PERIODNI SISTEM ELEMENATA

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "PERIODNI SISTEM ELEMENATA"

Transcript

1 PERIODNI SISTEM ELEMENATA 1/43

2 PERIODNI SISTEM ELEMENATA - Kratka istorija Otkriće elemenata do danas otktiveno još 11 elemenata IUPAC potvrdio otkriće 2 nova elementa: Flerovijum (Fl, Z = 114) i Livermorijum (Lv, Z = 116) 2/43

3 PERIODNI SISTEM ELEMENATA - Kratka istorija Zajednički timovi naučnika iz Rusije i Amerike objavili su dokaze o sintezi elemenata rednih brojeva IUPAC je prihvatio otkrića elementa 114 (Flerovijum) i elementa 116 (Livermorijum), a još uvek nisu razmatrani dokazi o otkriću elementa 117 (ununseptium). Takođe, zahteva se jači dokaz pre nego što se potvrditi sinteza elemenata 113 (ununtrium), 115 (ununpentium) i elementa 118 (ununoctium). 3/43

4 PERIODNI SISTEM ELEMENATA - Kratka istorija Kratka istorija modernog Peridnog sistema elemenata (PSE) Tokom XIX veka hemičari su počeli da kategorizuju elemente prema sličnosti njihovih fizičkih i hemijskih svojstava Model trijada - Johann Dobereiner Zakon oktava - John Newlands Дмитрий Иванович Менделеев i Lothar Meyer su nezavisno došli do istog zaključka o tome kako bi trebalo grupisati elemente. Obojica su elemente poređali prema porastu atomskih masa. Дмитрий Иванович Менделеев Lothar Meyer /43

5 PERIODNI SISTEM ELEMENATA - Kratka istorija Mendeljejev je godine objavio svoj prvi periodni sistem elemenata u kome je elemente svrstao po rastućim relativnim atomskim masama i sličnosti u fizičkim i hemijskim svojstvima, a objavljuje novi, poboljšani periodni sistem: 1. Relativna atomska masa određuje svojstva elementa 2. Elementi poređani po porastu relativnih atomskih masa pokazuju periodičnost fizičkih i hemijskih svojstava, odnosno posle izvesnog broja dolaze ponovo elementi sličnih fizičkih i hemijskih svojstava 3. Elementi koji nedostaju još nisu otkriveni (predvideo je fizička svojstva do tada tri nepoznata elemenata - Sc, Ga, Ge) 4. Relativne atomske mase elemenata moraju odgovarati položaju elementa u tablici 5/43

6 PERIODNI SISTEM ELEMENATA - Kratka istorija Henry Moseley je, radeći sa X-zracima, uveo koncept atomskih brojeva elemenata. Preuredio je elemente prema porastu atomskog broja. Uvođenje koncepta atomskog broja razrešilo je probleme ranijih verzija PSE gde su elementi bili poređani prema porastu atomskih masa. Primeri: argon (Ar = 39,948) je teži od kalijuma (Ar = 39,102) kobalt (Ar = 58,93) je teži od nikla (Ar = 58,71) telur (Ar = 127,60) je teži od joda (Ar = 126,91) Henry Moseley Mozlijev zakon Kada se elementi poređaju prema porastu atomskog broja tada postoji periodični obrazac u njihovim fizičkim i hemijskim svojstvima. 6/43

7 PERIODNI SISTEM ELEMENATA - Kratka istorija Mozlijev eksperiment katodni zraci bombarduju anodu napravljenu od elementa koji se ispituje. Anoda emituje zračenje određene talasne dužine i frekvencije. Talasna dužina (frekvencija) emitovanog karakterističnog zračenja zavisi samo od atomskog broja materijala anode: ν = const. (Z 1) 2 U PSE elementi su poređani prema porastu atomskih brojeva (Z). Svojstva elemenata su periodična funkcija njihovih atomskih brojeva. 7/43

8 PERIODNI SISTEM ELEMENATA - Kratka istorija Glenn Seaborg je, nakon učešća u otkriću deset novih elemenata, izmestio 14 elemenata u poseban red gde se i danas nalaze (zajedno sa aktinijumom). To je serija aktinoida. Glenn T. Seaborg Siborg je jedina osoba po kojoj je hemijski element nazvan za vreme njegovog života tih. pretpostavio postojanje ostrva stabilnosti Više o ovome: 8/43

