκλείεται να έχει sup. Παράδειγμα 1.3: Να υπολογισθούν στην περίπτωση που υπάρχουν το supremum, infimum, μέγιστο και ελάχιστο στοιχείο των συνόλων. i. Ax: x 3 Το σύνολο : 3 A x x έχει supremum το οποίο είναι ίσο με 3. Επειδή sup A 3 και ανήκει στο σύνολο A, το μέγιστο άνω φράγμα ταυτίζεται με το maximum του συνόλου. Άρα sup A max A 3. ii. B x * : x 9 Tο σύνολο * : 9 * :3 B x x x x έχει infimum και συγκεκριμένα inf B 3. To σύνολο B δεν έχει minimum.

11 1. Το σύνολο των πραγματικών αριθμών 7 iii. K x * : x _ 4 * * Tο σύνολο _ : 4 _ : 0 K x x x x έχει infimum και supremum. inf B = και sup B =0. To σύνολο B δεν έχει minimum και maximum. iv. Γ x 0:0 x 1 Tο σύνολο Γ 0:0 1 Γ x 0 : 0 x 1 και x 3 0 x 0 :1 x και 0< x 3 x 0:1 x 3 1, 3 x x αν χωρίσουμε τις ανισότητες γράφεται ως εξής Άρα έχει supremum, supγ = 3 και επειδή το supγ Γ, ταυτίζεται με το maxγ. Έχει μέγιστο κάτω φράγμα, infγ =1, δεν έχει όμως min. Ασκήσεις για εξάσκηση Ασκήσεις με τις ιδιότητες των πραγματικών αριθμών και τη διάταξη 1. Να δειχθούν οι ισότητες: 1 aa για κάθε a i. 1 ii. 1 a aγια κάθε a 0. Να αποδείξετε τις παρακάτω προτάσεις: i. Αν a bκαι c d, να αποδείξετε ότι a c b d ii. Αν 0a 1, τότε a a iii. Αν a 0, τότε 1 a 0 a 3. Αν ab, * να συγκρίνετε b και b a ab a b 4. Αν ab, * και είναι ομόσημοι a bκαι b a a b 5. Αν ab, * και είναι ετερόσημοι a bκαι b a 6. Αν a1 b να αποδείξετε ότι a b1 ab 3 7. Αν a 1 να αποδείξετε ότι a 1 a a

12 8 Οικονομικά Μαθηματικά Ασκήσεις σχετικά με τα φράγματα συνόλων 8. Να υπολογιστούν στην περίπτωση που υπάρχουν το supremum, infimum, μέγιστο και ελάχιστο στοιχείο των συνόλων: x:0 x 1 i. ii. x:0 x iii. x: x x 10 iv. v ,,,, : n 0, n n 9. Να αποδείξετε ότι το supremum και το infimum ενός συνόλου ορίζονται μονοσήμαντα. 10. Έστω A υποσύνολο των πραγματικών αριθμών για το οποίο ισχύει, sup A A=inf A. Να δειχθεί ότι το Aείναι μονοσύνολο.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 27 ΣΕΠΤΕΜΒΡΙΟΥ 2016 ΕΙΣΑΓΩΓΗ Ο απειροστικός λογισμός αποτελείται από το διαφορικό και ολοκληρωτικό

Διαβάστε περισσότερα

1 Οι πραγµατικοί αριθµοί

1 Οι πραγµατικοί αριθµοί 1 Οι πραγµατικοί αριθµοί 1.1 Σύνολα αριθµών Το σύνολο των ϕυσικών αριθµών N = {1, 2, 3,...} Το σύνολο των ακεραίων Z = {... 3, 2, 1, 0, 1, 2, 3,...}. Οι ακέραιοι διαµερίζονται σε άρτιους και περιττούς

Διαβάστε περισσότερα

Αλγεβρικές Παραστάσεις

Αλγεβρικές Παραστάσεις Αλγεβρικές Παραστάσεις 1.1 Πράξεις με πραγματικούς αριθμούς (Επαναλήψεις-συμπληρώσεις) 1 1.1 Πράξεις με πραγματικούς αριθμούς (Επαναλήψεις-συμπληρώσεις) Α Οι πραγματικοί αριθμοί και οι πράξεις τους Πραγματικοί

Διαβάστε περισσότερα

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΠΕΜΠΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΠΕΜΠΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 1 ΠΕΜΠΤΟ ΜΑΘΗΜΑ, 17-10-13 Μ. Παπαδημητράκης. 1 Την προηγούμενη φορά αναφέραμε (και αποδείξαμε στην περίπτωση n = 2) το θεώρημα που λέει ότι, αν n N, n 2, τότε για κάθε y 0 υπάρχει μοναδική μηαρνητική

Διαβάστε περισσότερα

Ισότητα, Αλγεβρικές και Αναλυτικές Ιδιότητες Πραγματικών Ακολουθιών

Ισότητα, Αλγεβρικές και Αναλυτικές Ιδιότητες Πραγματικών Ακολουθιών Ισότητα, Αλγεβρικές και Αναλυτικές Ιδιότητες Πραγματικών Ακολουθιών Συμβολισμοί Σε αναλογία με τους ορισμούς συμβολίζουμε μια ακολουθία: 1 είτε μέσω του διανυσματικού ορισμού, παραθέτοντας αναγκαστικά

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ; ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά

Διαβάστε περισσότερα

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ρητός ονομάζεται κάθε αριθμός που έχει ή μπορεί να πάρει τη μορφή κλάσματος, όπου, είναι ακέραιοι με 0. Ρητοί αριθμοί : Q /, 0. Έτσι π.χ.

