I HEMIJSKI ZAKONI I STRUKTURA SUPSTANCI

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "I HEMIJSKI ZAKONI I STRUKTURA SUPSTANCI"

Transcript

1 dr Ljiljana Vojinović-Ješić I HEMIJSKI ZAKONI I STRUKTURA SUPSTANCI ZAKON STALNIH MASENIH ODNOSA (I stehiometrijski zakon, Prust, 1799) Maseni odnos elemenata u datom jedinjenju je stalan, bez obzira na način njegovog nastanka. Tako, na primer, u ugljenik(iv)-oksidu, CO 2, maseni odnos ugljenika, C, i kiseonika, O, je uvek 3:8, odnosno ugljenik(iv)-oksid sadrži 27,27 % C i 72,73 % O. Evo nekoliko primera jednačina hemijskih reakcija u kojima nastaje CO 2 : C + O 2 CO 2 CaCO 3 CaO+ CO 2 CaCO HCl CaCl 2 + CO 2 + H 2 O ZAKON UMNOŽENIH (VIŠESTRUKIH) MASENIH ODNOSA (II stehiometrijski zakon, Dalton, 1802) Ako dva elementa grade više jedinjenja, onda različite mase jednog elementa koje jedine se sa istom masom drugog elementa, stoje među sobom u odnosu malih celih brojeva. Tako, prilikom građenja vode, H 2 O, vodonik, H, i kiseonik, O, se jedine u masenom odnosu 1:8, međutim vodonik i kiseonik se

2 Zbirka zadataka za pripremanje prijemnog ispita iz hemije mogu jediniti i u odnosu 1:16 kada nastaje vodonik-peroksid, H 2 O 2, tako da je maseni odnos vodonika i kiseonika u ovim jedinjenjima 1:2. ZAKON STALNIH ZAPREMINSKIH ODNOSA (III stehiometrijski zakon, Gej-Lisak, 1805) Zapremine gasova koji međusobno reaguju, kao i zapremine gasovitih proizvoda reakcije, stoje u odnosu malih celih brojeva pri istim uslovima temperature i pritiska. Primeri: 2H 2(g) +O 2(g) 2H 2 O (g) Dve zapremine vodonika se jedine sa jednom zapreminom kiseonika dajući dve zapremine vodene pare (odnos zapremina je 2:1:2) ili, prilikom građenja amonijaka: N 2(g) +3H 2(g) 2NH 3(g) jedna zapremina azota se jedini sa tri zapremine vodonika dajući dve zapremine amonijaka. U ovom slučaju odnos zapremina je 1:3:2. AVOGADROV ZAKON (Avogadro, 1811) Avogadro je pretpostavio da atomi gasova ne postoje kao izolovane čestice, već da su okupljeni u grupe koje se sastoje od malog broja atoma. Ove grupe Avogadro je nazvao molekulima. Molekuli gasa se u prostoru kreću kao celina i stupaju u hemijske reakcije. Na onovu hipoteze o postojanju molekula gasa Avogadro je postavio zakon stalnih zapreminskih odnosa: jednake zapremine različitih gasova pri istoj temperaturi i pritisku sadrže isti broj molekula. Na primer: 2 3H 2(g) + N 2(g) 2NH 3(g)

3 I Hemijski zakoni i struktura supstanci Tri zapremine vodonika reaguju sa jednom zapreminom azota i daju dve zapremine amonijaka. Pošto iste zapremine sadrže isti broj molekula možemo reći da tri dvoatomna molekula vodonika reaguje sa jednim dvoatomnim molekulom azota dajući dva četiriatomna molekula amonijaka. Kao što se vidi, broj molekula pre i posle reakcije ne mora da bude isti, ali broj atoma ostaje nepromenjen. STVARNE I RELATIVNE ATOMSKE I MOLEKULSKE MASE. MOL I MOLARNA ZAPREMINA Atomi su realne, veoma sitne čestice supstance koji se ne mogu dalje deliti pri hemijskoj reakciji. Stvarne (apsolutne) mase atoma su veoma male vrednosti. Na primer, masa atoma vodonika je m a (H)=1, kg, te se u praksi koriste veličine kao što su relativna atomska masa, Ar, i relativna molekulska masa, Mr. Relativna atomska masa, Ar, je neimenovani broj koji pokazuje koliko puta je prosečna masa atoma nekog elementa, ugljenikovog izotopa 12 C, (u): m a, veća od 1/12 mase atoma Relativna molekulska masa, Mr, jednaka je zbiru relativnih atomskih masa svih atoma koji ulaze u sastav molekula i pokazuje koliko puta je prosečna masa nekog molekula, m m Ar = = m C u a 1/12 12 a ( ) a m m, veća od 1/12 mase atoma ugljenikovog izotopa 12 C: m m Mr = = m C u m 1/12 12 a( ) m 1/12 mase atoma ugljenikovog izotopa 12 C je unificirana jedinica atomske mase, u, i iznosi 1, kg. 3

4 Zbirka zadataka za pripremanje prijemnog ispita iz hemije Osnovna SI jedinica za količinu supstance, n, je mol. Jedan mol je količina supstance definisane hemijske formule, koja sadrži onoliko formulskih jedinica koliko ima atoma u 12 g ugljenikovog izotopa 12 C. Količina supstance je odnos broja jedinki supstance, N, i Avogadrove konstante, N A (N A =6, mol -1 ): n = N N A [ mol] Masa Avogadrovog broja definisanih formulskih jedinica je molarna masa, M. Molarna masa se izračunava množenjem odgovarajuće relativne atomske, odnosno relativne molekulske mase mernom jedinicom g/mol: M = Ar g/mol, kada računamo molsku masu atoma, odnosno M = Mr g/mol kada računamo molsku masu molekula. Masa supstance, m, jednaka je proizvodu molarne mase i količine supstance: m= M n [g] Molarna zapremina gasa, Vm, definiše se kao odnos zapremine gasovite supstance, V, i njene količine: V Vm = dm mol n 3 [ / ] Pri normalnim uslovima (T=273,15 K i p= Pa) molarna zapremina bilo kog gasa iznosi 22,4 dm 3 /mol (Vm=22,4 dm 3 /mol). U 12 g ugljenikovog izotopa 12 C (1 mol) nalazi se 6, atoma, (6, je Avogadrov broj). 4

5 I Hemijski zakoni i struktura supstanci STRUKTURA ATOMA I NJIHOVE ELEKTRONSKE KONFIGURACIJE Svaki atom se sastoji od jezgra (nukleusa) i omotača. U jezgru se nalaze pozitivno naelektrisani protoni, p +, i čestice bez naelektrisanja neutroni, n. Oko jezgra kreću se negativno naelektrisani elektroni, e -. Atom elementa A X definisan Z je atomskim ili rednim brojem, Z, i masenim brojem, A. Atomski broj Z je broj protona u jezgru datog atoma (a on je jednak broju elektrona u datom atomu jer je atom elektroneutralan!). Maseni broj, A, zbir je broja protona i broja neutrona u jezgru datog atoma: Z = N(p + ) = N(e - ), A = N(p + ) + N(n) Atomi istog elementa koji imaju različite masene brojeve nazivaju se izotopi. Na primer, izotopi kiseonika su: O, O, O Stanje svakog elektrona u atomu definisano je kvantnim brojevima. Postoje četiri kvantna broja: Glavni kvantni broj, n, određuje broj energetskih nivoa u atomu. Za normalna (nepobuđena) stanja atoma može imati vrednosti od 1 do 7. Sporedni (azimutski) kvantni broj, l, određuje broj podnivoa, odnosno prostorni oblik orbitala (s, p, d, f), sa vrednostima od 0 do n-1. Magnetni kvantni broj, m l, određuje prostornu orijentaciju i broj orbitala (podpodnivoa) u pojedinim energetskim podnivoima. Može imati vrednosti od l do l, uključujući i nulu. 5