9 PERIODNI SISTEM ELEMENATA IUPAC maj /43

10 PERIODNI SISTEM ELEMENATA TRENDOVI U PERIODNOM SISTEMU ELEMENATA Metalni/nemetalni karakter Elektronska konfiguracija i PSE Efektivno naelektrisanje jezgra Veličina atoma i jona Energija jonizacije Afinitet prema elektronu Elektronegativnost Tačka topljenja Struktura i vezivanje 10/43

11 PERIODNI SISTEM ELEMENATA STRUKTURA PERIODNOG SISTEMA ELEMENATA 11/43

12 PERIODNI SISTEM ELEMENATA Metali vs nemetali vs metaloidi Svojstva metala: Sa nemetalima uglavnom daju jonska jedinjenja. Jedinjenja metala sa metalima se zovu legure. Većina oksida metala je bazna, reaguju sa vodom dajući baze. Reaguju sa kiselinama dajući soli. Grade katjone. Svojstva metaloida Imaju svojstva koja se nalaze između svojstva metala i nemetala. Na primer elementarni Si izgleda kao metal ali ne može da se kuje i loše provodi toplotu i elektricitet. Neki metaloidi (pogotovo Si) su poluprovodnici. Svojstva nemetala: Sa metalima daju uglavnom jonska jedinjenja (gradeći anjone). Sa drugim nemetalima daju isključivo kovalentna jedinjenja. Njihovi oksidi i hidridi su ili gasovi ili tečnosti ili čvrsta jedinjenja niske tačke topljenja. Oksidi nemetala su kiseli, sa vodom daju kiseline, sa bazama daju soli. 12/43

13 PERIODNI SISTEM ELEMENATA Trend u metalnom/nemetalnom karakteru Opadanje metalnog karaktera Porast metalnog karaktera 13/43

14 Kratko obnavljanje - kvantni brojevi Svaki elektron u atomu (koji se uvek nalazi u nekoj orbitali tog atoma) je potpuno opisan sa četiri kvantna broja: 1. Glavni kvantni broj (n) govori o veličini orbitale i energiji elektrona u toj orbitali. n = 1, 2, 3, Azimutalni (sporedni) kvantni broj (l) definiše oblik orbitale i kod višeelektronskih atoma utiče na energiju elektrona (orbitale). Energija elektrona je potpuno određena kvantnim brojevima n i l. l od 0 do (n 1) za svaku vrednost n 3. Magnetni kvantni broj (m l ) definiše orijentaciju orbitale u prostoru. Ne određuje energiju elektrona (orbitale). m l = l,... 0,...+l 4. Spinski kvantni broj definiše spin elektrona. Ima samo dve vrednosti ( 1 / 2, + 1 / 2 ) 14/43

15 Elektronska konfiguracija i PSE 15/43

16 Elektronska konfiguracija i PSE Svi pripadnici iste grupe imaju istu elektronsku konfiguraciju velentne ljuske, samo se glavni kvantni broj menja. Zato elementi koji pripadaju istoj grupi imaju veoma slična hemijska svojstva. Grupa 2 Grupa 13 Neorganska hemija 1102A 16/43

17 Elektronska konfiguracija i PSE U periodnom sistemu postoji podela na s, p, d i f elemente u zavisnosti od toga u kojem se podnivou nalaze valentni elektroni. 17/43

18 Elektronska konfiguracija i PSE - anomalije 18/43

19 Elektronska konfiguracija i PSE - anomalije Aufbau princip Hundovo pravilo Paulijev princip isključenja Kada su različiti podnivoi blizu tada energija koja je potrebna za sparivanje spinova dva elektrona u istoj orbitali može biti veća od energetske razlike dva podnivoa te dolazi do anomalija u elektronskoj konfiguraciji elemenata. 19/43