Διαβάστε περισσότερα

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή KΕΦΑΛΑΙΟ ΤΟ ΣΥΝΟΛΟ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ιατεταγµένα σώµατα-αξίωµα πληρότητας Ένα σύνολο Σ καλείται διατεταγµένο σώµα όταν στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι

Διαβάστε περισσότερα

Σημειώσεις Ανάλυσης Ι. Θεωρούμε γνωστούς τους φυσικούς αριθμούς

Σημειώσεις Ανάλυσης Ι. Θεωρούμε γνωστούς τους φυσικούς αριθμούς Σημειώσεις Ανάλυσης Ι 1. Οι ρητοί αριθμοί Θεωρούμε γνωστούς τους φυσικούς αριθμούς 1, 2, 3, και τις πράξεις (πρόσθεση - πολλαπλασιασμό)μεταξύ αυτών. Οι φυσικοί αριθμοί είναι επίσης διατεταγμένοι με κάποια

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

Διάλεξη 1 - Σημειώσεις 1

Διάλεξη 1 - Σημειώσεις 1 Διάλεξη 1 - Σημειώσεις 1 Σύνολα Πως διαβάζουμε κάποιους συμβολισμούς: ανήκει και η άρνηση, δηλαδή δεν ανήκει υπάρχει για κάθε : τέτοιο ώστε. Επίσης το σύμβολο έχει την ερμηνεία «τέτοιο ώστε» και ή υπονοεί

Διαβάστε περισσότερα

1.1 A. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ

1.1 A. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ . A. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ ΠΡΑΞΕΙΣ ΤΟΥΣ ΘΕΩΡΙΑ. Τα σύνολα των αριθµών Το σύνολο των φυσικών αριθµών. Το σύνολο των ακεραίων αριθµών. N {0,,, 3 } Z { 3,,, 0,,, 3 } Το σύνολο των ρητών αριθµών. Q

Διαβάστε περισσότερα

Ρητοί αριθμοί είναι αυτοί που έχουν (ή μπορεί να πάρουν) κλασματική μορφή,

Ρητοί αριθμοί είναι αυτοί που έχουν (ή μπορεί να πάρουν) κλασματική μορφή, ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ.1 ΠΡΑΞΕΙΣ ΚΑΙ ΙΔΙΟΤΗΤΕΣ Οι αριθμοί 0,1,,,4, είναι οι Φυσικοί αριθμοί. Οι Φυσικοί αριθμοί μαζί με τους αντίθετούς τους αποτελούν τους Ακέραιους αριθμούς. Δηλαδή ακέραιοι είναι οι αριθμοί,-,-,-1,0,1,,,

Διαβάστε περισσότερα

ΡΗΤΟΙ ΑΡΙΘΜΟΙ - ΘΕΩΡΙΑ

ΡΗΤΟΙ ΑΡΙΘΜΟΙ - ΘΕΩΡΙΑ ΡΗΤΟΙ ΑΡΙΘΜΟΙ - ΘΕΩΡΙΑ Α. ΟΡΙΣΜΟΙ Θετικοί αριθµοί είναι οι αριθµοί που έχουν πρόσηµο το + (πολλές φορές το + παραλείπεται) π.χ. +3, +105, +, + 0,7, 326. Αρνητικοί αριθµοί είναι οι αριθµοί που έχουν πρόσηµο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 7 Ο ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 1. Όταν μπροστα" (αριστερα") απο" ε"ναν αριθμο" γραφει" το συ"μβολο + το"τε ο αριθμο"ς

Διαβάστε περισσότερα

R={α/ αρητός ή άρρητος αριθμός }

R={α/ αρητός ή άρρητος αριθμός } o ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ Οι ρητοί και οι άρρητοι αριθμοί λέγονται πραγματικοί αριθμοί. Το σύνολο που περιέχει όλους τους πραγματικούς αριθμούς λέγεται σύνολο των πραγματικών αριθμών και συμβολίζεται με R.

