Hemijska veza Kada su atomi povezani jedan sa drugim tada kažemo da izmeñu njih postoji hemijska veza Generalno postoji tri vrste hemijske veze:

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Hemijska veza Kada su atomi povezani jedan sa drugim tada kažemo da izmeñu njih postoji hemijska veza Generalno postoji tri vrste hemijske veze:"

Transcript

1 Hemijska veza Kada su atomi povezani jedan sa drugim tada kažemo da izmeñu njih postoji hemijska veza Generalno postoji tri vrste hemijske veze: Jonska, Kovalentna i Metalna Luisovi simboli veoma zgodan način predstavljanja s i p elemenata i veza izmeñu njih. Luisovi simboli nisu praktični za predstavljanje d elemenata. Valentni elektroni se predstavjaju tačkicama na sve 4 strane od simbola elemenata (to je zgodna podudarnost jer s i p elementi imaju 4 orbitale u koje se smeštaju valentni elektroni jednu s i tri p).

2 Hemijska veza Dve tačkice predstavljaju popunjenu orbitalu a jedna polupopunjenu d elektroni se ne predstavljaju Luisovim simbolima

3 Pravilo okteta Elektronska konfiguracija plemenitih gasova je veoma stabilna. Oni imaju veliku jonizacionu energiju, mali afinitet prema elektronu i hemijski su inertni Stoga ostali atomi se jedine u jedinjenja težeći da dobiju elektronsku konfiguraciju najbližeg plemenitog gasa. Iz ovog opažanja je proisteklo pravilo okteta: Atomi će gubiti ili dobijati ili deliti elektrone da bi postigli elektronsku konfiguraciju plemenitog gasa Ovo je pravilo, što znači da ima izuzetaka

4 Jonska veza Jonska veza se tumači kao elektrostatičko privlačenje izmeñu različito naelektrisanih jona Uglavnom nastaje izmeñu katjona metala i anjona nemetala Kada metalni Na reaguje sa gasovitim Cl nastaje jonska veza Na(s) + ½Cl 2 (g) NaCl(s) H o f = -410,9 kj

5 Jonska veza Ova veza se tumači kao da je elektron sa atoma natrijuma prešao potpuno na atom hlora. Nastali katjoni i anjoni su se udružili u trodimenzionalnu kristalnu rešetku i povezani su samo elektrostatičkim silama

6 Jonska veza Standardne entalpije nastajanja svih jonskih jedinjenja su veoma negativne nastajanje jonskih jedinjenja je egzoterman proces Prilikom nastajanja jonkih jedine sa dešavaju tri stvari: 1. Uklanja se elektron sa atoma metala da bi nastao katjon. Za ovo je potrebno utošiti energiju jonizacije to je uvek endotermno 2. Dodaje se elektron atomu nemetala da bi se dobio anjon afinitet prema elektronu - uglavnom egzoterman proces (elementi koji imaju mali ili pozitivan afinitet prema elektronu ne grade anjone) 3. Nastali katjon i anjon se spajaju u čvrsto jonsko jedinjenje

7 Jonska veza Energije sva tri procesa prilikom grañenja NaCl iz natrijuma i hlora su: 1. Na(g) Na + (g) + e - I 1 = +496 kj/mol 2. Cl(g) + e - Cl - (g) Ea= -349 kj/mol 3. Na + (g) + Cl - (g) NaCl(s) H= -788 kj/mol H u trećoj reakciji se naziva energija kristalne rešetke i ona se definiše kao energija koju je potrebno uložiti da bi se potpuno razdvojio jedan mol čvrstog kristalnog jonskog jedinjenja na jone u gasovitom stanju Na(s) + ½Cl 2 (g) NaCl(s) H o f= -410,9 kj

8 Jonska veza Energija kristalne rešetke zavisi isključivo od naelektrisanja, veličine i načina pakovanja jona koji čine jonsko jedinjenje. 1 = 4πε Q1Q d E el 2 Što su joni manji i više naelektrisani i energija kristalne rešetke će rasti. Pakovanje jona u rešetku zavisi od brojnih faktora od kojih je najvažniji odnos izmeñu veličina katjona i anjona. Generalno, ako su katjon i anjoj približo istih veličina pakovanje će biti gušće i energija kristalne rešetke veća. 0

9 Joni prelaznih metala Ne ponašaju se u skladu sa pravilom okteta, jer moraju da otpuste ili prime previše elektrona da bi postigli elektronsku konfiguraciju plemenitog gasa. Npr. gvožñe Fe: [Ar]3d 6 4s 2 bi moralo da otpusti 8 elektrona da bi postiglo elektronsku konfiguraciju argona ili da primi 10 elektrona da bi postiglo elektronsku konfiguraciju kriptona. To je nemoguće jer najčešće srećemo katjone koji su 1+, 2+ i 3+ i anjone koji su 1-, 2- i 3-.

10 Joni prelaznih metala Veoma važno pravilo kod odreñivanja elektronske konfiguracije jona prelaznh metala: kada se stvara katjon uvek se elektron uzima iz onog podnivoa koji ima veći glavni kvantni broj n Tako će kod gvožña prvo se jonizovati 4s elektroni pa tek onda 3d elektroni. Inače gvožñe gradi stabilne 2+ i 3+ katjone Fe: [Ar]3d 6 4s 2 Fe 2+ : [Ar]3d 6 Fe 3+ : [Ar]3d 5

11 Kovalentna veza Mnogo više ima jedinjenja sa kovalentnom nego sa jonskom vezom. Dok su jonska jedinjenja uglavnom čvrste supstance velike tačke topljenja kovalentna jedinjenja su mnogo raznovrsnija Luis je zaključio da atomi ne moraju da otpuštaju ili primaju elektrone da bi postigli elektronsku konfiguraciju plemenitog gasa već da mogu i dele elektrone. Na primer, vodonik ima jedan elektron u 1s orbitali. Najbliži plemeniti gas je helijum sa dva elektrona u 1s orbitali. Znači, dva atoma vodonika mogu da udruže svoje elektrone i postignu elektronsku konfiguraciju helijuma

12 Kovalentna veza Nastajanje kovalentne veze sve sile koje učestvuju: Privlačenje izmeñu jezgra jednog atoma i elektrona drugog atoma Odbijanje izmeñu elektrona dva atoma Odbijanje izmeñu jezgara dva atoma

13 Kovalentna veza Kvantno mehanički proračuni na H 2 molekulu su pokazali da dolazi do nagomilavanja elektronske gustine izmeñu dva jezgra. Znači molekul H 2 postoji zato što su dva jezgra elektrostatički privučena za koncentrovano negativno naelektrisanje (elektrone) izmeñu njih. Zajednički elektronski par ustvari deluje kao lepak koji drži jezgra zajedno

14 Kovalentna veza Prikazivanje kovalentne veze Luisovim simbolima Zajednički elektronski par se u Luisovim strukturama obično predstavlja crticom Kiseoniku trebaju 2 elektrona da bi dobio elektronsku konfiguraciju neona pa će se jedinita sa dva atoma vodonika, azotu trebaju 3 elektrona, ugljeniku 4...