6 Zbirka zadataka za pripremanje prijemnog ispita iz hemije Spinski kvantni broj, m s, odnosi se na tzv. spin elektrona, tj. na njegovu rotaciju oko sopstvene ose u dva suprotna smera: desno ili levo, te može imati samo dve vrednosti: +1/2 i -1/2. Maksimalni broj elektrona u energetskom nivou je 2n 2, a u odgovarajućim podnivoima prikazan je u tabeli: Podnivo s p d f Broj elektrona Redosled popunjavanja orbitala elektronima vrši se postupno dodavanjem elektrona. Pri tome elektron prvo zaposeda stabilniju orbitalu. Ovde je zastupljen princip po kome su najstabilniji sistemi oni sa najmanjom energijom. Prilikom popunjavanja orbitala mora se poštovati Paulijev princip zabrane i Hundovo pravilo. Paulijev princip zabrane: u jednom atomu ne mogu da se nađu dva elektrona koji imaju ista sva četiri kvantna broja, ili jedna orbitala može da sadrži najviše dva elektrona suprotnog spina. Hundovo pravilo: orbitale iste energije popunjavaju se tako da se u svaku od njih smešta po jedan elektron istog spina, nakon čega dolazi do sparivanja po spinu. Redosled popunjavanja orbitala elektronima je: 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s... Elektronske konfiguracije nekih atoma i njihovih jona: 6 atoma natrijuma : 11 Na: 1s 2 2s 2 2p 6 3s 1, natrijumovog jona: 11 Na + : 1s 2 2s 2 2p 6, atoma hlora: 17 Cl: 1s 2 2s 2 2p 6 3s 2 3p 5, hloridnog jona: 17 Cl - : 1s 2 2s 2 2p 6 3s 2 3p 6

7 I Hemijski zakoni i struktura supstanci Prema elektronskoj konfiguraciji elementi u periodnom sistemu elemenata (PSE) su podeljeni na s-, p-, d- i f-elemente. U s-elemente, osim vodonika i helijuma, se ubrajaju elementi prve i druge grupe PSE (alkalni i zemnoalkalni metali). p-elementi počinju popunjavanje p-podnivoa i čine ih elementi od 13. do 18. grupe. Među njima najviše je nemetala, pa potom metala i metaloida. Elementi koji počinju popunjavanje d-podnivoa zovu se i prelazni metali, a čine ih elementi od 3. do 12. grupe PSE. U f-elemente, čiji atomi popunjavaju f-podnivoe, ubrajaju se lantanoidi i aktinoidi. I ovi elementi su metali. HEMIJSKA VEZA Jonska veza nastaje između atoma metala i atoma nemetala i to prelaskom elektrona sa atoma metala na atom nemetala. Atomi metala lako otpuštaju elektrone (imaju malu energiju jonizacije ), a atomi nemetala ih lako primaju (imaju veliki afinitet prema elektronu ). Pri tome nastaju joni sa elektronskom konfiguracijom odgovarajućeg plemenitog gasa koji se privlače elektrostatičkim silama. Jonska jedinjenja su na sobnoj temperaturi čvrste kristalne supstance (NaCl, KF, CaCl 2, Na 2 O, CaO...), sa visokom tačkom topljenja i ključanja, dobro se rastvaraju u vodi, a njihovi vodeni rastvori i njihovi rastopi provode električnu struju. Kovalentna veza se gradi između atoma nemetala stvaranjem zajedničkih elektronskih parova, pri čemu atomi postižu konfiguraciju najbližeg plemenitog gasa. U zavisnosti od broja elektronskih parova kovalentna veza može biti jednostruka, dvostruka ili trostruka (1, 2, ili 3 elektronska para). U molekulu Energija jonizacije je ona količina energije koju je neophodno utrošiti za udaljavanje elektrona od atoma u gasovitom stanju, pri čemu se ove čestice prevode u katjone u gasovitom stanju. Afinitet prema elektronu je sposobnost atoma da primi elektron u valentni nivo, a energija koja se pri tom oslobađa ili utroši naziva se energijom elektronskog afiniteta 7

8 Zbirka zadataka za pripremanje prijemnog ispita iz hemije vodonika, na primer, veza je jednostruka, H-H, u molekulu kiseonika dvostruka, O=O, a u molekulu azota trostruka, N N. Kovalentna veza može biti nepolarna i polarna. Veza između dva ista atoma (H 2, O 2, N 2 ) je nepolarna i u takvoj vezi zajednički elektronski parovi su simetrično raspoređeni u prostoru između atomskih jezgara. Polarna kovalentna veza nastaje između atoma različite elektronegativnosti. Atom elementa veće elektronegativnosti jače privlači vezivne elektrone zbog čega se na tom atomu javlja delimično negativno naelektrisanje (δ - ), a na manje elektronegativnom atomu delimično pozitivno naelektrisanje (δ + ). Tako, na primer, u molekulu fluorovodonika elektronski par je pomeren ka fluoru, pa se na atomu fluora javlja delimično negativno, a na atomu vodonika delimično pozitivno naelektrisanje: δ + δ H F. Jedinjenja sa kovalentnom vezom su na sobnoj temperaturi gasovi ili tečnosti, ređe čvrste supstance, sa niskim tačkama ključanja i topljenja. Nepolarna kovalentna jedinjenja se dobro rastvaraju u nepolarnim rastvaračima, a ne rastvaraju se u vodi i drugim polarnim rastvaračima. Polarna kovalentna jedinjenja se dobro rastvaraju u vodi i polarnim rastvaračima, a nerastvaraju se u nepolarnim. Vodonična veza predstavlja poseban slučaj dipol-dipol interakcija. Naime, ova veza nastaje između molekula u kojima je atom vodonika kovalentno vezan za neki jako elektronegativan atom (F, O, N). Primeri ovakve veze su HF i H 2 O. δ + δ δ + δ Vodonična veza se prikazuje isprekidanom crtom: H F H F 8

9 HEMIJSKE FORMULE I Hemijski zakoni i struktura supstanci Hemijske formule su simbolički prikazi hemijskih struktura (molekuli, joni...). Svaka hemijska formula ima: a) kvalitativno i b) kvantitativno značenje. Tako, na primer, NH 3 znači da je u pitanju amonijak u čiji sastav ulaze azot i vodonik. Ovo je kvalitativno značenje formule NH 3. Iz kvantitativnog značenja 1 molekula NH 3 možemo odrediti: 1. maseni odnos: m(nh 3 ) : m(n) : m(h) = Mr(NH 3 ) : Ar(N) : 3Ar(H) 2. odnos broja čestica: N(NH 3 ) : N(N) : N(H) = 1 : 1 : 3 3. količinski odnos: n(nh 3 ) : n(n) : n(h) = 1 : 1 : 3. Hemijske formule mogu biti: Empirijske - kao najjednostavnije moguće formule, prikazuju najmanji odnos broja atoma u molekulu (empirijska formula vodonik-peroksida je HO), Molekulske - daju stvarni odnos broja atoma u molekulu (molekulska formula vodonik-peroksida je H 2 O 2 ), Strukturne - prikazuju način povezivanja atoma u molekulu: H-O-O-H. 9

10 Zbirka zadataka za pripremanje prijemnog ispita iz hemije ZADACI: 1. Pri nastanku jednog određenog hemijskog jedinjenja elementi se jedine: a) u proizvoljnim masenim odnosima b) u stalnim masenim odnosima c) u zavisnosti od vrste jedinjenja; nekada u stalnim, nekada u proizvoljnim masenim odnosima d) u zavisnosti od načina dobijanja tog jedinjenja 2. Koji se od sledećih parova supstanci može upotrebiti za ilustraciju zakona umnoženih masenih odnosa: a) O 2 i O 3 b) NO 2 i CO 2 c) H 2 O i H 2 O 2 3. Koji od sledećih parova supstanci ilustruje zakon umnoženih masenih odnosa: a) SO 2 i H 2 SO 4 b) CO i CO 2 c) NaCl i KCl 4. U ½ mola mola CaSO 4 ugrađeno je: a) 32 g kiseonika b) 1 mol atoma kalcijuma c) atoma sumpora. (A r (Ca) = 40; A r (S) = 32; A r (O) = 16) 10

11 I Hemijski zakoni i struktura supstanci 5. Koliko ima molekula u jednoj kapi vode mase 90 mg? (N A = ) a) b) c) 1, d) U 0,5 mola molekula kiseonika ima: a) 6, molekula b) 3, molekula c) 3, molekula 7. U količini od 0,5 mola Br 2 broj molekula broma je: a) b) c) 0, Mesto elementa u periodnom sistemu elemenata određeno je: a) relativnom atomskom masom b) relativnom molekulskom masom c) atomskim brojem d) brojem neutrona u jezgru atoma 9. U jednom molu atoma elementa atomskog broja 11 i masenog broja 23 broj protona je: a) 11 b) 23 c) d)