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΣΕ 39 ΜΑΘΗΜΑΤΑ

ΑΝΑΛΥΣΗ 1 ΣΕ 39 ΜΑΘΗΜΑΤΑ ΑΝΑΛΥΣΗ ΣΕ 39 ΜΑΘΗΜΑΤΑ Μ. Παπαδημητράκης. ΠΡΩΤΟ ΜΑΘΗΜΑ Κατ αρχάς θα δούμε μια πολλή απλή πρόταση. l 0xx x x ΠΡΟΤΑΣΗ. Έστω ότι ο l έχει την εξής ιδιότητα: l x για κάθε x > 0. Τότε l 0. Απόδειξη. Για να

Διαβάστε περισσότερα

1 Οι πραγµατικοί αριθµοί

1 Οι πραγµατικοί αριθµοί 1 Οι πραγµατικοί αριθµοί 1.1 Σύνολα αριθµών Το σύνολο των ϕυσικών αριθµών N = {1, 2, 3,...} Το σύνολο των ακεραίων Z = {... 3, 2, 1, 0, 1, 2, 3,...}. Οι ακέραιοι διαµερίζονται σε άρτιους και περιττούς

Διαβάστε περισσότερα

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης Μάθημα 7α Δρ. Βασίλειος Γ. Καμπουρλάζος Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΤΕΙ Ανατολικής Μακεδονίας και Θράκης 2017-2018 Μια Ενοποιητική Προσέγγιση στην ΥΝ Η Θεωρία Πλεγμάτων στην ΥΝ. Υπολογιστικές Μεθοδολογίες

Διαβάστε περισσότερα

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C Κεφάλαιο 1 Εισαγωγικές έννοιες Στο κεφάλαιο αυτό θα αναφερθούμε σε ορισμένες έννοιες, οι οποίες ίσως δεν έχουν άμεση σχέση με τους διανυσματικούς χώρους, όμως θα χρησιμοποιηθούν αρκετά κατά τη μελέτη τόσο

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 8: Σχέσεις - Πράξεις Δομές Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Δοκιμασίες πολλαπλών επιλογών

Δοκιμασίες πολλαπλών επιλογών Δοκιμασίες πολλαπλών επιλογών ) Η απόλυτη τιμή θετικού αριθμού είναι: Α. Ο αντίθετός του Β. Ο ίδιος ο αριθμός Γ. Ο αντίστροφός του 2) Αν x =3, τότε Α. x=3 Β. x 0 Γ. x=-3 Δ. x=3 ή x=-3 3) Με το -x συμβολίζουμε

Διαβάστε περισσότερα

2 Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ

2 Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΧΟΛΙΚΟ ΕΤΟΣ 016-017 ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΟΙ ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ Ι ΙΟΤΗΤΕΣ ΤΟΥΣ ΡΗΤΟΙ λέγονται οι αριθµοί : ΟΙ ΠΕΡΙΟ ΙΚΟΙ αριθµοί είναι :. ΑΡΡΗΤΟΙ

Διαβάστε περισσότερα

Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος)

Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος) Μαθηματικά Γ Γυμνασίου Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος) 1. Πως προσθέτουμε δυο πραγματικούς αριθμούς; Για να προσθέσουμε δύο ομόσημους αριθμούς, προσθέτουμε τις απόλυτες τιμές τους και στο άθροισμά

Διαβάστε περισσότερα

2018 Φάση 2 ιαγωνίσµατα Επανάληψης ΑΛΓΕΒΡΑ. Α' Γενικού Λυκείου. Σάββατο 21 Απριλίου 2018 ιάρκεια Εξέτασης:3 ώρες ΘΕΜΑΤΑ

2018 Φάση 2 ιαγωνίσµατα Επανάληψης ΑΛΓΕΒΡΑ. Α' Γενικού Λυκείου. Σάββατο 21 Απριλίου 2018 ιάρκεια Εξέτασης:3 ώρες ΘΕΜΑΤΑ ΘΕΜΑ A ΑΛΓΕΒΡΑ Α' Γενικού Λυκείου Σάββατο 1 Απριλίου 018 ιάρκεια Εξέτασης: ώρες ΘΕΜΑΤΑ Πεδίο ορισμού μιας συνάρτησης f (x) από ένα σύνολο Α σε ένα σύνολο Β ονομάζουμε το σύνολο Α, στο οποίο φαίνονται οι

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος 3

Περιεχόμενα. Πρόλογος 3 Πρόλογος Η Γραμμική Άλγεβρα είναι ένα σημαντικό συστατικό στο πρόγραμμα σπουδών, όχι μόνο των Μαθηματικών, αλλά και άλλων τμημάτων, όπως είναι το τμήμα Φυσικής, Χημείας, των τμημάτων του Πολυτεχνείου,

Διαβάστε περισσότερα

Μαθηματική Ανάλυση Ι

Μαθηματική Ανάλυση Ι Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση Ι Ενότητα 1: Σύνολα, Πραγματικοί αριθμοί Επίκ. Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

Γραμμική Αλγεβρα ΙΙ Διάλεξη 1 Εισαγωγή Χρήστος Κουρουνιώτης Πανεπισ τήμιο Κρήτης 19/2/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 1 19/2/ / 13