20 Efektivno naelektrisanje jezgra Koliku privlačnu silu jezgra oseća svaki elektron? Za atom vodonika odgovor je prilično jasan elektron oseća privlačnu silu (1+) jezgra koja zavisi samo od rastojanja između elektrona i jezgra. Kakva je situacija kod višeelektronskih atoma? Osim jezgro-elektron privlačnih sila postoje i elektron-elektron odbojne sile. Da bi odredili koliko je jako svaki elektron vezan za jezgro moramo uzeti u obzir i ove odbojne sile. Za precizna izračunavanja potrebna su nam elektron-elektron rastojanja! Mg Valentni (3s 2 ) elektroni Unutrašnji [Ne] elektroni (10 ) Kombinovani efekat Efektivna nuklearna šarža koju osećaju valentni elektroni Mg Radijalna elektronska gustina Rastojanje od jezgra Pojednostavljen kombinovani efekat potcenjuje vrednost efektivnog naelektrisanja jezgra stoga što postoji verovatnoća prodiranja valentnih elektrona ka jezgru. Detaljniji proračuni su pokazali da efektivno naelektrisanje jezgra koje osećaju valentni elektroni Mg iznosi 3,3+. 20/43

21 Efektivno naelektrisanje jezgra - Z eff Naelektrisanje jezgra koje osećaju valentni elektroni Z eff. - se može proceniti primenom veoma jednostavnih Slaterovih pravila. Z eff = Z S Z atomski (redni) broj; S Slaterova konstanta (konstanta zaklanjanja) Prvo se elektroni grupišu i svaka grupa odvoji zagradama (1s)(2s2p)(3s3p)(3d)(4s4p)(4d)(4f)(5s5p) Svi elektroni nadesno od posmatrane grupe ne smanjuju naelektrisanje jezgra. 2. Elektroni iz iste grupe smanjuju naelektrisanje jezgra za 0, Svaki elektron iz n-1 nivoa smanjuje naelektrisanje jezgra za s i p elektrone za vrednost 0, Svaki elektron iz nivoa n-2 smanjuje nelektrisanje jezgra za Za f i d elektrone svaki elektron koji je levo od njih smanjuje naelektrisanje jezgra za 1. Primer: F: (1s 2 )(2s 2 2p 5 ) S= 6 x 0, x 0,85 = 3,8 Z eff = 9-3,8 = +5,2 21/43

22 Efektivno naelektrisanje jezgra 22/43

23 Efektivno naelektrisanje jezgra Slaterova pravila su korisna za grubu procenu energije jonizacije, jonskih radijusa i elektronegativnosti. Preciznije vrednosti Z eff dobijaju se proračunima uz korišćenje tzv. Self-consistent field metoda (Clementi i Riamondi) koje daju znatno veće vrednosti Z eff, pogotovo za d elektrone. 23/43

24 Efektivno naelektrisanje jezgra Efektivno naelektrisanje jezgra Efektivno naelektrisanje jezgra 24/43

25 Veličina atoma Veličina atoma se najlakše izražava atomskim poluprečnikom. Postoje različite vrste atomskih poluprečnika: Nevezivni (van der Waalsovi) poluprečnici rastojanje do koga se atomi mogu približiti jedan drugome dok elektronski oblaci ne počnu da im se odbijaju. Vezivni (kovalentni) poluprečnici polovina rastojanja između jezgara kovalentno vezanih atoma. Upotrebljavaju se sa opisivanje veličine atoma nemetala. Metalni poluprečnici - polovina rastojanja između jezgara u kristalnoj rešetki metala. Upotrebljavaju se za opisivanje veličine atoma metala. van der Waalsov (nevezivni) atomski poluprečnik Kovalentni atomski poluprečnik = ½ d 25/43

26 Veličina atoma 2,68 Å r kov (I) = 2,68 Å / 2 = 1,34 Å Kristalna stuktura I 2 jedinična ćelija Angstrem (1 Å = m) je uobičajena metrička jedinica za dužinu na atomskoj skali. Nije SI jedinica! Uobičajena SI jedinica za dužinu na atomskoj skali je pikometar (1 pm = m; 1 Å = 100 pm). 26/43

27 Veličina atoma Porast atomskog poluprečnika Poluprečnik (Å) Veličina atomskog poluprečnika zavisi od: Privlačnih sila između jezgra i elektrona Zaklanjanja valentnih elektrona od strane unutrašnjih elektrona 27/43