12 Zbirka zadataka za pripremanje prijemnog ispita iz hemije Nuklid elementa 13 X ima: a) isti broj protona i neutrona b) veći broj protona od neutrona c) veći broj neutrona od protona 11. Elektronska konfiguracija atoma nekog elementa je: 1s 2 2s 2 2p 3. a) atom elementa ima 3 nesparena elektrona b) atom elementa ima 3 valentna elektrona c) element pripada trećoj periodi d) element pripada 13. (IIIA) grupi 12. Elektronska konfiguracija atoma nekog elementa je : 1s 2 2s 2 2p 6 3s 2 3p 4 a) atom elementa ima 4 valentna elektrona b) atom elementa ima 2 nesparena elektrona c) element pripada 14. (IVA) grupi PSE d) element pripada 3. periodi PSE Zaokružiti slova ispred tačnih tvrdnji. 13. Elektronska konfiguracija atoma kiseonika je: a) 1s 2 2s 2 2p 3 b) 1s 2 2s 2 2p 5 c) 1s 2 2s 2 2p 4 12

13 I Hemijski zakoni i struktura supstanci 14. Elektronska konfiguracija atoma nekog elementa je: 1s 2 2s 2 2p 6 3s 2 3p 3 a) atom elementa ima 2 nesparena elektrona b) atom elementa ima 3 valentna elektrona c) element pripada 15. (VA) grupi PSE d) element pripada 3. periodi PSE Zaokružiti slova ispred tačnih tvrdnji. 15. Elektronska struktura atoma nekog elementa je: 1s 2 2s 2 2p 6 3s 2 3p 5, a njegovog jona 1s 2 2s 2 2p 6 3s 2 3p 6. To znači da je: a) jon pozitivnog naboja b) jon negativnog naboja c) prečnik jona veći od prečnika atoma d) prečnik jona manji od prečnika atoma e) broj protona u jonu i atomu je isti Zaokružiti slova ispred tačnih tvrdnji. 16. Izotopi su: a) atomi istog elementa različitog masenog broja b) atomi istog elementa koji sadrže jednak broj neutrona c) atomi različitih elemenata koji sadrže jednak broj neutrona 17. Treći energetski nivo sastoji se od: a) dve s-orbitale b) tri p-orbitale c) pet d-orbitala d) jedne s- i tri p-orbitale e) jedne s-, tri p- i pet d-orbitala. 13

14 Zbirka zadataka za pripremanje prijemnog ispita iz hemije 18. Elektronska struktura atoma nekog elementa je: 1s 2 2s 2 2p 6 3s 2 3p 5. Koje od navedenih tvrdnji nisu tačne za dati element: a) ima atomski broj 17 b) ima 7 valentnih elektrona c) ima malu elektronegativnost d) pripada s-elementima e) nalazi se u sedmoj grupi i trećoj periodi 19. 1/ grama je masa: a) jednog mola atoma vodonika b) jednog mola molekula vodonika c) atoma vodonika d) jednog atoma vodonika e) jednog molekula vodonika f) ni jedna tvrdnja nije tačna 20. Peroksidni (O 2 2- ) jon ima: a) 20 elektrona b) 16 elektrona c) 18 elektrona (Z(O)=8) 21. Koliko najviše elektrona može da sadrži : a) drugi energetski nivo b) treći energetski nivo 14

15 22. Hemijski element čiji atomi imaju elektronsku konfiguraciju: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 2 nalazi se u: I Hemijski zakoni i struktura supstanci a) 3. periodi i 4. (IVB) grupi Periodnog sistema elemenata b) 4. periodi i 12. (IIB) grupi Periodnog sistema elemenata c) 4. periodi i 4. (IVB) grupi Periodnog sistema elemenata d) 4. periodi i 14. (IVA) grupi Periodnog sistema elemenata e) 3. periodi i 12. (IIB) grupi Periodnog sistema elemenata 23. Atom hemijskog elementa koji se nalazi u trećoj periodi i 14. (IVA) grupi PSE ima elektronsku konfiguraciju: a) 1s 2 2s 2 2p 6 3s 2 b) 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 c) 1s 2 2s 2 2p 6 3s 2 3p 2 d) 1s 2 2s 2 2p 6 3s 2 3d U atomu hemijskog elementa čiji je atomski broj 20, elektronima su popunjeni: a) 1s, 2s, 3s, 3p i popunjava se 3d podnivo b) 1s, 2s, 2p, 3s, 3p i popunjava se 4p podnivo c) 1s, 2s, 2p, 3s, 3p, 4s podnivoe d) 1s, 2s, 2p, 3s, 3p, 3d, 4s podnivoe e) 1s, 2s, 2p 3s, 3p i popunjava se 3d podnivo 25. Najjače izražene osobine metala ima hemijski element čiji atomi imaju elektronsku konfiguraciju: a) 1s 2 2s 2 b) 1s 2 2s 2 2p 3 c) 1s 1 d) 1s 2 2s 2 2p 4 e) 1s 2 2s 2 2p 5 15

16 Zbirka zadataka za pripremanje prijemnog ispita iz hemije 26. Jonski karakter veze raste u nizu: a) H 2, HCl, KCl, KF b) HCl, KCl, KF, H 2 c) KCl, KF, H 2, HCl d) KF, H 2, HCl, KCl 27. Jonski karakter veze raste u nizu: a) Na 2 O, MgO, Al 2 O 3, P 4 O 10, SO 3 b) MgO, Al 2 O 3, Na 2 O, P 4 O 10, SO 3 c) SO 3, P 4 O 10, Al 2 O 3, MgO, Na 2 O d) SO 3, P 4 O 10, MgO, Al 2 O 3, Na 2 O 28. Niz u kojem se nalaze samo jedinjenja sa kovalentnom vezom je: a) HCl, H 2 O, NaCl, CaO b) CH 4, H 2 O, CO 2, NO c) HCl, H 2 S, CaCl 2, Na 2 O d) KCl, H 2 S, CO, H 2 O Kovalentna veza se stvara ako se elektronegativnost atoma elemenata koji se vezuju: a) u velikoj meri razlikuje b) u maloj meri razlikuje c) ne razlikuje d) elektronegativnost nema uticaja na stvaranje kovalentne veze Zaokružiti slova ispred tačnih tvrdnji. 16

17 I Hemijski zakoni i struktura supstanci 30. σ-veza nastaje: a) preklapanjem odgovarajućih atomskih orbitala duž ose koja spaja jezgra atoma učesnika veze b) potpunim prelaskom elektrona sa jednog na drugi atom c) bočnim preklapanjem p-orbitala 31. π-veza nastaje : a) preklapanjem odgovarajućih atomskih orbitala duž internuklearne ose b) potpunim prelaskom elektrona sa jednog na drugi atom c) bočnim preklapanjem p-orbitala 32. Zaokružiti slovo ispred formule koja sadrži samo kovalentnu vezu: a) Na 3 PO 4 b) NaH 2 PO 4 c) H 3 PO Zaokružiti slovo ispred simbola para hemijskih elemenata koji grade kovalentno jedinjenje: a) Na i Cl b) H i N c) K i F 34. U molekulu N 2 veza je: a) jednostruka b) dvostruka c) trostruka 17

18 Zbirka zadataka za pripremanje prijemnog ispita iz hemije 35. Molekuli vode i amonijaka su: a) planarni b) molekul H 2 O je linearan c) molekul H 2 O nije linearan, a molekul NH 3 je piramidalan d) nepolarni e) polarni 36. Sledeći niz molekula rasporediti prema porastu polarnosti veze H 2 O, CCl 4, CH 4, NH 3, NF 3, ako su poznate elektronegativnosti: H = 2,1; C = 2,5; Cl = 3,0; N = 3,0; O = 3,5; F = 4, Prikazane molekule poređati u niz prema porastu kovalentnog karaktera veze: HF, HCl, KCl, LiCl, Cl 2, ako je elektronegativnost : H= 2,1; F= 4,0; Cl= 3,0; K=: 0,8; Li= 1, Koji je red veze u molekulima: a) azota b) fosfora c) kiseonika d) hlora 39. Niz koji ilustruje povećanje polarnosti veze je : a) H-S, H-O, H-Cl; b) H-Cl, H-O, H-S; c) H-Br, H-Cl, H-F. 18