Γραμμική Αλγεβρα ΙΙ Διάλεξη 1 Εισαγωγή Χρήστος Κουρουνιώτης Πανεπισ τήμιο Κρήτης 19/2/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 1 19/2/ / 13 Γραμμική Άλγεβρα ΙΙ Διάλεξη 1 Εισαγωγή Χρήστος Κουρουνιώτης Πανεπιστήμιο Κρήτης 19/2/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 1 19/2/2014 1 / 13 Εισαγωγή Τι έχουμε μάθει; Στο πρώτο μάθημα Γραμμικής Άλγεβρας

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΔΕΥΤΕΡΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΔΕΥΤΕΡΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 1 ΔΕΥΤΕΡΟ ΜΑΘΗΜΑ, 10-10-13 Μ. Παπαδημητράκης. 1 Τώρα θα δούμε την συμμετρική ιδιότητα της Ιδιότητας Supremum. Η ΙΔΙΟΤΗΤΑ INFIMUM. Κάθε μη-κενό και κάτω φραγμένο σύνολο έχει μέγιστο κάτω φράγμα.

Διαβάστε περισσότερα

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Στους πραγματικούς αριθμούς ορίστηκαν οι

Διαβάστε περισσότερα

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές»

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Το σύνολο των πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας) α)

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος 3. Αν A 5 4, B 4, C να υπολογίσετε τις ακόλουθες πράξεις 4 3 8 3 7 3 (αν έχουν νόημα): α) AB, b) BA, c) CB, d) C B,

Διαβάστε περισσότερα

Κεφάλαιο 1. Αριθμοί. 1.1 Σύνολα

Κεφάλαιο 1. Αριθμοί. 1.1 Σύνολα Κεφάλαιο 1 Αριθμοί Το εισαγωγικό αυτό κεφάλαιο εξυπηρετεί δύο αλληλοκαλυπτόμενους σκοπούς. Πρώτον, θυμίζει στον αναγνώστη πολλές από τις γνώσεις που είναι προαπαιτούμενες σε ένα μάθημα Λογισμού συναρτήσεων

Διαβάστε περισσότερα

Να γράψετε 5 φυσικούς αριθμούς ξεκινώντας από τον μικρότερο. Ποιοι αριθμοί λέγονται ρητοί και ποιοι άρρητοι;

Να γράψετε 5 φυσικούς αριθμούς ξεκινώντας από τον μικρότερο. Ποιοι αριθμοί λέγονται ρητοί και ποιοι άρρητοι; Φυσικοί, Ακέραιοι, Ρητοί, Άρρητοι, Πραγματικοί, Απόλυτη Τιμή, Ομόσημοι, Ετερόσημοι, Αντίθετοι, Αντίστροφοι. Να γράψετε 5 φυσικούς αριθμούς ξεκινώντας από τον μικρότερο. Ποιοι αριθμοί λέγονται ακέραιοι;

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος 3

Περιεχόμενα. Πρόλογος 3 Πρόλογος Τα πρώτα μαθήματα, σχεδόν σε όλους τους κλάδους των μαθηματικών, περιέχουν, ή θεωρούν γνωστές, εισαγωγικές έννοιες που αφορούν σύνολα, συναρτήσεις, σχέσεις ισοδυναμίας, αλγεβρικές δομές, κλπ.

Διαβάστε περισσότερα

Ορισμένες σελίδες του βιβλίου

Ορισμένες σελίδες του βιβλίου Ορισμένες σελίδες του βιβλίου 7. Θεωρούμε το σύνολο αναφοράς 0,,. Να οριστούν τα σύνολα: Α. των τριψηφίων αριθμών που σχηματίζουν τα στοιχεία του Ω. Β. των τριψηφίων αριθμών με διαφορετικά ψηφία Γ. των

Διαβάστε περισσότερα

mail:

mail: Λογισμός Ι - Τμήμα 1Β Κ. Δασκαλογιάννης Γραφείο 18, 3ος όροφος ΣΘΕ τηλ: 2310-998074 mail: daskalo@math.auth.gr ιστοσελίδα: users.auth.gr/daskalo 2014 ΛΟΓΙΣΜΟΣ CALCULUS (Διαφορικός Λογισμός, Απειροστικός

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

0 + a = a + 0 = a, a k, a + ( a) = ( a) + a = 0, 1 a = a 1 = a, a k, a a 1 = a 1 a = 1,

0 + a = a + 0 = a, a k, a + ( a) = ( a) + a = 0, 1 a = a 1 = a, a k, a a 1 = a 1 a = 1, I ΠΙΝΑΚΕΣ 11 Σώμα 111 Ορισμός: Ενα σύνολο k εφοδιασμένο με δύο πράξεις + και ονομάζεται σώμα αν ικανοποιούνται οι παρακάτω ιδιότητες: (Α (α (Προσεταιριστική ιδιότητα της πρόσθεσης (a + b + c = a + (b +