28 Periodični trendovi atomskih poluprečnika Poluprečnik (pm) Atomski broj PERIODA: Atomski poluprečnici opadaju sa leva nadesno u istoj periodi. Ovo se najlakše objašnjava preko povećanja efektivnog nelektrisanja jezgra koje osećaju valentni elektroni GRUPA: Atomski poluprečnici rastu odozgo nadole u grupi. Ovo se objašava povećanjem glavnog kvantnog broja valentnih elektrona. Što je veći glavni kvantni broj elektron provodi više vremena na većem rastojanju od jezgra, a time je i atomski poluprečnik veći. 28/43

29 Periodični trendovi atomskih poluprečnika Varijacije atomskih poluprečnika prvih 20 elemenata PSE Atomski poluprečnik (nm) Atomski broj Oštar pad atomskih poluprečnika na početku periode praćen postepenim opadanjem atomskih poluprečnika ka kraju periode Na početku svake periode dominantan je efekat porasta Z eff što je praćeno većom kontrakcijom. Dalji dodatak elektrona u istu ljusku dovodi do povećanja efekta međuelektronskog odbijanja. Z eff ima mali porast za elemente pri kraju periode što je praćeno postepenim opadanjem atomskih poluprečnika. 29/43

30 Trendovi u jonskim poluprečnicima Svi jonski poluprečnici su eksperimentalno određeni na osnovu rastojanja između jona u kristalnim rešetkama jonskih jedinjenja /43

31 Trendovi u jonskim poluprečnicima Jonski poluprečnici zavise od Z eff, broja elektrona i orbitale u koju su smešteni valentni elektroni. Katjoni Anjoni Veličina katjona je manja od veličine odgovarajućeg atoma. Uklanjanjem elektrona iz neutralnog atoma smanjuju se odbojne interakcije među elektronima tj. raste Z eff.. Što je katjon više naelektrisan jonski poluprečnik će biti manji. Veličina anjona je veća od veličine odgovarajućeg atoma. Dodatkom elektrona povećavaju se odbojne interakcije među elektronima tj. smanjuje se Z eff. Što je anjon više naelektrisan jonski poluprečnik će biti veći. 31/43

32 Trendovi u jonskim poluprečnicima Izoelektronski joni su oni joni koji imaju isti broj elektrona. Kod serije izoelektronskih jona jonski poluprečnik opada sa porastom Z eff. 32/43

33 Trendovi u energiji jonizacije Šta je energija jonizacije? Kako se menja energija jonizacije sukcesivnim uklanjanjem elektrona iz istog atoma? Prva energija jonizacije (I 1, kj/mol) U okviru iste periode I 1 uglavnom raste sa porastom atomskog broja. U okviru iste grupe I 1 uglavnom opada sa porastom atomskog broja. Ovakavi trendovi su potpuno u skladu sa podacima o atomskim poluprečnicima što je atom manji elektron je jače vezan i teže se jonizuje. Atomski broj 33/43

34 Trendovi u energiji jonizacije Odstupanja Pomoću elektronskih konfiguracija OBJASNITE odstupanja u I 1 za date atome! Odgovor obavezno dostaviti na terminu teorijskih vežbi! I 1 (kj/mol) Prva energija jonizacije (I 1, kj/mol) Atomski broj 34/43

35 Trendovi u afinitetu prema elektronu Šta je afinitet prema elektronu? Kada afinitet prema elektronu ima pozitivnu, a kada negativnu vrednost prema TD konvenciji? Afinitet prema elektronu ( kj/mol) Atomski broj Afinitet prema elektronu raste (postaje negativniji) u periodi (s leva na desno), a blago opada u grupi (odozgo nadole). 35/43

36 Trendovi u afinitetu prema elektronu PITANJA Zašto je vrednost afiniteta prema elektronu kod svih plemenitih gasova veća od nule? Zašto je vrednost afiniteta prema elektronu kod azota takođe veća od nule? Zašto je vrednost afiniteta prema elektronu za Cl veća (negativnija) od vrednosti za F? Odgovore obavezno dostaviti na terminu teorijskih vežbi! 36/43

37 Trendovi u elektronegativnosti Šta je elektronegativnost? Koje skale elektronegativnosti postoje? Elektronegativnost raste u periodi, a opada u grupi. 37/43

38 Trendovi u tačkama topljenja Šta je tačka topljenja? Od čega zavisi tačka topljenja? T t raste T t raste T t opada Jedinica: T t raste Tačke topljenja (T t ) prvih 20 elemenata PSE 38/43