15 Kovalentna veza višestruke veze Kovalentna veza izmeñu dva atoma koji dele jedan zajednički elektronski par se zove prosta kovalentna veza ili samo prosta veza koja se predstavlja jednom crticom Kada dva atoma dele dva elektronska para tada nastaje dvostruka veza koja se predstavlja sa dve crtice Ukoliko atomi dele tri elektronska para tada nastaje trostruka veza

16 Kovalentna veza višestruke veze Pravilo: Dvostruka veza je uvek jača i kraća od proste veze a trostruka je jača i kraća i od dvostruke i od proste!!!

17 Polarnost kovalentne veze Postoje dve vrste kovalentne veze po polarnosti: Polarna kovalentna veza Nepolarna kovalentna veza Nepolarna kovalentna veza nastaje izmeñu atoma istog elementa. U H 2 molekulu oba atoma podjednako dele zajednički elektronski par Polarna kovalentna veza nastaje izmeñu atoma različitih elemenata. Tu jedan atom jače privlači zajednički elektronski par nego drugi atom. Zbog toga su elektroni pomereni ka atomu koji ih jače privlači i on postaje delom negativno naelektrisan dok atom koji slabije privlači elektrone postaje delom pozitivno naelektrisan. Jonska veza se može posmatrati kao drastični primer polarne kovalentne veze gde su oba elektrona iz para kompletno prešla na atom koji ih jače privlači

18 Elektronegativnost - Polarnost kovalentne veze Kako mi da znamo koji atom jače privlači elektrone? Usvojen je pojam elektronegativnosti koji se definiše kao: Elektronegativnost je sposobnost atoma da u molekulu privuče elektronski par Što je veća elektronegativnost atoma to će jače privlačiti zajednički elektronski par. Mulliken je odredio elektronegativnost atoma svakog elementa na osnovu energije jonizacije i afiniteta prema elektronu χ = I 1 + EA 2

19 Elektronegativnost - Polarnost kovalentne veze χ = I 1 + EA 2 Jonizaciona energija nam govori koliko dati atom čvrsto drži svoje elektrone Afinitet prema elektronu nam govori koliko dati atom želi da privuče druge elektrone Danas se koristi Poulingova skala elektronegativnosti koja se zasniva na merenju energije disocijacije veza Uzeto je da je elektronegativnost fluora (najelektronegativnijeg elementa) 4,0 a cezijuma (najmanje elektronegativnog) 0,7

20 Elektronegativnost - Polarnost kovalentne veze Paulingova skala elektronegativnosti

21 Elektronegativnost - Polarnost kovalentne veze Paulingova skala elektronegativnosti Vrednost elektronegativnosti raste po periodi a opada u grupi

22 Elektronegativnost - Polarnost kovalentne veze Sada kada znamo pojam elektronegativnosti možemo na osnovu razlika elektronegativnosti da odredimo koja će veza biti polarna a koja nepolarna Npr. Jedinjenje F 2 HF LiF Razlika 4,0-4,0= 0 4,0 2.1 = 1,9 4,0 1,0 = 3,0 elektroneg. Tip veze nepolarna polarna jonska U jedinjenju HF je polarna veza jer je zajednički elektronski par pomeren ka atomu fluora tj. elektronska gustina oko elektronegativnijeg fluora je veća.

23 Elektronegativnost - Polarnost kovalentne veze Zbog toga će u delu prostora oko fluora biti višak elektrona i to će biti negativno naelektrisani deo molekula HF. U delu oko atoma vodonika će biti manjak elektrona i to će biti pozitivno naelektrisani deo molekula HF Ovakva raspodela naelektrisanja se predstavlja kao: Gde simboli δ+ i δ- predstavljaju parcijalno pozitivna i parcijalno negativna naelektrisanja.

24 Elektronegativnost - Polarnost kovalentne veze Ovo je potvrñeno i kvantno mehaničkim proračunima. Kada se izračuna raspodela elektronske gustine za molekle F 2, HF i HLi dobijaju se sledeće slike: Plavom bojom su obeleženi regioni sa malom elektronskom gustinom a crvenom oni sa velikom elektronskom gustinom

25 Elektronegativnost - Polarnost kovalentne veze Pošto molekul HF ima svoj pozitivan i negativan kraj za njega kažemo da je polaran molekul Polarnost molekula HF se može prikazati na dva načina: Polarnost je veoma važna osobina molekula i mnoge hemijske i fizičke osobine molekula zavise od njihove polarnosti Ali da li postoji skala polarnosti, da li su neki molekuli polarniji od drugih? Kako se može kvantitativno izraziti polarnost?

26 Elektronegativnost - Polarnost kovalentne veze Diplolni momenat je mera za kvantitativno izražavanje polarnosti nekog molekula. Svaki polarni molekul ima i svoj dipolni momenat (µ) Kada se dva jednaka i suprotna naelektrisanja Q nalaze na nekom rastojanju r tada je veličina diplonog momenta takvog sistema data sa: µ= Qr Dipolni momenat je vektorska veličina Jedinica za diploni momenat je kulon-metar (Cm) a češće se izražava u Debajima (D). Jedan Debaj iznosi 3,34 x kulon-metara

27 Elektronegativnost - Polarnost kovalentne veze Dipolni momenat i razlika elektronegativnosti Što je veća razlika elektronegatvnosti izmeñu atoma koji čine dvoatomni molekul to će i dipolni momenat tog molekula biti veći

28 Elektronegativnost - Polarnost kovalentne veze Dipolni momenat kod višeatomskih molekula veoma zavisi od geometrije molekula. CO 2 uprkos velikoj razlici u elektronegativnosti izmeñu C (2,5) i O (3,5) nema dipolni momenat jer je linearan molekul i vektorski zbir dipola C=O veza je nula Voda koja nije linearan molekul ima veoma veliki dipolni momenat