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

d-elemeti su su elementi koji se nalaze u PS između 2. i 13.grupe (od IIa do IIIa podgrupe ili glavnih grupa)

d-elemeti su su elementi koji se nalaze u PS između 2. i 13.grupe (od IIa do IIIa podgrupe ili glavnih grupa) PRELAZNI ELEMENTI d-elemeti su su elementi koji se nalaze u PS između 2. i 13.grupe (od IIa do IIIa podgrupe ili glavnih grupa) Prelazni elementi d-elementi Lantanoidi i aktinoidi II-b-grupa cinka U prelazne

Διαβάστε περισσότερα

STRUKTURA I VEZE UVOD

STRUKTURA I VEZE UVOD UVOD Šta je organska hemija i zašto je vi treba da proučavate? Odgovori su svuda oko nas. Svaki živi organizam je sačinjen od organskih hemikalija. Proteini koji izgrađuju našu kosu, kožu i mišiće su organske

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

SAZNANJA O MATERIJI OD STAROG DO XIX VEKA

SAZNANJA O MATERIJI OD STAROG DO XIX VEKA SAZNANJA O MATERIJI OD STAROG DO XIX VEKA U najstarija vremena, čovek je svoja poimanja sveta iskazivao mitovima. MIT (mitos) reč, priča, kazivanje (grč.); MITOLOGIJA od, priča i (logos), reč, učenje.

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Budući brucoši, srećno!

Budući brucoši, srećno! Prijemni ispit za upis na Osnovne akademske studije hemije na PMF u u Nišu školske 2015/16. godine 1. Izrada testa traje 120 minuta. 2. Test se sastoji od 40 pitanja. 3. Test se popunjava zaokruživanjem

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Organska kemija i Biokemija. Predavanje 1

Organska kemija i Biokemija. Predavanje 1 Organska kemija i Biokemija Predavanje 1 Povijesni pregled XVIII. st. IZOLACIJA čistih organskih spojeva 1807. Berzelius ''vis vitalis' 1828. Friedrich Wöhler: iz amonij cijanata sintetizirao ureu 1848.

Διαβάστε περισσότερα

STVARANJE VEZE C-C POMO]U ORGANOBORANA

STVARANJE VEZE C-C POMO]U ORGANOBORANA STVAAJE VEZE C-C PM]U GAAA 2 6 rojne i raznovrsne reakcije * idroborovanje alkena i reakcije alkil-borana 3, Et 2 (ili TF ili diglim) Ar δ δ 2 2 3 * cis-adicija "suprotno" Markovnikov-ljevom pravilu *

Διαβάστε περισσότερα

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. Istinitosna tablica p q r F odgovara formuli A) q p r p r). B) q p r p r). V) q p r p r). G) q p r p r). D) q p r p r). N) Ne znam. Date

Διαβάστε περισσότερα

entropije Entropija raste ako se krećemo od čvrstog preko tečnog do gasovitog stanja: S čvrsto < S tečno << S gas

entropije Entropija raste ako se krećemo od čvrstog preko tečnog do gasovitog stanja: S čvrsto < S tečno << S gas ,4,4, Odreñivanje promene entropije,4,4,, romena entropije pri promeni faza Molekular ularna interpretacija entropije Entropija raste ako se krećemo od čvrstog preko tečnog do gasovitog stanja: čvrsto

Διαβάστε περισσότερα

Franka Miriam Brückler. Travanj 2009.

Franka Miriam Brückler. Travanj 2009. Osnove kvantne kemije za matematičare Franka Miriam Brückler PMF-MO, Zagreb Travanj 2009. Nekoliko uvodnih zadataka Zadatak Odredite frekvenciju i valni broj elektromagnetskog zračenja valne duljine λ

Διαβάστε περισσότερα

KLASIFIKACIJA PRIRODNIH NAUKA

KLASIFIKACIJA PRIRODNIH NAUKA KLASIFIKACIJA PRIRODNIH NAUKA BIOFIZIKA BIOLOGIJA BIOHEMIJA FIZIKA HEMIJA FIZIČKA HEMIJA VODIČ KROZ MODERNU NAUKU 1. Ako je zeleno ili mrda, to je biologija 2. Ako smrdi, to je hemija 3. Ako ne funkcioniše,

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

RAVNOTEŽE U RASTVORIMA KISELINA I BAZA

RAVNOTEŽE U RASTVORIMA KISELINA I BAZA III RAČUNSE VEŽBE RAVNOTEŽE U RASTVORIMA ISELINA I BAZA U izračunavanju karakterističnih veličina u kiselinsko-baznim sistemima mogu se slediti Arenijusova (Arrhenius, 1888) teorija elektrolitičke disocijacije

Διαβάστε περισσότερα

panagiotisathanasopoulos.gr

panagiotisathanasopoulos.gr . Παναγιώτης Αθανασόπουλος Χηµικός ιδάκτωρ Παν. Πατρών. Οξειδοαναγωγή Παναγιώτης Αθανασόπουλος Χημικός, Διδάκτωρ Πανεπιστημίου Πατρών 95 Χηµικός ιδάκτωρ Παν. Πατρών 96 Χηµικός ιδάκτωρ Παν. Πατρών. Τι ονοµάζεται

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

SREDNJA ŠKOLA HEMIJA

SREDNJA ŠKOLA HEMIJA SREDNJA ŠKOLA HEMIJA Zadatak broj Bodovi 1. 6 2. 10 3. 12 4. 8 5. 6 6. 10 7. 8 8. 8 9. 4 10. 10 11. 8 12. 10 Ukupno 100 Za izradu testa planirano je 120 minuta. U toku izrade testa učenici mogu koristiti

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

OSNOVNI PRINCIPI PREBROJAVANJA. () 6. studenog 2011. 1 / 18

OSNOVNI PRINCIPI PREBROJAVANJA. () 6. studenog 2011. 1 / 18 OSNOVNI PRINCIPI PREBROJAVANJA () 6. studenog 2011. 1 / 18 TRI OSNOVNA PRINCIPA PREBROJAVANJA -vrlo često susrećemo se sa problemima prebrojavanja elemenata nekog konačnog skupa S () 6. studenog 2011.

Διαβάστε περισσότερα

TERMODINAMIKA osnovni pojmovi energija, rad, toplota

TERMODINAMIKA osnovni pojmovi energija, rad, toplota TERMODINAMIKA osnovni pojmovi energija, rad, toplota TERMODINAMIKA TERMO TOPLO nauka o kretanju toplote DINAMO SILA Termodinamika-nauka odnosno naučna disciplina koja ispituje odnose između promena u sistemima

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014. ÄÉÁÍüÇÓÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014. ÄÉÁÍüÇÓÇ ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ Ηµεροµηνία: Τετάρτη 23 Απριλίου 2014 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιο σας τον αριθµό κάθε µίας από τις ερωτήσεις A1 έως A4 και δίπλα

Διαβάστε περισσότερα

Otkriće prirodne radioaktivnosti

Otkriće prirodne radioaktivnosti Otkriće prirodne radioaktivnosti Kruksove cevi Rentgen [Wilhem Konrad Rontgen, 1845-1923] Sir Wiliam Crookes 1832-1919 Iz Kruksovih cevi se emituje prodorno zračenje Otkriće Xzraka X-zraka - 1895 Prva

Διαβάστε περισσότερα

ΑΡΙΘΜΟΣ ΟΞΕΙΔΩΣΗΣ - ΓΡΑΦΗ ΧΗΜΙΚΩΝ ΤΥΠΩΝ- ΟΝΟΜΑΤΟΛΟΓΙΑ

ΑΡΙΘΜΟΣ ΟΞΕΙΔΩΣΗΣ - ΓΡΑΦΗ ΧΗΜΙΚΩΝ ΤΥΠΩΝ- ΟΝΟΜΑΤΟΛΟΓΙΑ ΑΡΙΘΜΟΣ ΟΞΕΙΔΩΣΗΣ - ΓΡΑΦΗ ΧΗΜΙΚΩΝ ΤΥΠΩΝ- ΟΝΟΜΑΤΟΛΟΓΙΑ Τι είναι ο αριθμός οξείδωσης Αριθμό οξείδωσης ενός ιόντος σε μια ετεροπολική ένωση ονομάζουμε το πραγματικό φορτίο του ιόντος. Αριθμό οξείδωσης ενός

Διαβάστε περισσότερα

KLASIFIKACIONI ISPIT IZ HEMIJE ZA UPIS NA TEHNOLOŠKO-METALURŠKI FAKULTET U BEOGRADU

KLASIFIKACIONI ISPIT IZ HEMIJE ZA UPIS NA TEHNOLOŠKO-METALURŠKI FAKULTET U BEOGRADU ИНФОРМАТОР 29 UNIVERZITET U BEOGRADU jun 2005. godine KLASIFIKACIONI ISPIT IZ HEMIJE ZA UPIS NA TEHNOLOŠKO-METALURŠKI FAKULTET U BEOGRADU Šifra zadatka: 51501 Test ima 20 pitanja. Netačan odgovor donosi

Διαβάστε περισσότερα

XHMEIA. 1 ο ΔΙΑΓΩΝΙΣΜΑ. ΘΕΜΑ 1 ο. Να δώσετε τη σωστή απάντηση στις παρακάτω περιπτώσεις.