39 Trendovi u tačkama topljenja Tačka topljenja Atomski broj Metalna veza jača je što je veći broj valentnih elektrona Kovalentne struktutre (B, C, Si) Slabe van der Waalsove interakcije S 8 vs P 4 39/43

40 Struktura i veze 40/43

41 Struktura i veze U svakoj periodi struktura se menja od: metalne strukture preko kovalentnih mreža do jednostavih molekulskih struktura S leva na desno u periodi: Vezivanje atoma elemenata se menja na periodičan način Od metalne veze ka kovalentnoj vezi 41/43

42 PERIODNI SISTEM ELEMENATA Sumiranje trendova Nemetalni karakter Energija jonizacije Metalni karakter Atomski poluprečnik Efektivno naelektrisanje jezgra Afinitet prema elektronu i elektronegativnost Energija jonizacije Efektivno naelektrisanje jezgra Atomski poluprečnik 42/43

43 NAREDNO PREDAVANJE OPŠTE KARAKTERISTIKE s- i p- ELEMENATA s-elementi varijacije atomskih/jonskih poluprečnika s-elementi varijacije energije jonizacije s-elementi varijacije u tačkama topljenja s-elementi entalpija hidratacije s-elementi varijacije u hemijskim svojstvima Dijagonalna sličnost Maksimalna oksidaciona stanja s- i p-elemenata Analiza energetskih odnosa s- i p- orbitala različitih kvantnih nivoa 43/43

d-elemeti su su elementi koji se nalaze u PS između 2. i 13.grupe (od IIa do IIIa podgrupe ili glavnih grupa)

d-elemeti su su elementi koji se nalaze u PS između 2. i 13.grupe (od IIa do IIIa podgrupe ili glavnih grupa) PRELAZNI ELEMENTI d-elemeti su su elementi koji se nalaze u PS između 2. i 13.grupe (od IIa do IIIa podgrupe ili glavnih grupa) Prelazni elementi d-elementi Lantanoidi i aktinoidi II-b-grupa cinka U prelazne

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Atomska fizika Sadržaj

Atomska fizika Sadržaj Atomska fizika Sadržaj Kvantna svojstva elektromagnetnog zračenja. 86 Ultravioletna katastrofa 87 Plankov zakon zračenja. Bolcmanov i Vinov zakon. 88 Fotoelektrični efekat 90 Komptonovo rasejanje 93 Atomski

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

SAZNANJA O MATERIJI OD STAROG DO XIX VEKA

SAZNANJA O MATERIJI OD STAROG DO XIX VEKA SAZNANJA O MATERIJI OD STAROG DO XIX VEKA U najstarija vremena, čovek je svoja poimanja sveta iskazivao mitovima. MIT (mitos) reč, priča, kazivanje (grč.); MITOLOGIJA od, priča i (logos), reč, učenje.

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

STRUKTURA I VEZE UVOD

STRUKTURA I VEZE UVOD UVOD Šta je organska hemija i zašto je vi treba da proučavate? Odgovori su svuda oko nas. Svaki živi organizam je sačinjen od organskih hemikalija. Proteini koji izgrađuju našu kosu, kožu i mišiće su organske

Διαβάστε περισσότερα

Otkriće prirodne radioaktivnosti

Otkriće prirodne radioaktivnosti Otkriće prirodne radioaktivnosti Kruksove cevi Rentgen [Wilhem Konrad Rontgen, 1845-1923] Sir Wiliam Crookes 1832-1919 Iz Kruksovih cevi se emituje prodorno zračenje Otkriće Xzraka X-zraka - 1895 Prva

Διαβάστε περισσότερα

Na grafiku bi to značilo :

Na grafiku bi to značilo : . Ispitati tok i skicirati grafik funkcije + Oblast definisanosti (domen) Kako zadata funkcija nema razlomak, to je (, ) to jest R Nule funkcije + to jest Ovo je jednačina trećeg stepena. U ovakvim situacijama

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

13. GRUPA PERIODNOG SISTEMA 13. GRUPA PERIODNOG SISTEMA. Elektronska konfiguracija ns 2 np 1 B 4

13. GRUPA PERIODNOG SISTEMA 13. GRUPA PERIODNOG SISTEMA. Elektronska konfiguracija ns 2 np 1 B 4 13. GRUPA PERIODNOG SISTEMA 13. GRUPA PERIODNOG SISTEMA Bor redak element, najčešće u obliku minerala boraksa, Na 2 B 4 O 7 10H 2 O. Aluminijum najrasprostranjeniji metal u Zemljinoj kori (8,3 mas.%) i