29 Elektronegativnost - Polarnost kovalentne veze Slično je i za metan (CH 4 ). Kada se odreñuje ukupni dipolni momenat celog molekula moraju se vektorski sabrati dipoli svih veza koje čine molekul

30 Formalna naelektrisanja Prilikom pisanja Luisovih formula često možemo napisati više od jedne moguće strukture. Odreñivanje koja je struktura najverovatnija se može uraditi i pomoću formalnih naelektrisanja atoma. Prilikom odreñivanja formalnih naelektrisanja: 1. Prvo se napiše Luisova formula molekula 2. Svi nedeljeni (nevezivni) elektroni se pripišu atomu na kome se nalaze 3. Vezivni elektroni se dodeljuju po jedan svakom atomu u vezi 4. Formalno naelektrisanje je jednako broju valentnih elektrona u izolovanom atomu, minus broj elektrona koji su dodeljeni tom atomu na osnovu Luisove strukture

31 Formalna naelektrisanja Primer: Odrediti formalna naelektrisanja C i N atoma u CN - jonu Na atomu C imamo 2 nevezivna elektrona i na atomu N imamo 2 nevezivna elektrona 3. Imamo 3 vezivna elektronska para izmeñu atoma C i N. Ukupno 6 vezivnih elektrona, od toga 3 dajemo atomu C a 3 atomu N 4. C ima 4 valentna elektona pa mu je formalno naelektrisanje 4 (2+3)= -1. N ima 5 valentnih elektrona pa mu je formalno naelektrisanje 5-(2+3) = 0. Tako da su formalna naelektrisanja u CN - jonu:

32 Formalna naelektrisanja Za molekul CO 2 možemo napisati dve Luisove formule Stabilnija i verovatnija će biti prva struktura jer su u njoj formalna naelektrisanja bliža nuli. Kada imamo dve ili više Luisove strukture za isti molekul verovatnija će biti ona kod koje su: (1)formalna naelektrisanja svih atoma što bliža nuli (2)sva negativna naelektrisanja se nalaze na elektronegatvnim atomima

33 Rezonantne strukture Za molekul ozona O 3 možemo napisati dve Luisove formule koje se u suštini ne razlikuju. Ovakve strukture koje se razlikuju samo po načinju smeštanja elektrona se zovu rezonantne strukture Meñutim precizna merenja su pokazala da u ozonu ne postoji jedna prosta i jedna dvostruka veza već da su obe veze po dužini i energiji negde izmeñu proste i dvostruke. Znači ozon se nalazi negde izmeñu ove dve strukture (ne prelazi iz jedne u drugu već je upravo njihova mešavina kao kad pomešamo plavu i žutu boju pa dobijemo zelenu zelena nije čas plava čas žuta već je zelena). Ipak struktura ozona se pravilno prikazuje:

34 Rezonantne strukture Ovo znači da je prava struktura ozona izmeñu ove dve rezonantne strukture NO 3- anjon ima tri rezonantne strukture

35 Izuzeci od pravila okteta Već smo videli da pravilo okteta ne važi za jone prelaznih metala. Ima još izuzetaka od pravila okteta: 1. Molekuli sa neparnim brojem valentnih elektrona 2. Molekuli u kojima jedan atom ima manje od osam elektrona 3. Molekuli u kojima jedan atom ima više od osam elektrona

36 Izuzeci od pravila okteta 1. Molekuli sa neparnim brojem valentnih elektrona Najpoznatiji primeri molekula sa neparnim brojem elektrona su ClO 2, NO i NO 2 Kod ovih molekula je nemoguće izvršiti sparivanje elektrona i jedan atom uvek ostaje bez okteta. NO ima 11 valentnih elektrona i njegove Luisove formule su: Ovakvi molekuli često podležu dimerizaciji da bi dostigli stabilnu elektronsku konfiguraciju 2NO 2 N 2 O 4

37 Izuzeci od pravila okteta 2. Molekuli u kojima jedan atom ima manje od osam elektrona Ovakav slučaj odstupanja od pravila okteta se najčešće javlja kod jedinjenja bora i berilijuma. BF 3 Meñutim možemo napisati i ovakve Luisove strukture gde je zadovoljeno pravilo okteta za sve atome ali se formalno pozitivno naelektrisanje nalazi na atomu fluora (najelektronegativniji atom) pa su ove strukture malo verovatne

38 Izuzeci od pravila okteta 2. Molekuli u kojima jedan atom ima manje od osam elektrona Ovi molekuli su Luisove kiseline jer na centralnom atomu postoji jedna prazna valentna orbitala. Oni će reagovati sa Luisovim bazama koje imaju na centralnom atomu jedan nevezivni elektronski par dajući soli. U solima svi atomi imaju pun oktet

39 Izuzeci od pravila okteta 3. Molekuli u kojima jedan atom ima više od osam elektrona Najčešći tip odstupanja od pravila okteta. Primer PCl 5 Ovde oko atoma fosfora imamo 10 elektrona. Toliko elektrona ne može da stane u 3s i 3p orbitale fosfora. Moramo proširiti valentnu ljusku fosfora sa (praznim) 3d orbitalama koje su sledeće po energiji. Ostali primer ovog narušavanja pravila okteta su SF 4, AsF 6-, ICl 4 - Naravno odgovarajuća analogna jedinjenja sa centralnim atomom iz druge periode kao što su NF 5 ili OF 4 ne postoje. Zašto?

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

d-elemeti su su elementi koji se nalaze u PS između 2. i 13.grupe (od IIa do IIIa podgrupe ili glavnih grupa)

d-elemeti su su elementi koji se nalaze u PS između 2. i 13.grupe (od IIa do IIIa podgrupe ili glavnih grupa) PRELAZNI ELEMENTI d-elemeti su su elementi koji se nalaze u PS između 2. i 13.grupe (od IIa do IIIa podgrupe ili glavnih grupa) Prelazni elementi d-elementi Lantanoidi i aktinoidi II-b-grupa cinka U prelazne

Διαβάστε περισσότερα

STRUKTURA I VEZE UVOD

STRUKTURA I VEZE UVOD UVOD Šta je organska hemija i zašto je vi treba da proučavate? Odgovori su svuda oko nas. Svaki živi organizam je sačinjen od organskih hemikalija. Proteini koji izgrađuju našu kosu, kožu i mišiće su organske