XHMEIA. 1 ο ΔΙΑΓΩΝΙΣΜΑ. ΘΕΜΑ 1 ο. Να δώσετε τη σωστή απάντηση στις παρακάτω περιπτώσεις. ΘΕΜΑ ο Α ΛΥΚΕΙΟΥ-ΧΗΜΕΙΑ ο ΔΙΑΓΩΝΙΣΜΑ Να δώσετε τη σωστή απάντηση στις παρακάτω περιπτώσεις.. Η πυκνότητα ενός υλικού είναι 0 g / cm. Η πυκνότητά του σε g/ml είναι: a. 0,00 b., c. 0,0 d. 0,000. Ποιο από

Διαβάστε περισσότερα

Ερωηήζεις Πολλαπλής Επιλογής

Ερωηήζεις Πολλαπλής Επιλογής Ερωηήζεις Θεωρίας 1. Ππθλφηεηα: α) δηαηχπσζε νξηζκνχ, β) ηχπνο, γ) είλαη ζεκειηψδεο ή παξάγσγν κέγεζνο;, δ) πνηα ε κνλάδα κέηξεζήο ηεο ζην Γηεζλέο Σχζηεκα (S.I.); ε) πνηα ε ρξεζηκφηεηά ηεο; 2. Γηαιπηφηεηα:

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

Termofizika. Glava Temperatura

Termofizika. Glava Temperatura Glava 7 Termofizika Toplota je jedan od oblika energije sa čijim transferom sa tela na telo se svakodnevno srećemo. Tako nas na primer, leti Sunce zagreva tokom dana dok su vedre letnje noći često prilično

Διαβάστε περισσότερα

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b)

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b) TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje između dve tačke Ako su nam date tačke Ax (, y) i Bx (, y ), onda rastojanje između njih računamo po formuli

Διαβάστε περισσότερα

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Prva tačka u ispitivanju toka unkcije je odredjivanje oblasti deinisanosti, u oznaci Pre nego što krenete sa proučavanjem ovog ajla, obavezno pogledajte ajl ELEMENTARNE

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

PRSKALICA - LELA 5 L / 10 L

PRSKALICA - LELA 5 L / 10 L PRSKALICA - LELA 5 L / 10 L UPUTSTVO ZA UPOTREBU. 1 Prskalica je pogodna za rasprsivanje materija kao sto su : insekticidi, fungicidi i sredstva za tretiranje semena. Prskalica je namenjena za kućnu upotrebu,

Διαβάστε περισσότερα

Tačno merenje Precizno Tačno i precizno

Tačno merenje Precizno Tačno i precizno MERENJE, GREŠKE MERENJA I OBRADA REZULTATA MERENJA Izmeriti neku veličinu u fizici znači naći brojni odnos merene fizičke veličine prema vrednosti iste fizičke veličine, koja je dogovorno izabrana za jedinicu.

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 7 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6)

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 7 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 7 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Στις ερωτήσεις 1.1-1.4, να γράψετε στο

Διαβάστε περισσότερα

Algebarske strukture

Algebarske strukture i operacije Univerzitet u Nišu Prirodno Matematički Fakultet februar 2010 Istraživačka stanica Petnica i operacije Operacije Šta je to algebra i apstraktna algebra? Šta je to algebarska struktura? Cemu

Διαβάστε περισσότερα

http://ekfe.chi.sch.gr ΙΑΝΟΥΑΡΙΟΣ 2010 Πειράματα Χημείας Χημικές αντιδράσεις και ποιοτική ανάλυση ιόντων

http://ekfe.chi.sch.gr ΙΑΝΟΥΑΡΙΟΣ 2010 Πειράματα Χημείας Χημικές αντιδράσεις και ποιοτική ανάλυση ιόντων http://ekfe.chi.sch.g 5 η - 6 η Συνάντηση ΙΑΝΟΥΑΡΙΟΣ 010 Πειράματα Χημείας Χημικές αντιδράσεις και ποιοτική ανάλυση ιόντων Παρασκευή διαλύματος ορισμένης συγκέντρωσης αραίωση διαλυμάτων Παρασκευή και ιδιότητες

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ

ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ (Επιλέγετε δέκα από τα δεκατρία θέματα) ΘΕΜΑΤΑ 1. Ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λάθος; Γιατί; (α) Από τα στοιχεία Mg, Al, Cl, Xe, C και Ρ, τον μεγαλύτερο

Διαβάστε περισσότερα

2.1 UVOD Tomsonov model Radefordov model atoma... 5

2.1 UVOD Tomsonov model Radefordov model atoma... 5 1 S A D R Ž A J. MODELI ATOMA.1 UVOD.... Tomsonov model....3 Radefordov model atoma... 5.3.1 Eksperimenti rasijanja alfa čestica... 5.3. Radefordov planetarni model atoma... 8.4 BOROV MODEL ATOMA.4.1 Linijski

Διαβάστε περισσότερα

Tehnologija bušenja II

Tehnologija bušenja II INŽENJERSTVO NAFTE I GASA Tehnologija bušenja II 1. Vežba V - 1 Tehnologija bušenja II Slide 1 of 44 Algebra i trigonometrija V - 1 Tehnologija bušenja II Slide 2 of 44 Jednačine Pitanje: Ako je a = 3b

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ ΕΚΦΩΝΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ ΕΚΦΩΝΗΣΕΙΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή 26 Απριλίου 2015 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιο σας τον αριθµό κάθε µίας από τις ερωτήσεις A1 έως A5 και δίπλα

Διαβάστε περισσότερα

ΜΑΞΙΜΟΣ ΚΟΤΕΛΙΔΑΣ. β) Να βρεθεί σε ποια οµάδα και σε ποια περίοδο του Περιοδικού Πίνακα ανήκουν.

ΜΑΞΙΜΟΣ ΚΟΤΕΛΙΔΑΣ. β) Να βρεθεί σε ποια οµάδα και σε ποια περίοδο του Περιοδικού Πίνακα ανήκουν. ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΜΑΤΑ: 03490 ΗΜΕΡΟΜΗΝΙΑ: 27/5/2014 ΟΙ ΚΑΘΗΓΗΤΕΣ: ΜΑΞΙΜΟΣ ΚΟΤΕΛΙΔΑΣ ΕΚΦΩΝΗΣΕΙΣ Θέμα 2ο Α) Για τα στοιχεία: 12 Μg και 8 Ο α) Να κατανεµηθούν τα ηλεκτρόνιά τους σε στιβάδες. (µονάδες 2) β)

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Χημεία Α Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΒΑΣΙΛΗΣ ΛΟΓΟΘΕΤΗΣ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Χημεία Α Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΒΑΣΙΛΗΣ ΛΟΓΟΘΕΤΗΣ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Γενικής Παιδείας Χημεία Α Λυκείου Επιμέλεια: ΒΑΣΙΛΗΣ ΛΟΓΟΘΕΤΗΣ e-mail: info@iliaskos.gr www.iliaskos.gr 1 57 1.. 1 kg = 1000 g 1 g = 0,001 kg 1

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

Διαγώνισμα Χημείας Α Λυκείου

Διαγώνισμα Χημείας Α Λυκείου 1 Διαγώνισμα Χημείας Α Λυκείου 2 ο Κεφάλαιο... Θέμα 1 ο... 1.1. Να συμπληρωθούν τα κενά... Η εξωτερική στιβάδα ενός ατόμου δε μπορεί να περιέχει περισσότερα από... ηλεκτρόνια. Ειδικότερα αν αυτή είναι

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ Μ.Ε. ΣΥΜΒΟΛΟ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Α ΛΥΚΕΙΟΥ ΑΝΤΙ ΡΑΣΕΙΣ

ΦΡΟΝΤΙΣΤΗΡΙΟ Μ.Ε. ΣΥΜΒΟΛΟ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Α ΛΥΚΕΙΟΥ ΑΝΤΙ ΡΑΣΕΙΣ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Α ΛΥΚΕΙΟΥ ΑΝΤΙ ΡΑΣΕΙΣ Όλες οι αντιδράσεις που ζητούνται στη τράπεζα θεµάτων πραγµατοποιούνται. Στην πλειοψηφία των περιπτώσεων απαιτείται αιτιολόγηση της πραγµατοποίησης των αντιδράσεων.