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΠΡΩΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΠΡΩΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 1 ΠΡΩΤΟ ΜΑΘΗΜΑ, 8-10-13 Μ. Παπαδημητράκης. 1 Κατ αρχάς θα δούμε μια πολλή απλή πρόταση. 0xx x x ΠΡΟΤΑΣΗ. Έστω ότι ο έχει την εξής ιδιότητα: x για κάθε x > 0. Τότε 0. Απόδειξη. Για να καταλήξουμε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

Ερωτήσεις επί των ρητών αριθµών

Ερωτήσεις επί των ρητών αριθµών Σελ. 1 Ερωτήσεις επί των ρητών αριθµών 1. Ποια είναι τα πρόσηµα των ακεραίων αριθµών; Ζ={... -3,-2,-1,0,+1,+2,+3,... } 2. Ποιοι αριθµοί λέγονται θετικοί και ποιοι αρνητικοί; Γράψε από έναν. 3. Στον άξονα

Διαβάστε περισσότερα

Ανάλυση Ι και Εφαρμογές Σημειώσεις από τις παραδόσεις Α. Γιαννόπουλος Τμήμα Φυσικής Πανεπιστήμιο Αθηνών Αθήνα 2018

Ανάλυση Ι και Εφαρμογές Σημειώσεις από τις παραδόσεις Α. Γιαννόπουλος Τμήμα Φυσικής Πανεπιστήμιο Αθηνών Αθήνα 2018 Ανάλυση Ι και Εφαρμογές Σημειώσεις από τις παραδόσεις Α. Γιαννόπουλος Τμήμα Φυσικής Πανεπιστήμιο Αθηνών Αθήνα 08 Περιεχόμενα Το σύνολο των πραγματικών αριθμών. Φυσικοί, ακέραιοι και ρητοί αριθμοί............................

Διαβάστε περισσότερα

Τις ασκήσεις επιμελήθηκαν οι καθηγητές της Γ Γυμνασίου των σχολείων μας και ο συντονιστής Μαθηματικών.

Τις ασκήσεις επιμελήθηκαν οι καθηγητές της Γ Γυμνασίου των σχολείων μας και ο συντονιστής Μαθηματικών. Τις ασκήσεις επιμελήθηκαν οι καθηγητές της Γ Γυμνασίου των σχολείων μας και ο συντονιστής Μαθηματικών. Ερωτήσεις «Σωστού - Λάθους» 1) Για όλους τους πραγματικούς α, β ισχύει: ( ) ( ) 3 3 ) Για όλους τους

Διαβάστε περισσότερα

Aπάντηση Απόλυτη τιμή αριθμού είναι η απόσταση του αριθμού από το 0. Συμβολίζεται με 3 = 3-3 = 3 + και και είναι πάντα θετικός αριθμός. Π.

Aπάντηση Απόλυτη τιμή αριθμού είναι η απόσταση του αριθμού από το 0. Συμβολίζεται με 3 = 3-3 = 3 + και και είναι πάντα θετικός αριθμός. Π. ΜΕΡΟΣ Α : Α Λ Γ Ε Β ΡΑ ΚΕΦΑΛΑΙΟ 1ο ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και πράξεις τους 1. Γράψε τα βασικότερα σύνολα τιμών: Aπάντηση Ν{0,1,,,4,5,6,..+

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ Ποιους αριθµούς ονοµάζουµε οµόσηµους και ποιους ετερόσηµους; Ποιους αριθµούς ονοµάζουµε ακέραιους; Ποιους αριθµούς ονοµάζουµε ρητούς; Τι ονοµάζουµε απόλυτη τιµή ενός ρητού αριθµού; Τι παριστάνει η απόλυτη

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διανυσματικοί Χώροι Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Διανυσματικός Χώρος επί του F Αλγεβρική δομή που αποτελείται

Διαβάστε περισσότερα

ProapaitoÔmenec gn seic.

ProapaitoÔmenec gn seic. ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία

Διαβάστε περισσότερα

Ι. ΠΡΑΞΕΙΣ. Ορισµός 2 A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ. Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E.

Ι. ΠΡΑΞΕΙΣ. Ορισµός 2 A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ. Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E. Ι. ΠΡΑΞΕΙΣ A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ Ορισµός Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E. Παραδείγµατα:. Η ισότητα x y = x y είναι µια πράξη επί του *. 2. Η ισότητα

Διαβάστε περισσότερα

Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς

Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς 2.1 Η έννοια του διανύσματος Ο τρόπος που παριστάνομε τα διανυσματικά μεγέθη είναι με τη μαθηματική έννοια του διανύσματος. Διάνυσμα δεν είναι τίποτε

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 25 Οκτωβρίου Ασκηση 1. Στο σύνολο των πραγματικών αριθμών R ορίζουμε μια σχέση R R R ως εξής:

Α Δ Ι. Παρασκευή 25 Οκτωβρίου Ασκηση 1. Στο σύνολο των πραγματικών αριθμών R ορίζουμε μια σχέση R R R ως εξής: Α Δ Ι Α - Φ 1 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 25 Οκτωβρίου 2013 Ασκηση