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Prva tačka u ispitivanju toka unkcije je odredjivanje oblasti deinisanosti, u oznaci Pre nego što krenete sa proučavanjem ovog ajla, obavezno pogledajte ajl ELEMENTARNE

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

MERENJE, GREŠKE MERENJA I OBRADA REZULTATA MERENJA

MERENJE, GREŠKE MERENJA I OBRADA REZULTATA MERENJA MERENJE, GREŠKE MERENJA I OBRADA REZULTATA MERENJA 1 Merenje Svaki eksperimentalni rad u fizici praćen je merenjem neke fizičke veličine. Izmeriti neku fizičku veličinu znači uporediti je sa standardnom

Διαβάστε περισσότερα

Na grafiku bi to značilo :

Na grafiku bi to značilo : . Ispitati tok i skicirati grafik funkcije + Oblast definisanosti (domen) Kako zadata funkcija nema razlomak, to je (, ) to jest R Nule funkcije + to jest Ovo je jednačina trećeg stepena. U ovakvim situacijama

Διαβάστε περισσότερα

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. Istinitosna tablica p q r F odgovara formuli A) q p r p r). B) q p r p r). V) q p r p r). G) q p r p r). D) q p r p r). N) Ne znam. Date

Διαβάστε περισσότερα

Tačno merenje Precizno Tačno i precizno

Tačno merenje Precizno Tačno i precizno MERENJE, GREŠKE MERENJA I OBRADA REZULTATA MERENJA Izmeriti neku veličinu u fizici znači naći brojni odnos merene fizičke veličine prema vrednosti iste fizičke veličine, koja je dogovorno izabrana za jedinicu.

Διαβάστε περισσότερα

Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija. Dokaz: Neka su A i A B tautologije.

Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija. Dokaz: Neka su A i A B tautologije. Svojstva tautologija Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija i formula B. Dokaz: Neka su A i A B tautologije. Pretpostavimo da B nije tautologija. Tada postoji valuacija v

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

PRSKALICA - LELA 5 L / 10 L

PRSKALICA - LELA 5 L / 10 L PRSKALICA - LELA 5 L / 10 L UPUTSTVO ZA UPOTREBU. 1 Prskalica je pogodna za rasprsivanje materija kao sto su : insekticidi, fungicidi i sredstva za tretiranje semena. Prskalica je namenjena za kućnu upotrebu,

Διαβάστε περισσότερα

STVARANJE VEZE C-C POMO]U ORGANOBORANA

STVARANJE VEZE C-C POMO]U ORGANOBORANA STVAAJE VEZE C-C PM]U GAAA 2 6 rojne i raznovrsne reakcije * idroborovanje alkena i reakcije alkil-borana 3, Et 2 (ili TF ili diglim) Ar δ δ 2 2 3 * cis-adicija "suprotno" Markovnikov-ljevom pravilu *

Διαβάστε περισσότερα

OSNOVNI PRINCIPI PREBROJAVANJA. () 6. studenog 2011. 1 / 18

OSNOVNI PRINCIPI PREBROJAVANJA. () 6. studenog 2011. 1 / 18 OSNOVNI PRINCIPI PREBROJAVANJA () 6. studenog 2011. 1 / 18 TRI OSNOVNA PRINCIPA PREBROJAVANJA -vrlo često susrećemo se sa problemima prebrojavanja elemenata nekog konačnog skupa S () 6. studenog 2011.

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

SAZNANJA O MATERIJI OD STAROG DO XIX VEKA

SAZNANJA O MATERIJI OD STAROG DO XIX VEKA SAZNANJA O MATERIJI OD STAROG DO XIX VEKA U najstarija vremena, čovek je svoja poimanja sveta iskazivao mitovima. MIT (mitos) reč, priča, kazivanje (grč.); MITOLOGIJA od, priča i (logos), reč, učenje.

Διαβάστε περισσότερα

Franka Miriam Brückler. Travanj 2009.

Franka Miriam Brückler. Travanj 2009. Osnove kvantne kemije za matematičare Franka Miriam Brückler PMF-MO, Zagreb Travanj 2009. Nekoliko uvodnih zadataka Zadatak Odredite frekvenciju i valni broj elektromagnetskog zračenja valne duljine λ

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

O SKUPOVIMA. Do pojma skupa može se vrlo lako doći empirijskim putem, posmatrajući razne grupe,

O SKUPOVIMA. Do pojma skupa može se vrlo lako doći empirijskim putem, posmatrajući razne grupe, O SKUPOVIM Do pojma skupa može se vrlo lako doći empirijskim putem, posmatrajući razne grupe, skupine, mnoštva neke vrste objekata, stvari, živih bića i dr. Tako imamo skup stanovnika nekog grada, skup

Διαβάστε περισσότερα

entropije Entropija raste ako se krećemo od čvrstog preko tečnog do gasovitog stanja: S čvrsto < S tečno << S gas

entropije Entropija raste ako se krećemo od čvrstog preko tečnog do gasovitog stanja: S čvrsto < S tečno << S gas ,4,4, Odreñivanje promene entropije,4,4,, romena entropije pri promeni faza Molekular ularna interpretacija entropije Entropija raste ako se krećemo od čvrstog preko tečnog do gasovitog stanja: čvrsto

Διαβάστε περισσότερα

Organska kemija i Biokemija. Predavanje 1

Organska kemija i Biokemija. Predavanje 1 Organska kemija i Biokemija Predavanje 1 Povijesni pregled XVIII. st. IZOLACIJA čistih organskih spojeva 1807. Berzelius ''vis vitalis' 1828. Friedrich Wöhler: iz amonij cijanata sintetizirao ureu 1848.

Διαβάστε περισσότερα

Vektorski prostori. Vektorski prostor

Vektorski prostori. Vektorski prostor Vektorski prostori Vektorski prostor Neka je X neprazan skup i (K, +, ) polje. Skup X je vektorski ili linearni prostor nad poljem skalara K ako ima sledeću strukturu: (1) Definisana je operacija + u skupu

Διαβάστε περισσότερα

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom.