Διαβάστε περισσότερα

2.1 UVOD Tomsonov model Radefordov model atoma... 5

2.1 UVOD Tomsonov model Radefordov model atoma... 5 1 S A D R Ž A J. MODELI ATOMA.1 UVOD.... Tomsonov model....3 Radefordov model atoma... 5.3.1 Eksperimenti rasijanja alfa čestica... 5.3. Radefordov planetarni model atoma... 8.4 BOROV MODEL ATOMA.4.1 Linijski

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

Franka Miriam Brückler. Travanj 2009.

Franka Miriam Brückler. Travanj 2009. Osnove kvantne kemije za matematičare Franka Miriam Brückler PMF-MO, Zagreb Travanj 2009. Nekoliko uvodnih zadataka Zadatak Odredite frekvenciju i valni broj elektromagnetskog zračenja valne duljine λ

Διαβάστε περισσότερα

PRSKALICA - LELA 5 L / 10 L

PRSKALICA - LELA 5 L / 10 L PRSKALICA - LELA 5 L / 10 L UPUTSTVO ZA UPOTREBU. 1 Prskalica je pogodna za rasprsivanje materija kao sto su : insekticidi, fungicidi i sredstva za tretiranje semena. Prskalica je namenjena za kućnu upotrebu,

Διαβάστε περισσότερα

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. Istinitosna tablica p q r F odgovara formuli A) q p r p r). B) q p r p r). V) q p r p r). G) q p r p r). D) q p r p r). N) Ne znam. Date

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b)

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b) TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje između dve tačke Ako su nam date tačke Ax (, y) i Bx (, y ), onda rastojanje između njih računamo po formuli

Διαβάστε περισσότερα

Devizno tržište. Mart 2010 Ekonomski fakultet, Beograd Irena Janković

Devizno tržište. Mart 2010 Ekonomski fakultet, Beograd Irena Janković Devizno tržište Devizni urs i devizno tržište Devizni urs - cena jedne valute izražena u drugoj valuti Promene deviznog ursa utiču na vrednost ative i pasive oje su izražene u stranoj valuti Devizni urs

Διαβάστε περισσότερα

Tačno merenje Precizno Tačno i precizno

Tačno merenje Precizno Tačno i precizno MERENJE, GREŠKE MERENJA I OBRADA REZULTATA MERENJA Izmeriti neku veličinu u fizici znači naći brojni odnos merene fizičke veličine prema vrednosti iste fizičke veličine, koja je dogovorno izabrana za jedinicu.

Διαβάστε περισσότερα

56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA. Sarajevo, godine

56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA. Sarajevo, godine 56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA Sarajevo, 3.04.016. godine 56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA

Διαβάστε περισσότερα

O DIMENZIONALNOJ ANALIZI U FIZICI.

O DIMENZIONALNOJ ANALIZI U FIZICI. 1 O DIMENZIONALNOJ ANALIZI U FIZICI Ljubiša Nešić, Odsek za fiziku, PMF, Niš http://www.pmf.ni.ac.yu/people/nesiclj/ Uvod Kao što je poznato, fizičke veličine mogu da imaju dimenzije ili pak da budu bezdimenzionalne.

Διαβάστε περισσότερα

RAVNOTEŽE U RASTVORIMA KISELINA I BAZA

RAVNOTEŽE U RASTVORIMA KISELINA I BAZA III RAČUNSE VEŽBE RAVNOTEŽE U RASTVORIMA ISELINA I BAZA U izračunavanju karakterističnih veličina u kiselinsko-baznim sistemima mogu se slediti Arenijusova (Arrhenius, 1888) teorija elektrolitičke disocijacije

Διαβάστε περισσότερα

Organska kemija i Biokemija. Predavanje 1

Organska kemija i Biokemija. Predavanje 1 Organska kemija i Biokemija Predavanje 1 Povijesni pregled XVIII. st. IZOLACIJA čistih organskih spojeva 1807. Berzelius ''vis vitalis' 1828. Friedrich Wöhler: iz amonij cijanata sintetizirao ureu 1848.