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Ε.1 I. 1. α 2 = 9 α = 3 ψ p: α 2 = 9, q: α = 3 Σύνολο αλήθειας της p: Α = {-3,3}, Σύνολο αλήθειας της q: B = {3} A B 2. α 2 = α α = 1 ψ p: α 2 = α, q: α = 1 Σύνολο

Διαβάστε περισσότερα

Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α. Οι πραγματικοί αριθμοί και οι πράξεις τους ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ - -. Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους. Αν + y = -, να βρείτε τις τιμές των παραστάσεων: α A = + y + ( + y β B = ( - y -( y γ Γ = -(

Διαβάστε περισσότερα

ΑΝΙΣΟΤΗΤΕΣ. Αν α-β>0 τότε α>β «Αν η διαφορά είναι θετικός αριθμός τότε ο πρώτος αριθμός δηλαδή το α είναι μεγαλύτερος από τον δεύτερο δηλαδή το β»

ΑΝΙΣΟΤΗΤΕΣ. Αν α-β>0 τότε α>β «Αν η διαφορά είναι θετικός αριθμός τότε ο πρώτος αριθμός δηλαδή το α είναι μεγαλύτερος από τον δεύτερο δηλαδή το β» ΑΝΙΣΟΤΗΤΕΣ Μεταξύ δύο πραγματικών αριθμών μεγαλύτερος είναι εκείνος που βρίσκεται πιο δεξιά στον άξονα των πραγματικών αριθμών. Αν θέλουμε να συγκρίνουμε δύο αριθμούς α και β βρίσκουμε τη διαφορά τους

Διαβάστε περισσότερα

1 Οι πραγµατικοί αριθµοί

1 Οι πραγµατικοί αριθµοί Οι πραγµατικοί αριθµοί. Σύνολα αριθµών Το σύνολο των ϕυσικών αριθµών N = {,, 3,...} Το σύνολο των ακεραίων Z = {... 3,,, 0,,, 3,...}. Οι ακέραιοι διαµερίζονται σε άρτιους και περιττούς ανάλογα αν ένας

Διαβάστε περισσότερα

Κεφάλαιο 0 Μιγαδικοί Αριθμοί

Κεφάλαιο 0 Μιγαδικοί Αριθμοί Κεφάλαιο 0 Μιγαδικοί Αριθμοί 0 Βασικοί ορισμοί και πράξεις Είναι γνωστό ότι δεν υπάρχει πραγματικός αριθμός που επαληθεύει την εξίσωση x Η ανάγκη επίλυσης τέτοιων εξισώσεων οδηγεί στο σύνολο των μιγαδικών

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διανυσματικοί Χώροι Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Διανυσματικός Χώρος επί του F Αλγεβρική δομή που αποτελείται

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ 118 ερωτήσεις θεωρίας με απάντηση 34 416 ασκήσεις για λύση ερωτήσεις κατανόησης λυμένα παραδείγματα 0 συνδυαστικά θέματα εξετάσεων Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Εισαγωγική ενότητα Το λεξιλόγιο

Διαβάστε περισσότερα

Διάταξη Πραγματικών Αριθμών. Έστω α, β πραγματικοί αριθμοί. Τι σχέση μπορεί να έχουν αυτοί οι αριθμοί; Μπορεί, να είναι ίσοι: Να είναι άνισοι, δηλαδή:

Διάταξη Πραγματικών Αριθμών. Έστω α, β πραγματικοί αριθμοί. Τι σχέση μπορεί να έχουν αυτοί οι αριθμοί; Μπορεί, να είναι ίσοι: Να είναι άνισοι, δηλαδή: Διάταξη Πραγματικών Αριθμών Έστω α, β πραγματικοί αριθμοί. Τι σχέση μπορεί να έχουν αυτοί οι αριθμοί; Μπορεί, να είναι ίσοι: α=β ή Να είναι άνισοι, δηλαδή: Πρόσθεση πραγματικών αριθμών Αν α, β ομόσημοι

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ. Μαθηματικά. Β μέρος

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ. Μαθηματικά. Β μέρος ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ 2 5 +32 17 2= 1156 Μαθηματικά Β μέρος 8 9 15 Δ=2 δ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 1.Σύνολα Σύνολο είναι μια ολότητα από σαφώς καθορισμένα και διακεκριμένα αντικείμενα. Τα φωνήεντα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. 1. Να γράψετε τον τύπο της Ευκλείδειας διαίρεσης. Πώς ονομάζεται κάθε σύμβολο του τύπου;

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. 1. Να γράψετε τον τύπο της Ευκλείδειας διαίρεσης. Πώς ονομάζεται κάθε σύμβολο του τύπου; ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Να γράψετε τον τύπο της Ευκλείδειας διαίρεσης. Πώς ονομάζεται κάθε σύμβολο του τύπου; 2. Τι ξέρετε για το υπόλοιπο που προκύπτει από μια Ευκλείδεια διαίρεση; 3. Τι ονομάζουμε τέλεια

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. x A αντιστοιχίζεται (συσχετίζεται) με ένα μόνο. = ονομάζεται εξίσωση της