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom. RAVAN Ravan je osnovni pojam u geometiji i kao takav se ne definiše. Ravan je odeđena tačkom i nomalnim vektoom. nabc (,, ) π M ( x,, ) y z Da bi izveli jednačinu avni, poučimo sledeću sliku: n( A, B,

Διαβάστε περισσότερα

MIKRO-NANO FLUIDIKA 8. UVOD U ELEKTROHEMIJU

MIKRO-NANO FLUIDIKA 8. UVOD U ELEKTROHEMIJU MIKRO-NANO FLUIDIKA Handout 4 2012/2013 8. UVOD U ELEKTROHEMIJU Elektrohemija je grana hemije koja proučava hemijske reakcije koje se dešavaju na granici izmeďu električnog provodnika (metalne, poluprovodničke

Διαβάστε περισσότερα

Rad, energija, snaga. Glava Rad

Rad, energija, snaga. Glava Rad Glava 4 Rad, energija, snaga Pojam energije je jedan od najvažnijih u nauci i tehnici ali se koristi i u svakodnevnom životu. U našoj svakodnevnici taj pojam se obično odnosi na gorivo za pokretanje automobila

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

RAVNOTEŽE U RASTVORIMA KISELINA I BAZA

RAVNOTEŽE U RASTVORIMA KISELINA I BAZA III RAČUNSE VEŽBE RAVNOTEŽE U RASTVORIMA ISELINA I BAZA U izračunavanju karakterističnih veličina u kiselinsko-baznim sistemima mogu se slediti Arenijusova (Arrhenius, 1888) teorija elektrolitičke disocijacije

Διαβάστε περισσότερα

Termofizika. Glava Temperatura

Termofizika. Glava Temperatura Glava 7 Termofizika Toplota je jedan od oblika energije sa čijim transferom sa tela na telo se svakodnevno srećemo. Tako nas na primer, leti Sunce zagreva tokom dana dok su vedre letnje noći često prilično

Διαβάστε περισσότερα

POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, Vladimir Balti

POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, Vladimir Balti POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, 004. Vladimir Balti Pojam polinoma. Prsten polinoma.. Dati su polinomi P (x) = x + x +, Q(x) = x 4 x +, R(x) = x x +. Proveriti da li za

Διαβάστε περισσότερα

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b)

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b) TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje između dve tačke Ako su nam date tačke Ax (, y) i Bx (, y ), onda rastojanje između njih računamo po formuli

Διαβάστε περισσότερα

ΣΕΡΒΙΚΗ ΓΛΩΣΣΑ IV. Ενότητα 3: Αντωνυμίες (Zamenice) Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών

ΣΕΡΒΙΚΗ ΓΛΩΣΣΑ IV. Ενότητα 3: Αντωνυμίες (Zamenice) Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών Ενότητα 3: Αντωνυμίες (Zamenice) Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Induktivno spregnuta kola

Induktivno spregnuta kola Induktivno spregnuta kola 13. januar 2016 Transformatori se koriste u elektroenergetskim sistemima za povišavanje i snižavanje napona, u elektronskim i komunikacionim kolima za promjenu napona i odvajanje

Διαβάστε περισσότερα

Skupovi, relacije, funkcije

Skupovi, relacije, funkcije Chapter 1 Skupovi, relacije, funkcije 1.1 Skup, torka, multiskup 1.1.1 Skup Pojam skupa ne definišemo eksplicitno. Intuitivno skup prihvatamo kao konačnu ili beskonačnu kolekciju objekata (ili elemenata)u

Διαβάστε περισσότερα

Teorija kodiranja. Hamingov kod i njegova definicija

Teorija kodiranja. Hamingov kod i njegova definicija Teorija kodiranja. Hamingov kod i njegova definicija Erna Oklapi Gimnazija Novi Pazar ernaoklapii@yahoo.com Sanela Numanović Gimnazija Kruševac sanelanumanovic@yahoo.com Rezime U ovom radu predstavljen

Διαβάστε περισσότερα

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo.

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo. Kompleksni brojevi Algebarski oblik kompleksnog broja je z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo Trigonometrijski oblik kompleksnog broja je z = rcos θ + i sin θ,

Διαβάστε περισσότερα

2.1 UVOD Tomsonov model Radefordov model atoma... 5

2.1 UVOD Tomsonov model Radefordov model atoma... 5 1 S A D R Ž A J. MODELI ATOMA.1 UVOD.... Tomsonov model....3 Radefordov model atoma... 5.3.1 Eksperimenti rasijanja alfa čestica... 5.3. Radefordov planetarni model atoma... 8.4 BOROV MODEL ATOMA.4.1 Linijski

Διαβάστε περισσότερα

Otkriće prirodne radioaktivnosti

Otkriće prirodne radioaktivnosti Otkriće prirodne radioaktivnosti Kruksove cevi Rentgen [Wilhem Konrad Rontgen, 1845-1923] Sir Wiliam Crookes 1832-1919 Iz Kruksovih cevi se emituje prodorno zračenje Otkriće Xzraka X-zraka - 1895 Prva

Διαβάστε περισσότερα

VJEŽBE IZ MATEMATIKE 1

VJEŽBE IZ MATEMATIKE 1 VJEŽBE IZ MATEMATIKE 1 Ivana Baranović Miroslav Jerković Lekcija 14 Rast, pad, konkavnost, konveksnost, točke infleksije i ekstremi funkcija Poglavlje 1 Rast, pad, konkavnost, konveksnost, to ke ineksije

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

Programiranje I. Smer Informatika Matematički fakultet, Beograd. Jelena Tomašević, Sana Stojanović November 16, 2005

Programiranje I. Smer Informatika Matematički fakultet, Beograd. Jelena Tomašević, Sana Stojanović November 16, 2005 Programiranje I Beleške sa vežbi Smer Informatika Matematički fakultet, Beograd Jelena Tomašević, Sana Stojanović November 16, 2005 1 1 Specifikacija sintakse programskih jezika, meta jezici Za opis programskih

Διαβάστε περισσότερα

Tehnologija bušenja II

Tehnologija bušenja II INŽENJERSTVO NAFTE I GASA Tehnologija bušenja II 1. Vežba V - 1 Tehnologija bušenja II Slide 1 of 44 Algebra i trigonometrija V - 1 Tehnologija bušenja II Slide 2 of 44 Jednačine Pitanje: Ako je a = 3b

Διαβάστε περισσότερα

13. GRUPA PERIODNOG SISTEMA 13. GRUPA PERIODNOG SISTEMA. Elektronska konfiguracija ns 2 np 1 B 4

13. GRUPA PERIODNOG SISTEMA 13. GRUPA PERIODNOG SISTEMA. Elektronska konfiguracija ns 2 np 1 B 4 13. GRUPA PERIODNOG SISTEMA 13. GRUPA PERIODNOG SISTEMA Bor redak element, najčešće u obliku minerala boraksa, Na 2 B 4 O 7 10H 2 O. Aluminijum najrasprostranjeniji metal u Zemljinoj kori (8,3 mas.%) i