Διαβάστε περισσότερα

TERMODINAMIKA osnovni pojmovi energija, rad, toplota

TERMODINAMIKA osnovni pojmovi energija, rad, toplota TERMODINAMIKA osnovni pojmovi energija, rad, toplota TERMODINAMIKA TERMO TOPLO nauka o kretanju toplote DINAMO SILA Termodinamika-nauka odnosno naučna disciplina koja ispituje odnose između promena u sistemima

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

STVARANJE VEZE C-C POMO]U ORGANOBORANA

STVARANJE VEZE C-C POMO]U ORGANOBORANA STVAAJE VEZE C-C PM]U GAAA 2 6 rojne i raznovrsne reakcije * idroborovanje alkena i reakcije alkil-borana 3, Et 2 (ili TF ili diglim) Ar δ δ 2 2 3 * cis-adicija "suprotno" Markovnikov-ljevom pravilu *

Διαβάστε περισσότερα

OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA. Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu

OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA. Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu I Definisanje frekventnih karakteristika Dinamički modeli sistema se definišu u vremenskom, Laplace-ovom

Διαβάστε περισσότερα

OSNOVNI PRINCIPI PREBROJAVANJA. () 6. studenog 2011. 1 / 18

OSNOVNI PRINCIPI PREBROJAVANJA. () 6. studenog 2011. 1 / 18 OSNOVNI PRINCIPI PREBROJAVANJA () 6. studenog 2011. 1 / 18 TRI OSNOVNA PRINCIPA PREBROJAVANJA -vrlo često susrećemo se sa problemima prebrojavanja elemenata nekog konačnog skupa S () 6. studenog 2011.

Διαβάστε περισσότερα

KLASIFIKACIJA PRIRODNIH NAUKA

KLASIFIKACIJA PRIRODNIH NAUKA KLASIFIKACIJA PRIRODNIH NAUKA BIOFIZIKA BIOLOGIJA BIOHEMIJA FIZIKA HEMIJA FIZIČKA HEMIJA VODIČ KROZ MODERNU NAUKU 1. Ako je zeleno ili mrda, to je biologija 2. Ako smrdi, to je hemija 3. Ako ne funkcioniše,

Διαβάστε περισσότερα

Skupovi, relacije, funkcije

Skupovi, relacije, funkcije Chapter 1 Skupovi, relacije, funkcije 1.1 Skup, torka, multiskup 1.1.1 Skup Pojam skupa ne definišemo eksplicitno. Intuitivno skup prihvatamo kao konačnu ili beskonačnu kolekciju objekata (ili elemenata)u

Διαβάστε περισσότερα

entropije Entropija raste ako se krećemo od čvrstog preko tečnog do gasovitog stanja: S čvrsto < S tečno << S gas

entropije Entropija raste ako se krećemo od čvrstog preko tečnog do gasovitog stanja: S čvrsto < S tečno << S gas ,4,4, Odreñivanje promene entropije,4,4,, romena entropije pri promeni faza Molekular ularna interpretacija entropije Entropija raste ako se krećemo od čvrstog preko tečnog do gasovitog stanja: čvrsto

Διαβάστε περισσότερα

Tehnologija bušenja II

Tehnologija bušenja II INŽENJERSTVO NAFTE I GASA Tehnologija bušenja II 1. Vežba V - 1 Tehnologija bušenja II Slide 1 of 44 Algebra i trigonometrija V - 1 Tehnologija bušenja II Slide 2 of 44 Jednačine Pitanje: Ako je a = 3b

Διαβάστε περισσότερα

Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija. Dokaz: Neka su A i A B tautologije.

Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija. Dokaz: Neka su A i A B tautologije. Svojstva tautologija Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija i formula B. Dokaz: Neka su A i A B tautologije. Pretpostavimo da B nije tautologija. Tada postoji valuacija v

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

MIKRO-NANO FLUIDIKA 8. UVOD U ELEKTROHEMIJU

MIKRO-NANO FLUIDIKA 8. UVOD U ELEKTROHEMIJU MIKRO-NANO FLUIDIKA Handout 4 2012/2013 8. UVOD U ELEKTROHEMIJU Elektrohemija je grana hemije koja proučava hemijske reakcije koje se dešavaju na granici izmeďu električnog provodnika (metalne, poluprovodničke