ΣΗΜΕΙΩΣΕΙΣ. x A αντιστοιχίζεται (συσχετίζεται) με ένα μόνο. = ονομάζεται εξίσωση της ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΡΑΓΜΑΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. IΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ [Ενότητα

Διαβάστε περισσότερα

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες

Διαβάστε περισσότερα

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012 ιδασκοντες: Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 1 Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 10 Οκτωβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΤΕΤΑΡΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΤΕΤΑΡΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 1 ΤΕΤΑΡΤΟ ΜΑΘΗΜΑ, 15-10-13 Μ. Παπαδημητράκης. 1 Παράδειγμα. Ως εφαρμογή της Αρχιμήδειας Ιδιότητας θα μελετήσουμε το σύνολο { 1 } A = n N = {1, 1 n 2, 1 } 3,.... Κατ αρχάς το σύνολο A έχει προφανώς

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ο κεφάλαιο: Πραγματικοί αριθμοί ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Copyright 014 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge004@yahoo.com άδεια χρήσης 3η Εκδοση, Αύγουστος 014 Περιεχόµενα

Διαβάστε περισσότερα

Μαθηματικά. Γ'Γυμνασίου. Μαρίνος Παπαδόπουλος

Μαθηματικά. Γ'Γυμνασίου. Μαρίνος Παπαδόπουλος Μαθηματικά Γ'Γυμνασίου Μαρίνος Παπαδόπουλος ΠΡΟΛΟΓΙΚΟ ΣΗΜΕΙΩΜΑ Σας καλωσορίζω στον όµορφο κόσµο των Μαθηµατικών της Γ Γυµνασίου. Τα µαθηµατικά της συγκεκριµένης τάξης αποτελούν ίσως το αποκορύφωµα των

Διαβάστε περισσότερα

Τμήμα Τεχνολόγων Γεωπόνων - Φλώρινα

Τμήμα Τεχνολόγων Γεωπόνων - Φλώρινα Τμήμα Τεχνολόγων Γεωπόνων - Φλώρινα Μάθημα: Μαθηματικά Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών (1 ο, 2 ο, 3 ο Κεφάλαιο) 11-10-2017, 18-10-2017 Διδάσκουσα: Αριστούλα Κοντογιάννη ΩΡΕΣ ΔΙΔΑΣΚΑΛΙΑΣ

Διαβάστε περισσότερα

Αριθμητική Ανάλυση & Εφαρμογές

Αριθμητική Ανάλυση & Εφαρμογές Αριθμητική Ανάλυση & Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Υπολογισμοί και Σφάλματα Παράσταση Πραγματικών Αριθμών Συστήματα Αριθμών Παράσταση Ακέραιου

Διαβάστε περισσότερα

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Τι είναι κλάσμα; Κλάσμα είναι ένα μέρος μιας ποσότητας. ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Κλάσμα είναι ένας λόγος δύο αριθμών(fraction is a ratio of two whole numbers) Πως εκφράζετε συμβολικά ένα κλάσμα; Εκφράζετε

Διαβάστε περισσότερα

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας. Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους Κατανόηση εννοιών - Θεωρία. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι

Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι Επιμέλεια: Ι. Λυχναρόπουλος. Δείξτε ότι ο V R εφοδιασμένος με τις ακόλουθες πράξεις (, a b) + (, d) ( a+, b+ d) και k ( ab, ) ( kakb,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Έντυπο Υποβολής Αξιολόγησης Γ.Ε. O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

1 ο Πρότυπο Πειραματικό Γυμνάσιο Θεσσαλονίκης Α Γυμνασίου Ακέραιοι Αριθμοί -Η ευθεία των αριθμών

1 ο Πρότυπο Πειραματικό Γυμνάσιο Θεσσαλονίκης Α Γυμνασίου Ακέραιοι Αριθμοί -Η ευθεία των αριθμών κέραιοι ριθμοί -Η ευθεία των αριθμών κέραιοι αριθμοί είναι οι φυσικοί αριθμοί μαζί με τους αντίστοιχους αρνητικούς αριθμούς. Τα σύμβολα «+» και «-» που γράφονται μπροστά από τους αριθμούς λέγονται πρόσημα.

Διαβάστε περισσότερα

Infimum. Ορισμός κάτω φράγματος συνόλου A. Ορισμός infimum του συνόλου A. Το σύνολο A R είναι κάτω φραγμένο αν. k R : x A k x.