Διαβάστε περισσότερα

2.1 Kinematika jednodimenzionog kretanja

2.1 Kinematika jednodimenzionog kretanja Glava 2 Kinematika Gde god da pogledamo oko nas, možemo da uočimo tela u kretanju (u fizici je uobičajeno a se kaže u stanju kretanja ). Čak i kada smo u stanju mirovanja, naše srce kuca i na taj način

Διαβάστε περισσότερα

GRAFOVI. Ljubo Nedović. 21. februar Osnovni pojmovi 2. 2 Bipartitni grafovi 8. 3 Stabla 9. 4 Binarna stabla Planarni grafovi 12

GRAFOVI. Ljubo Nedović. 21. februar Osnovni pojmovi 2. 2 Bipartitni grafovi 8. 3 Stabla 9. 4 Binarna stabla Planarni grafovi 12 GRAFOVI Ljubo Nedović 21. februar 2013 Sadržaj 1 Osnovni pojmovi 2 2 Bipartitni grafovi 8 3 Stabla 9 4 Binarna stabla 11 5 Planarni grafovi 12 6 Zadaci 13 1 2 1 Osnovni pojmovi Iz Vikipedije, slobodne

Διαβάστε περισσότερα

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija Sadržaj: Nizovi brojeva Pojam niza Limes niza. Konvergentni nizovi Neki važni nizovi. Broj e. Limes funkcije Definicija esa Računanje esa Jednostrani esi Neprekinute funkcije i esi Definicija neprekinute

Διαβάστε περισσότερα

Stalne jednosmerne struje

Stalne jednosmerne struje Stalne jednosmerne struje Električna struja Električnom strujom se može nazvati svako ureñeno kretanje električnih naelektrisanja, bez obzira na uzroke ovog kretanja i na vrstu električnih naelektrisanja

Διαβάστε περισσότερα

ALEISTER CROWLEY LIBER DXXXVI ASTROLOGY (SA STUDIJAMA O NEPTUNU I URANU)! * " ) # - ( $ ' % & HRUMACHIS XI OAZA ORDO TEMPLI ORIENTIS BEOGRAD 2009

ALEISTER CROWLEY LIBER DXXXVI ASTROLOGY (SA STUDIJAMA O NEPTUNU I URANU)! *  ) # - ( $ ' % & HRUMACHIS XI OAZA ORDO TEMPLI ORIENTIS BEOGRAD 2009 ) KONX OM PAX ( ALEISTER CROWLEY LIBER DXXXVI ASTROLOGY (SA STUDIJAMA O NEPTUNU I URANU) *! " ) ( - # $ ' & % HRUMACHIS XI OAZA ORDO TEMPLI ORIENTIS BEOGRAD 2009 ASTROLOGY SADRŽAJ UVOD... 4 PRVI DEO -

Διαβάστε περισσότερα

x M kazemo da je slijed ogranicen. Weierstrass-Bolzano-v teorem tvrdi da svaki ograniceni slijed ima barem jednu granicnu tocku.

x M kazemo da je slijed ogranicen. Weierstrass-Bolzano-v teorem tvrdi da svaki ograniceni slijed ima barem jednu granicnu tocku. 1. FUNKCIJE, LIMES, NEPREKINUTOST 1.1 Brojevi - slijed, interval, limes Slijed realnih brojeva je postava brojeva na primjer u obliku 1,,3..., nn, + 1... koji na realnoj osi imaju oznaceno mjesto odgovarajucom

Διαβάστε περισσότερα

Algebarske strukture

Algebarske strukture i operacije Univerzitet u Nišu Prirodno Matematički Fakultet februar 2010 Istraživačka stanica Petnica i operacije Operacije Šta je to algebra i apstraktna algebra? Šta je to algebarska struktura? Cemu

Διαβάστε περισσότερα

Κεφάλαιο 1 Χημικός δεσμός

Κεφάλαιο 1 Χημικός δεσμός Κεφάλαιο 1 Χημικός δεσμός 1.1 Άτομα, Ηλεκτρόνια, και Τροχιακά Τα άτομα αποτελούνται από + Πρωτόνια φορτισμένα θετικά μάζα = 1.6726 X 10-27 kg Νετρόνια ουδέτερα μάζα = 1.6750 X 10-27 kg Ηλεκτρόνια φορτισμένα

Διαβάστε περισσότερα

BIOGENI ELEMENTI (BIOELEMENTI)

BIOGENI ELEMENTI (BIOELEMENTI) BIOGENI ELEMENTI (BIOELEMENTI) IAKO BIOMOLEKULI SAČINJAVANJU SVA ŽIVA BIĆA ONI SAMI SU NAČINJENI OD MALOG BROJA HEMIJSKIH ELEMENATA -BIOGENI ELEMENTI- C, H, O, N, P i S čine 99% mase ćelija-najvažniji

Διαβάστε περισσότερα

3. Υπολογίστε το μήκος κύματος de Broglie (σε μέτρα) ενός αντικειμένου μάζας 1,00kg που κινείται με ταχύτητα1 km/h.

3. Υπολογίστε το μήκος κύματος de Broglie (σε μέτρα) ενός αντικειμένου μάζας 1,00kg που κινείται με ταχύτητα1 km/h. 1 Ο ΚΕΦΑΛΑΙΟ ΑΣΚΗΣΕΙΣ 1. Ποια είναι η συχνότητα και το μήκος κύματος του φωτός που εκπέμπεται όταν ένα e του ατόμου του υδρογόνου μεταπίπτει από το επίπεδο ενέργειας με: α) n=4 σε n=2 b) n=3 σε n=1 c)

Διαβάστε περισσότερα

ISKAZI. U svakodnevnom govoru, a i u pisanom tekstu, obično se sreću rečenice koje su ili tačne

ISKAZI. U svakodnevnom govoru, a i u pisanom tekstu, obično se sreću rečenice koje su ili tačne ISKAZI U svakodnevnom govoru, a i u pisanom tekstu, obično se sreću rečenice koje su ili tačne ili netačne, tj rečenice koje imaju logičkog smisla.ovakve rečenice se u matematici nazivaju iskazi.dakle,

Διαβάστε περισσότερα

Dekompozicija DFT. Brzi algoritmi na bazi radix-2. Brza Furijeova transofrmacija. Tačnost izračunavanja. Kompleksna FFT OASDSP 1: 7 FFT

Dekompozicija DFT. Brzi algoritmi na bazi radix-2. Brza Furijeova transofrmacija. Tačnost izračunavanja. Kompleksna FFT OASDSP 1: 7 FFT OASDSP : 7 FFT Dkompozicija DFT Brzi algoritmi a bazi radix- Brza Furijova trasofrmacija Tačost izračuavaja Komplksa FFT ovi Sad, Oktobar 5 straa OASDSP : 7 FFT Brza trasformacija : itrativa dkompozicija

Διαβάστε περισσότερα

O DIMENZIONALNOJ ANALIZI U FIZICI.