Διαβάστε περισσότερα

XHMEIA Α ΛΥΚΕΙΟΥ GI_A_CHIM_0_3499 ΜΑΡΑΓΚΟΥ ΝΙΚΗ

XHMEIA Α ΛΥΚΕΙΟΥ GI_A_CHIM_0_3499 ΜΑΡΑΓΚΟΥ ΝΙΚΗ ΜΑΘΗΜΑ: ΘΕΜΑΤΑ: XHMEIA Α ΛΥΚΕΙΟΥ GI_A_CHIM_0_3499 ΗΜΕΡΟΜΗΝΙΑ: 26/05/2014 ΟΙ ΚΑΘΗΓΗΤΕΣ: ΜΑΡΑΓΚΟΥ ΝΙΚΗ ΕΚΦΩΝΗΣΕΙΣ Θέµα 2ο 2.1 Α) Να υπολογιστεί ο αριθµός οξείδωσης του αζώτου στις παρακάτω χηµικές ενώσεις:

Διαβάστε περισσότερα

ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4

ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4 ΚΕΦΑΛΑΙΟ 4 ΣΤΟΙΧΕΙΟΜΕΤΡΙΑ ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΠΑΝΤΗΣΕΙΣ: 1. Τι είναι ατομικό και τί μοριακό βάρος; Ατομικό βάρος είναι ο αριθμός που δείχνει πόσες φορές είναι μεγαλύτερη η μάζα του ατόμου από το 1/12 της

Διαβάστε περισσότερα

MIKRO-NANO FLUIDIKA 8. UVOD U ELEKTROHEMIJU

MIKRO-NANO FLUIDIKA 8. UVOD U ELEKTROHEMIJU MIKRO-NANO FLUIDIKA Handout 4 2012/2013 8. UVOD U ELEKTROHEMIJU Elektrohemija je grana hemije koja proučava hemijske reakcije koje se dešavaju na granici izmeďu električnog provodnika (metalne, poluprovodničke

Διαβάστε περισσότερα

Atomska fizika Sadržaj

Atomska fizika Sadržaj Atomska fizika Sadržaj Kvantna svojstva elektromagnetnog zračenja. 86 Ultravioletna katastrofa 87 Plankov zakon zračenja. Bolcmanov i Vinov zakon. 88 Fotoelektrični efekat 90 Komptonovo rasejanje 93 Atomski

Διαβάστε περισσότερα

3. Να συμπληρωθούν οι παρακάτω αντιδράσεις:

3. Να συμπληρωθούν οι παρακάτω αντιδράσεις: 1. Να συμπληρωθούν οι παρακάτω αντιδράσεις: 2N 2 + 3H 2 2NH 3 4Na + O 2 2Να 2 Ο Fe + Cl 2 FeCl 2 Zn + Br 2 ZnBr 2 2K + S K 2 S 2Ca + O 2 2CaO Na + Ca -------- C + O 2 CO 2 H 2 + Br 2 2HBr CaO + H 2 O Ca(OH)

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΠΕΡΙΕΧΟΝΤΑΙ ΚΑΙ ΟΙ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ)

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΠΕΡΙΕΧΟΝΤΑΙ ΚΑΙ ΟΙ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ) ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΠΕΡΙΕΧΟΝΤΑΙ ΚΑΙ ΟΙ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 9 ΙΟΥΝΙΟΥ

Διαβάστε περισσότερα

ΤΟ MOL Των Μορίων των Στοιχείων και των Χηµικών Ενώσεων

ΤΟ MOL Των Μορίων των Στοιχείων και των Χηµικών Ενώσεων ΤΟ MOL Των Μορίων των Στοιχείων και των Χηµικών Ενώσεων Για να µετρήσεις τα µόρια θέλεις χρόνο και κοστίζει. Απλώς ζύγισέ τα και χρησιµοποίησε το MOL Ελένη ανίλη, Χηµικός, PhD, MSc Από τη Σχετική Ατοµική

Διαβάστε περισσότερα

Induktivno spregnuta kola

Induktivno spregnuta kola Induktivno spregnuta kola 13. januar 2016 Transformatori se koriste u elektroenergetskim sistemima za povišavanje i snižavanje napona, u elektronskim i komunikacionim kolima za promjenu napona i odvajanje

Διαβάστε περισσότερα

TERMODINAMIČKI PARAMETRI su veličine kojima opisujemo stanje sistema.

TERMODINAMIČKI PARAMETRI su veličine kojima opisujemo stanje sistema. TERMODINAMIKA U svakodnevnom govoru, često dolazi greškom do koriščenja termina temperatura i toplota u istom značenju. U fizici, ova dva termina imaju potpuno različito značenje. Razmatračemo kako se

Διαβάστε περισσότερα

Χημικές Αντιδράσεις. Εισαγωγική Χημεία

Χημικές Αντιδράσεις. Εισαγωγική Χημεία Χημικές Αντιδράσεις Εισαγωγική Χημεία Κατηγορίες Χημικών Αντιδράσεων Πέντε κυρίως κατηγορίες: Σύνθεσης Διάσπασης Απλής αντικατάστασης Διπλής αντικατάστασης Καύσης Αντιδράσεις σύνθεσης Ένωση δύο ή περισσότερων

Διαβάστε περισσότερα

3. Υπολογίστε το μήκος κύματος de Broglie (σε μέτρα) ενός αντικειμένου μάζας 1,00kg που κινείται με ταχύτητα1 km/h.

3. Υπολογίστε το μήκος κύματος de Broglie (σε μέτρα) ενός αντικειμένου μάζας 1,00kg που κινείται με ταχύτητα1 km/h. 1 Ο ΚΕΦΑΛΑΙΟ ΑΣΚΗΣΕΙΣ 1. Ποια είναι η συχνότητα και το μήκος κύματος του φωτός που εκπέμπεται όταν ένα e του ατόμου του υδρογόνου μεταπίπτει από το επίπεδο ενέργειας με: α) n=4 σε n=2 b) n=3 σε n=1 c)

Διαβάστε περισσότερα

C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ

C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ »»...» -300-0 () -300-03 () -3300 3.. 008 4 54. 4. 5 :.. ;.. «....... :. : 008. 37.. :....... 008.. :. :.... 54. 4. 5 5 6 ... : : 3 V mnu V mn AU 3 m () ; N (); N A 6030 3 ; ( ); V 3. : () 0 () 0 3 ()

Διαβάστε περισσότερα

3. ΧΗΜΙΚΕΣ ΑΝΤΙΔΡΑΣΕΙΣ

3. ΧΗΜΙΚΕΣ ΑΝΤΙΔΡΑΣΕΙΣ 23 3. ΧΗΜΙΚΕΣ ΑΝΤΙΔΡΑΣΕΙΣ 1. Βλέπε θεωρία σελ. 83. 2. α) (χημική εξίσωση) β) (δύο μέλη) (ένα βέλος >) γ) (αντιδρώντα) δ) (τμήμα ύλης ομογενές που χωρίζεται από το γύρω του χώρο με σαφή όρια). ε) (που οδηγούν

Διαβάστε περισσότερα

PITANJA ZA MATURSKI ISPIT-HEMIJA (izborni predmet)

PITANJA ZA MATURSKI ISPIT-HEMIJA (izborni predmet) PITANJA ZA MATURSKI ISPIT-HEMIJA (izborni predmet) Zaokruţi tačnu tvrdnju: 1. Elementi u PSE su poredani: a) po broju elektrona u K-ljusci b) po abecednom redu c) po porastu atomskog broja d) bez ikakvog