Infimum. Ορισμός κάτω φράγματος συνόλου A. Ορισμός infimum του συνόλου A. Το σύνολο A R είναι κάτω φραγμένο αν. k R : x A k x. Infimum Ορισμός κάτω φράγματος συνόλου A Το σύνολο A R είναι κάτω φραγμένο αν k R : x A k x k = κάτω φράγμα Ορισμός infimum του συνόλου A inf A = infimum του συνόλου A Το μεγαλύτερο από τα κάτω φράγματα

Διαβάστε περισσότερα

1 Οι πραγµατικοί αριθµοί

1 Οι πραγµατικοί αριθµοί 1 Οι πραγµατικοί αριθµοί 1.1 Σύνολα αριθµών Το σύνολο των ϕυσικών αριθµών N = {1, 2, 3,...} Το σύνολο των ακεραίων Z = {... 3, 2, 1, 0, 1, 2, 3,...}. Οι ακέραιοι διαµερίζονται σε άρτιους και περιττούς

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής ΕΝΟΤΗΤΑ

Διαβάστε περισσότερα

Ενότητα: Δακτύλιοι, Ακέραιες Περιοχές, Σώματα. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Ενότητα: Δακτύλιοι, Ακέραιες Περιοχές, Σώματα. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τίτλος Μαθήματος: Αλγεβρικές Δομές ΙΙ Ενότητα: Δακτύλιοι, Ακέραιες Περιοχές, Σώματα Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τμήμα: Μαθηματικών Κεφάλαιο 1 Προκαταρκτικές Έννοιες 1.1 Δακτύλιοι,

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 17 Οκτωβρίου 2011

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 17 Οκτωβρίου 2011 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 7 Οκτωβρίου 0 Ημερομηνία παράδοσης της Εργασίας: 5 Νοεμβρίου 0 Οι ασκήσεις

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ

Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ 1 ΜΕΡΟΣ Α ΚEΦΑΛΑΙΟ 1 Ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. ΕΡΩΤΗΣΗ Τι ονομάζουμε

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 3 Μαρτίου 2016 Αν (G, ) είναι

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

ΕΛΑΧΙΣΤΑ ΑΝΩ ΜΕΓΙΣΤΑ ΚΑΤΩ ΦΡΑΓΜΑΤΑ

ΕΛΑΧΙΣΤΑ ΑΝΩ ΜΕΓΙΣΤΑ ΚΑΤΩ ΦΡΑΓΜΑΤΑ ΕΛΑΧΙΣΤΑ ΑΝΩ ΜΕΓΙΣΤΑ ΚΑΤΩ ΦΡΑΓΜΑΤΑ Κασαπίδης Γεώργιος Μαθηµατικός Στο άρθρο αυτό µελετάµε την πιο χαρακτηριστική ιδιότητα του συνόλου R των πραγµατικών αριθµών. ΟΡΙΣΜΟΣ 1 Ένα σύνολο Α από πραγµατικούς

Διαβάστε περισσότερα

Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί

Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΙΚΩΝ ΕΝΝΟΙΙΩΝ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Α ΤΑΞΗΣ Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί Α. 7. 1 1. Τι είναι τα πρόσημα και πως χαρακτηρίζονται οι αριθμοί από αυτά; Τα σύμβολα

Διαβάστε περισσότερα

7.2 ΑΠΟΛΥΤΗ ΤΙΜΗ ΡΗΤΟΥ

7.2 ΑΠΟΛΥΤΗ ΤΙΜΗ ΡΗΤΟΥ 1 7.2 ΑΠΟΛΥΤΗ ΤΙΜΗ ΡΗΤΟΥ ΘΕΩΡΙΑ 1. Απόλυτη τιµή ρητού: Έστω ένας ρητός αριθµός α. Η απόλυτη τιµή του αριθµού α συµβολίζεται µε α και εκφράζει την απόσταση του σηµείου µε τετµηµένη α από την αρχή Ο του

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

Η ΑΞΙΩΜΑΤΙΚΉ ΘΕΜΕΛΙΩΣΗ ΤΩΝ ΠΡΑΓΜΑΤΙΚΏΝ ΑΡΙΘΜΩΝ ΚΑΙ Η ΕΙΣΑΓΩΓΗ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ. Αργύρης Φελλούρης Καθηγητής Ε.Μ.Π.

Η ΑΞΙΩΜΑΤΙΚΉ ΘΕΜΕΛΙΩΣΗ ΤΩΝ ΠΡΑΓΜΑΤΙΚΏΝ ΑΡΙΘΜΩΝ ΚΑΙ Η ΕΙΣΑΓΩΓΗ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ. Αργύρης Φελλούρης Καθηγητής Ε.Μ.Π. Η ΑΞΙΩΜΑΤΙΚΉ ΘΕΜΕΛΙΩΣΗ ΤΩΝ ΠΡΑΓΜΑΤΙΚΏΝ ΑΡΙΘΜΩΝ ΚΑΙ Η ΕΙΣΑΓΩΓΗ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ Αργύρης Φελλούρης Καθηγητής Ε.Μ.Π. Στις σύντομες σημειώσεις που ακολουθούν θα περιγράψουμε την αξιωματική θεμελίωση των

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάμε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων Αυτές συνδέονται μεταξύ τους με την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή

Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή ΣΥΝΑΡΤΗΣΕΙΣ (ΕΙΣΑΓΩΓΗ)-ΘΕΩΡΕΙΑ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμώv αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται

Διαβάστε περισσότερα