O DIMENZIONALNOJ ANALIZI U FIZICI. 1 O DIMENZIONALNOJ ANALIZI U FIZICI Ljubiša Nešić, Odsek za fiziku, PMF, Niš http://www.pmf.ni.ac.yu/people/nesiclj/ Uvod Kao što je poznato, fizičke veličine mogu da imaju dimenzije ili pak da budu bezdimenzionalne.

Διαβάστε περισσότερα

TERMODINAMIČKI PARAMETRI su veličine kojima opisujemo stanje sistema.

TERMODINAMIČKI PARAMETRI su veličine kojima opisujemo stanje sistema. TERMODINAMIKA U svakodnevnom govoru, često dolazi greškom do koriščenja termina temperatura i toplota u istom značenju. U fizici, ova dva termina imaju potpuno različito značenje. Razmatračemo kako se

Διαβάστε περισσότερα

Čudesni svijet kvantne mehanike

Čudesni svijet kvantne mehanike «Svijet je čudan», reče Jeremy. «U usporedbi s čim?» zapita Spider. George MacDonald Najprije: Pozdrav Festivalu! Festivalska fizika! Je li to nova fizikalna disciplina? S obzirom na definiciju da je fizika

Διαβάστε περισσότερα

PRSKALICA - LELA 12 L / LELA16 L

PRSKALICA - LELA 12 L / LELA16 L PRSKALICA - LELA 12 L / LELA16 L UPUTSTVO ZA UPOTREBU 1 Prskalica je pogodna za raspršivanje materija kao sto su : insekticidi, fungicidi i sredstva za tretiranje semena. Uredjaj je namenjen za kućnu,

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

VJEROVATNOĆA I STATISTIKA ZBIRKA RIJEŠENIH ZADATAKA ==========================

VJEROVATNOĆA I STATISTIKA ZBIRKA RIJEŠENIH ZADATAKA ========================== VJEROVATNOĆA I STATISTIKA ZBIRKA RIJEŠENIH ZADATAKA ========================== M. JOVANOVIĆ M. MERKLE Z. MITROVIĆ Elektrotehnički fakultet Banja Luka ================================== ii Autori: dr Milan

Διαβάστε περισσότερα

RASTVORLJIVOST LEKOVA

RASTVORLJIVOST LEKOVA FIZIČK-HEMIJSKA KARAKTERIZACIJA LEKVA RASTVRLJIVST LEKVA Rastvorljivost leka u GIT-u Portalna vena Krvna plazma Enterociti Aktivni transport Tableta Raspadanje tablete Pasivna difuzija Rastvaranje Lek

Διαβάστε περισσότερα

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa: Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne

Διαβάστε περισσότερα

SLUČAJNA PROMENLJIVA I RASPOREDI VEROVATNOĆA

SLUČAJNA PROMENLJIVA I RASPOREDI VEROVATNOĆA SLUČAJNA PROMENLJIVA I RASPOREDI VEROVATNOĆA CILJEVI POGLAVLJA Nakon čitanja ovoga poglavlja bićete u stanju da: 1. razumete pojmove slučajna promenljiva, raspored verovatnoća, očekivana vrednost i funkcija

Διαβάστε περισσότερα

MERE DISPERZIJE ( VARIJABILNOSTI )

MERE DISPERZIJE ( VARIJABILNOSTI ) MERE DISPERZIJE ( VARIJABILNOSTI ) 1. RASPON VARIJACIJE 2.KVARTILNO ODSTUPANJE 3.PROSEČNO ODSTUPANJE 4.STANDARDNA DEVIJACIJA 5.KORELACIJA 6.STATISTIČKI POSTUPCI PRI BAŽDARENJU MERE DISPERZIJE Pokazatelji

Διαβάστε περισσότερα

Str

Str Str. Testiranje statističkih hipoteza Predavač: Dr Mirko Savić savicmirko@ef.uns.ac.rs www.ef.uns.ac.rs Definicija: Hipoteza predstavlja pretpostavku koja je zasnovana na određenim činjenicama (najčešće

Διαβάστε περισσότερα

KLASIFIKACIJA PRIRODNIH NAUKA

KLASIFIKACIJA PRIRODNIH NAUKA KLASIFIKACIJA PRIRODNIH NAUKA BIOFIZIKA BIOLOGIJA BIOHEMIJA FIZIKA HEMIJA FIZIČKA HEMIJA VODIČ KROZ MODERNU NAUKU 1. Ako je zeleno ili mrda, to je biologija 2. Ako smrdi, to je hemija 3. Ako ne funkcioniše,

Διαβάστε περισσότερα

SREDNJA ŠKOLA HEMIJA

SREDNJA ŠKOLA HEMIJA SREDNJA ŠKOLA HEMIJA Zadatak broj Bodovi 1. 6 2. 10 3. 12 4. 8 5. 6 6. 10 7. 8 8. 8 9. 4 10. 10 11. 8 12. 10 Ukupno 100 Za izradu testa planirano je 120 minuta. U toku izrade testa učenici mogu koristiti

Διαβάστε περισσότερα

MALA NOVOGRČKA GRAMATIKA

MALA NOVOGRČKA GRAMATIKA MALA NOVOGRČKA GRAMATIKA I II ARISTOTELOV UNIVERZITET U TESALONIKI INSTITUT ZA NOVOGRČKE STUDIJE Fondacija Manolisa Trijandafilidisa Manolis A. Trijandafilidis MALA NOVOGRČKA GRAMATIKA Preveo i priredio

Διαβάστε περισσότερα

Devizno tržište. Mart 2010 Ekonomski fakultet, Beograd Irena Janković

Devizno tržište. Mart 2010 Ekonomski fakultet, Beograd Irena Janković Devizno tržište Devizni urs i devizno tržište Devizni urs - cena jedne valute izražena u drugoj valuti Promene deviznog ursa utiču na vrednost ative i pasive oje su izražene u stranoj valuti Devizni urs