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

Θέματα Ανόργανης Χημείας Γεωπονικής ΓΟΜΗ ΑΣΟΜΩΝ

Θέματα Ανόργανης Χημείας Γεωπονικής ΓΟΜΗ ΑΣΟΜΩΝ Θέματα Ανόργανης Χημείας Γεωπονικής 1 ΓΟΜΗ ΑΣΟΜΩΝ 1. α) Γχζηε ηζξ ααζζηέξ ανπέξ μζημδυιδζδξ ημο δθεηηνμκζημφ πενζαθήιαημξ ηςκ αηυιςκ Mg (Z=12), K (Z=19), ηαζ Ag (Ε=47). Δλδβήζηε ιε ηδ εεςνία ηςκ ιμνζαηχκ

Διαβάστε περισσότερα

MERENJE, GREŠKE MERENJA I OBRADA REZULTATA MERENJA

MERENJE, GREŠKE MERENJA I OBRADA REZULTATA MERENJA MERENJE, GREŠKE MERENJA I OBRADA REZULTATA MERENJA 1 Merenje Svaki eksperimentalni rad u fizici praćen je merenjem neke fizičke veličine. Izmeriti neku fizičku veličinu znači uporediti je sa standardnom

Διαβάστε περισσότερα

OSNOVNA ŠKOLA HEMIJA

OSNOVNA ŠKOLA HEMIJA OSNOVNA ŠKOLA HEMIJA UPUTSTVO TAKMIČARIMA Zadatak br. Bodovi 1. 10 2. 10 3. 10 4. 10 5. 1o 6. 10 7. 10 8. 10 9. 10 10. 10 Ukupno: 100 bodova - Za izradu testa planirano je 120 minuta. - U toku izrade

Διαβάστε περισσότερα

Skupovi, relacije, funkcije

Skupovi, relacije, funkcije Chapter 1 Skupovi, relacije, funkcije 1.1 Skup, torka, multiskup 1.1.1 Skup Pojam skupa ne definišemo eksplicitno. Intuitivno skup prihvatamo kao konačnu ili beskonačnu kolekciju objekata (ili elemenata)u

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΑΠΟ ΠΜΔΧ ΣΧΕΤΙΚΑ ΜΕ ΤΟ 1 ΚΕΦΑΛΑΙΟ ΤΗΣ Γ ΛΥΚΕΙΟΥ

ΘΕΜΑΤΑ ΑΠΟ ΠΜΔΧ ΣΧΕΤΙΚΑ ΜΕ ΤΟ 1 ΚΕΦΑΛΑΙΟ ΤΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΑΠΟ ΠΜΔΧ ΣΧΕΤΙΚΑ ΜΕ ΤΟ ΚΕΦΑΛΑΙΟ ΤΗΣ Γ ΛΥΚΕΙΟΥ 27 ος ΠΜΔΧ Γ ΛΥΚΕΙΟΥ 30 03 203. Στοιχείο Μ το οποίο ανήκει στην πρώτη σειρά στοιχείων μετάπτωσης, σχηματίζει ιόν Μ 3+, που έχει 3 ηλεκτρόνια στην υποστιβάδα

Διαβάστε περισσότερα

Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija. Dokaz: Neka su A i A B tautologije.

Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija. Dokaz: Neka su A i A B tautologije. Svojstva tautologija Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija i formula B. Dokaz: Neka su A i A B tautologije. Pretpostavimo da B nije tautologija. Tada postoji valuacija v

Διαβάστε περισσότερα

Devizno tržište. Mart 2010 Ekonomski fakultet, Beograd Irena Janković

Devizno tržište. Mart 2010 Ekonomski fakultet, Beograd Irena Janković Devizno tržište Devizni urs i devizno tržište Devizni urs - cena jedne valute izražena u drugoj valuti Promene deviznog ursa utiču na vrednost ative i pasive oje su izražene u stranoj valuti Devizni urs

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

Ομάδα προσανατολισμού θετικών σπουδών

Ομάδα προσανατολισμού θετικών σπουδών Ανέστης Θεοδώρου ΧΗΜΕΙΑ Γ Λυκείου Ομάδα προσανατολισμού θετικών σπουδών ΣΥΜΦΩΝΑ ΜΕ ΤΗ ΝΕΑ Ι ΑΚΤΕΑ- ΕΞΕΤΑΣΤΕΑ ΥΛΗ 2015-16 : : : 3 : ΚΕΦΑΛΑΙΟ 1o: ΟΞΕΙΔΟΑΝΑΓΩΓΗ Γνωρίζουμε ότι σε κάθε ανόργανη ένωση διακρίνουμε

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΧλΘ(ε) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΧΗΜΕΙΑ Ηµεροµηνία: Τετάρτη 8 Απριλίου

Διαβάστε περισσότερα

ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ. Αριθμός νετρονίων (n) Ca 20 40 CL - 17 18 H + 1 1 Cu + 63 34 Ar 22 18. Μαζικός αριθμός (Α) Αριθμός πρωτονίων (p + )

ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ. Αριθμός νετρονίων (n) Ca 20 40 CL - 17 18 H + 1 1 Cu + 63 34 Ar 22 18. Μαζικός αριθμός (Α) Αριθμός πρωτονίων (p + ) ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ ΘΕΜΑ Α α) Να συμπληρωθεί ο παρακάτω πίνακας : ΣΤΟΙΧΕΙΟ Ατομικός αριθμός (Ζ) Μαζικός αριθμός (Α) β) Ερωτήσεις πολλαπλής επιλογής. Να επιλέξετε την σωστή απάντηση a) Σε ένα άτομο μικρότερη

Διαβάστε περισσότερα

Na grafiku bi to značilo :

Na grafiku bi to značilo : . Ispitati tok i skicirati grafik funkcije + Oblast definisanosti (domen) Kako zadata funkcija nema razlomak, to je (, ) to jest R Nule funkcije + to jest Ovo je jednačina trećeg stepena. U ovakvim situacijama

Διαβάστε περισσότερα

ISKAZI. U svakodnevnom govoru, a i u pisanom tekstu, obično se sreću rečenice koje su ili tačne

ISKAZI. U svakodnevnom govoru, a i u pisanom tekstu, obično se sreću rečenice koje su ili tačne ISKAZI U svakodnevnom govoru, a i u pisanom tekstu, obično se sreću rečenice koje su ili tačne ili netačne, tj rečenice koje imaju logičkog smisla.ovakve rečenice se u matematici nazivaju iskazi.dakle,

Διαβάστε περισσότερα

6. To στοιχείο νάτριο, 11Na, βρίσκεται στην 1η (IA) ομάδα και την 2η περίοδο του Περιοδικού Πίνακα.

6. To στοιχείο νάτριο, 11Na, βρίσκεται στην 1η (IA) ομάδα και την 2η περίοδο του Περιοδικού Πίνακα. Όλα τα Σωστό-Λάθος της τράπεζας θεμάτων για τη Χημεία Α Λυκείου 1. Το ιόν του νατρίου, 11 Νa +, προκύπτει όταν το άτομο του Na προσλαμβάνει ένα ηλεκτρόνιο. 2. Σε 2 mol NH 3 περιέχεται ίσος αριθμός μορίων

Διαβάστε περισσότερα

Επαναληπτικά Θέµατα ΟΕΦΕ 2010 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΧΗΜΕΙΑ ΑΠΑΝΤΗΣΕΙΣ

Επαναληπτικά Θέµατα ΟΕΦΕ 2010 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΧΗΜΕΙΑ ΑΠΑΝΤΗΣΕΙΣ Επαναληπτικά Θέµατα ΟΕΦΕ 010 1 ΘΕΜΑ 1 ο 1.1. δ 1.. α 1.. γ 1.4. β 1.5. α. ΛΑΘΟΣ β. ΛΑΘΟΣ γ. ΣΩΣΤΟ δ. ΣΩΣΤΟ ε. ΛΑΘΟΣ ΘΕΜΑ ο Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΧΗΜΕΙΑ ΑΠΑΝΤΗΣΕΙΣ.1. α. Για το Α: 1s s p 6 s p 6

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ. ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΕΙΣ (4) ΕΠΙΜΕΛΕΙΑ ΘΕΜΑΤΩΝ: ΚΑΛΑΜΑΡΑΣ ΓΙΑΝΝΗΣ xhmeiastokyma.