Διαβάστε περισσότερα

Ekstremi funkcije jedne varijable

Ekstremi funkcije jedne varijable maksimum funkcije y = f(x) je vrijednost f(x 0 ) za koju vrijedi f(x 0 + h) < f(x 0 ) (1) za po volji male vrijednosti h minimum funkcije y = f(x) je vrijednost f(x 0 ) za koju vrijedi f(x 0 + h) > f(x

Διαβάστε περισσότερα

56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA. Sarajevo, godine

56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA. Sarajevo, godine 56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA Sarajevo, 3.04.016. godine 56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA

Διαβάστε περισσότερα

TERMODINAMIKA osnovni pojmovi energija, rad, toplota

TERMODINAMIKA osnovni pojmovi energija, rad, toplota TERMODINAMIKA osnovni pojmovi energija, rad, toplota TERMODINAMIKA TERMO TOPLO nauka o kretanju toplote DINAMO SILA Termodinamika-nauka odnosno naučna disciplina koja ispituje odnose između promena u sistemima

Διαβάστε περισσότερα

Karakterizacija kontinualnih sistema u prelaznom režimu

Karakterizacija kontinualnih sistema u prelaznom režimu Karakterizacija kontinualnih sistema u prelaznom režimu Postoji veći broj parametara koji karakterišu ponašanje sistema u prelaznom režimu. Ovi parametri pripadaju različitim prostorima u kojima se sistemi

Διαβάστε περισσότερα

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.

Διαβάστε περισσότερα

OSNOVI ELEKTROTEHNIKE I ELEKTRIČNIH MAŠINA

OSNOVI ELEKTROTEHNIKE I ELEKTRIČNIH MAŠINA Tihomir Latinović Miroslav Prša Tihomir Latinović, Miroslav Prša OSNOVI ELEKTROTEHNIKE I ELEKTRIČNIH MAŠINA Banja Luka, 2013. 1 Osnovi elektrotehnike i električnih mašina Biblioteka: INFORMACIONE TEHNOLOGIJE

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

Nermin Okiˇci c Vedad Paˇsi c MATEMATIKA II 2014

Nermin Okiˇci c Vedad Paˇsi c MATEMATIKA II 2014 Nermin Okičić Vedad Pašić MATEMATIKA II 014 Sadržaj 1 Funkcije više promjenljivih 1 1.1 Pojam funkcije više promjenljivih................ 1.1.1 Osnovni elementi preslikavanja.............. 1.1. Grafičko

Διαβάστε περισσότερα

Predstavljanje orijentacije i rotacije u 3D

Predstavljanje orijentacije i rotacije u 3D Predstavljanje orijentacije i rotacije u 3D Orijentacija Još jednom: Orijentacija i pravac - isto ili ne? Pravac je određen vektorom, ali rotacija vektora oko samog sebe nema daljeg uticaja. Orijentacija

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

Gradimir V. Milovanović MATEMATIČKA ANALIZA I

Gradimir V. Milovanović MATEMATIČKA ANALIZA I Gradimir V. Milovanović Radosav Ž. D ord ević MATEMATIČKA ANALIZA I Predgovor Ova knjiga predstavlja udžbenik iz predmeta Matematička analiza I koji se, počev od školske 2004/2005. godine, studentima Elektronskog

Διαβάστε περισσότερα

Prostori Soboljeva sa negativnim indeksom

Prostori Soboljeva sa negativnim indeksom UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU Nevena Mutlak Prostori Soboljeva sa negativnim indeksom -master rad- Mentor: prof.dr Marko Nedeljkov Novi Sad,

Διαβάστε περισσότερα

OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA. Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu

OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA. Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu I Definisanje frekventnih karakteristika Dinamički modeli sistema se definišu u vremenskom, Laplace-ovom

Διαβάστε περισσότερα

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x Zadatak 00 (Sanja, gimnazija) Odredi realnu funkciju f() ako je f ( ) = Rješenje 00 Uvedemo supstituciju (zamjenu varijabli) = t Kvadriramo: t t t = = = = t Uvrstimo novu varijablu u funkciju: f(t) = t

Διαβάστε περισσότερα

Diferencijalni račun

Diferencijalni račun ni račun October 28, 2008 ni račun Uvod i motivacija Točka infleksije ni račun Realna funkcija jedne realne varijable Neka je X neprazan podskup realnih brojeva. Ako svakom elementu x X po postupku f pridružimo

Διαβάστε περισσότερα

Dr Miodrag Popović. Osnovi elektronike. za studente Odseka za softversko inženjerstvo. Elektrotehnički fakultet Beograd, 2006.

Dr Miodrag Popović. Osnovi elektronike. za studente Odseka za softversko inženjerstvo. Elektrotehnički fakultet Beograd, 2006. Dr Miodrag Popović Osnovi elektronike za studente Odseka za softversko inženjerstvo Elektrotehnički fakultet Beograd, 2006. Sadržaj 1. UOD... 1 1.1 Šta je to elektrotehnika?... 1 1.2 Oblasti elektrotehnike:...

Διαβάστε περισσότερα

NAIZMENIČNA STRUJA koristiti kao dopunu udžbenika

NAIZMENIČNA STRUJA koristiti kao dopunu udžbenika NAIZMENIČNA STRUJA koristiti kao dopunu udžbenika 1 Da bude jasno na samom početku : Tesla nije izmislio struju jer je ona bila poznata ljudima pre nogo što je Tesla ušao u svet nauke. Njegov doprinos

Διαβάστε περισσότερα

POJAVE NA GRANICAMA FAZA ADSORPCIJA

POJAVE NA GRANICAMA FAZA ADSORPCIJA POJAVE NA GRANICAMA FAZA ADSORPCIJA Šta je adsorpcija na granici tečne faze Adsorpcija je povećanje ili smanjenje koncentracije rastvorka u graničnom nom sloju u odnosu na unutrašnjost njost rastvora.

Διαβάστε περισσότερα

1. ISTORIJSKI RAZVOJ ELEKTROTEHNIKE

1. ISTORIJSKI RAZVOJ ELEKTROTEHNIKE Osnove elektrotehnike Modul. ITOIJKI AZVOJ ELEKTOTEHNIKE Elektrotehnika je nauka koja proučava zakone elektriciteta i primjenjuje ih u praktične svrhe.ljudi su već odavno zapazili prve električne pojave

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα

Διαβάστε περισσότερα