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ. ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΕΙΣ (4) ΕΠΙΜΕΛΕΙΑ ΘΕΜΑΤΩΝ: ΚΑΛΑΜΑΡΑΣ ΓΙΑΝΝΗΣ xhmeiastokyma. ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΕΙΣ (4) ΕΠΙΜΕΛΕΙΑ ΘΕΜΑΤΩΝ: ΚΑΛΑΜΑΡΑΣ ΓΙΑΝΝΗΣ ΘΕΜΑ Α Για τις ερωτήσεις Α1 έως Α5 να γράψετε τον αριθμό της ερώτησης και δίπλα

Διαβάστε περισσότερα

AΝΑΛΟΓΙΑ ΜΑΖΩΝ ΣΤΟΧΕΙΩΝ ΧΗΜΙΚΗΣ ΕΝΩΣΗΣ

AΝΑΛΟΓΙΑ ΜΑΖΩΝ ΣΤΟΧΕΙΩΝ ΧΗΜΙΚΗΣ ΕΝΩΣΗΣ 2 ο Γυμνάσιο Καματερού 1 ΦΥΣΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΥΛΗΣ 1. Πόσα γραμμάρια είναι: ι) 0,2 kg, ii) 5,1 kg, iii) 150 mg, iv) 45 mg, v) 0,1 t, vi) 1,2 t; 2. Πόσα λίτρα είναι: i) 0,02 m 3, ii) 15 m 3, iii) 12cm

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1 ο Για τις ερωτήσεις 1.1-1.4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

Μάθημα 12ο. O Περιοδικός Πίνακας Και το περιεχόμενό του

Μάθημα 12ο. O Περιοδικός Πίνακας Και το περιεχόμενό του Μάθημα 12ο O Περιοδικός Πίνακας Και το περιεχόμενό του Γενική και Ανόργανη Χημεία 201-17 2 Η χημεία ΠΠΠ (= προ περιοδικού πίνακα) μαύρο χάλι από αταξία της πληροφορίας!!! Καμμία οργάνωση των στοιχείων.

Διαβάστε περισσότερα

Φροντιστήρια ΕΠΙΓΝΩΣΗ Αγ. Δημητρίου 2015. Προτεινόμενα θέματα τελικών εξετάσεων Χημεία Α Λυκείου. ΘΕΜΑ 1 ο

Φροντιστήρια ΕΠΙΓΝΩΣΗ Αγ. Δημητρίου 2015. Προτεινόμενα θέματα τελικών εξετάσεων Χημεία Α Λυκείου. ΘΕΜΑ 1 ο Προτεινόμενα θέματα τελικών εξετάσεων Χημεία Α Λυκείου ΘΕΜΑ 1 ο Για τις ερωτήσεις 1.1 έως 1.5 να επιλέξετε τη σωστή απάντηση: 1.1 Τα ισότοπα άτομα: α. έχουν ίδιο αριθμό νετρονίων β. έχουν την ίδια μάζα

Διαβάστε περισσότερα

1. Στο παρακάτω διάγραμμα τα γράμματα Α, Β, Γ, Δ, Ε, Ζ, Θ, Κ, Λ

1. Στο παρακάτω διάγραμμα τα γράμματα Α, Β, Γ, Δ, Ε, Ζ, Θ, Κ, Λ Επαναληπτικά δέντρα.. Ανόργανης στο ph. Στο παρακάτω διάγραμμα τα γράμματα Α, Β, Γ, Δ, Ε, Ζ, Θ, Κ, Λ αναφέρονται σε υδατικά διαλύματα. Το διάλυμα Α έχει όγκο 00mL και ph = HCl 00mL Ca(OH) 2 900mLH2O 0,448L

Διαβάστε περισσότερα

2.3 Γενικά για το χημικό δεσμό - Παράγοντες που καθορίζουν τη χημική συμπεριφορά του ατόμου.

2.3 Γενικά για το χημικό δεσμό - Παράγοντες που καθορίζουν τη χημική συμπεριφορά του ατόμου. 2.3 Γενικά για το χημικό δεσμό - Παράγοντες που καθορίζουν τη χημική συμπεριφορά του ατόμου. 10.1. Ερώτηση: Τι ονομάζουμε χημικό δεσμό; Ο χημικός δεσμός είναι η δύναμη που συγκρατεί τα άτομα ή άλλες δομικές

Διαβάστε περισσότερα

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2005

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2005 ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 005 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1 Για τις ερωτήσεις 11-1 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση 11 Ο µέγιστος αριθµός

Διαβάστε περισσότερα

4 ΘΕΜΑ ΧΗΜΕΙΑ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΠΟ ΤΟ 2 Ο ΚΕΦΑΛΑΙΟ. συλλογή από τον Γιώργο Σταυρακαντωνάκη Χημικό Λύκειο Γαζίου

4 ΘΕΜΑ ΧΗΜΕΙΑ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΠΟ ΤΟ 2 Ο ΚΕΦΑΛΑΙΟ. συλλογή από τον Γιώργο Σταυρακαντωνάκη Χημικό Λύκειο Γαζίου 4 ΘΕΜΑ ΧΗΜΕΙΑ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΠΟ ΤΟ 2 Ο ΚΕΦΑΛΑΙΟ 1. 84 g C 3 H 6 αναμειγνύονται με την ακριβώς απαιτούμενη ποσότητα ατμοσφαιρικού αέρα (περιέχει 20% v/v Ο 2 και 80 % v/v Ν 2 ) και το μείγμα

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Για τις ερωτήσεις Α.1 έως Α.4 να γράψετε το γράμμα που αντιστοιχεί στη σωστή απάντηση δίπλα στον αριθμό της ερώτησης.

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Για τις ερωτήσεις Α.1 έως Α.4 να γράψετε το γράμμα που αντιστοιχεί στη σωστή απάντηση δίπλα στον αριθμό της ερώτησης. ΜΑΘΗΜΑ / ΤΑΞΗ : ΧΗΜΕΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 ΗΜΕΡΟΜΗΝΙΑ: 16 / 02 /2014 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Για τις ερωτήσεις Α.1 έως Α.4 να γράψετε το γράμμα που αντιστοιχεί στη σωστή απάντηση δίπλα στον αριθμό

Διαβάστε περισσότερα

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Χημεία Α Λυκείου

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Χημεία Α Λυκείου Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων Μάθημα: Χημεία Α Λυκείου Στο παρών παρουσιάζουμε απαντήσεις σε επιλεγμένα Θέματα της Τράπεζας θεμάτων. Το αρχείο αυτό τις επόμενες ημέρες σταδιακά θα

Διαβάστε περισσότερα

Κεφάλαιο 3 Χημικές Αντιδράσεις

Κεφάλαιο 3 Χημικές Αντιδράσεις Κεφάλαιο 3 Χημικές Αντιδράσεις Οι χημικές αντιδράσεις μπορούν να ταξινομηθούν σε δύο μεγάλες κατηγορίες, τις οξειδοαναγωγικές και τις μεταθετικές. Α. ΟΞΕΙΔΟΑΝΑΓΩΓΙΚΕΣ ΑΝΤΙΔΡΑΣΕΙΣ Στις αντιδράσεις αυτές

Διαβάστε περισσότερα

13. GRUPA PERIODNOG SISTEMA 13. GRUPA PERIODNOG SISTEMA. Elektronska konfiguracija ns 2 np 1 B 4

13. GRUPA PERIODNOG SISTEMA 13. GRUPA PERIODNOG SISTEMA. Elektronska konfiguracija ns 2 np 1 B 4 13. GRUPA PERIODNOG SISTEMA 13. GRUPA PERIODNOG SISTEMA Bor redak element, najčešće u obliku minerala boraksa, Na 2 B 4 O 7 10H 2 O. Aluminijum najrasprostranjeniji metal u Zemljinoj kori (8,3 mas.%) i

Διαβάστε περισσότερα

Racionalni algebarski izrazi

Racionalni algebarski izrazi . Skratimo razlomak Racionalni algebarski izrazi [MM.4-()6] 5 + 6 +. Ako je a + b + c = dokazati da je a + b + c = abc [MM.4-()] 5 6 5. Reši jednačinu: y y y + + = 7 4 y = [MM.4-(4)] 4. Reši jednačinu:

Διαβάστε περισσότερα