Διαβάστε περισσότερα

2.1 Kinematika jednodimenzionog kretanja

2.1 Kinematika jednodimenzionog kretanja Glava 2 Kinematika Gde god da pogledamo oko nas, možemo da uočimo tela u kretanju (u fizici je uobičajeno a se kaže u stanju kretanja ). Čak i kada smo u stanju mirovanja, naše srce kuca i na taj način

Διαβάστε περισσότερα

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Prva tačka u ispitivanju toka unkcije je odredjivanje oblasti deinisanosti, u oznaci Pre nego što krenete sa proučavanjem ovog ajla, obavezno pogledajte ajl ELEMENTARNE

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ - ΔΕΣΜΟΙ

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ - ΔΕΣΜΟΙ 2 ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ - ΔΕΣΜΟΙ ΠΕΡΙΕΧΟΜΕΝΑ 2.1 Ηλεκτρονική δομή των ατόμων 2.2 Κατάταξη των στοιχείων (Περιοδικός Πίνακας). Χρησιμότητα του Περιοδικού Πίνακα 2.3 Γενικά για το χημικό δεσμό- Παράγοντες που

Διαβάστε περισσότερα

Računske vežbe iz Fizike

Računske vežbe iz Fizike Računske vežbe iz Fizike Praktikum Decembar 2009 Mašinski Fakultet Kraljevo Zlatan Šoškić Predgovor Ovaj praktikum je zamišljen kao pomoćni materijal koji se koristi u nastavi predmeta Fizika na Mašinskom

Διαβάστε περισσότερα

Algebarske strukture

Algebarske strukture i operacije Univerzitet u Nišu Prirodno Matematički Fakultet februar 2010 Istraživačka stanica Petnica i operacije Operacije Šta je to algebra i apstraktna algebra? Šta je to algebarska struktura? Cemu

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

Induktivno spregnuta kola

Induktivno spregnuta kola Induktivno spregnuta kola 13. januar 2016 Transformatori se koriste u elektroenergetskim sistemima za povišavanje i snižavanje napona, u elektronskim i komunikacionim kolima za promjenu napona i odvajanje

Διαβάστε περισσότερα

Chi-kvadrat test. Chi-kvadrat (χ2) test

Chi-kvadrat test. Chi-kvadrat (χ2) test 1 Chi-kvadrat test Chi-kvadrat (χ2) test Test za proporcije, porede se frekvence Neparametarski test Koriste se dihotomne varijable Proverava se veza između dva faktora Npr. tretmana i bolesti pola i smrtnosti

Διαβάστε περισσότερα

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom.

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom. RAVAN Ravan je osnovni pojam u geometiji i kao takav se ne definiše. Ravan je odeđena tačkom i nomalnim vektoom. nabc (,, ) π M ( x,, ) y z Da bi izveli jednačinu avni, poučimo sledeću sliku: n( A, B,

Διαβάστε περισσότερα

Racionalni algebarski izrazi

Racionalni algebarski izrazi . Skratimo razlomak Racionalni algebarski izrazi [MM.4-()6] 5 + 6 +. Ako je a + b + c = dokazati da je a + b + c = abc [MM.4-()] 5 6 5. Reši jednačinu: y y y + + = 7 4 y = [MM.4-(4)] 4. Reši jednačinu:

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija Sadržaj: Nizovi brojeva Pojam niza Limes niza. Konvergentni nizovi Neki važni nizovi. Broj e. Limes funkcije Definicija esa Računanje esa Jednostrani esi Neprekinute funkcije i esi Definicija neprekinute

Διαβάστε περισσότερα

ΣΕΡΒΙΚΗ ΓΛΩΣΣΑ IV. Ενότητα 3: Αντωνυμίες (Zamenice) Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών

ΣΕΡΒΙΚΗ ΓΛΩΣΣΑ IV. Ενότητα 3: Αντωνυμίες (Zamenice) Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών Ενότητα 3: Αντωνυμίες (Zamenice) Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

LABORATORIJSKE VEŽBE IZ FIZIKE

LABORATORIJSKE VEŽBE IZ FIZIKE LABORATORIJSKE VEŽBE IZ FIZIKE Ime i prezime: Broj indeksa: UPUTSTVO ZA IZRADU LABORATORIJSKIH VEŽBI IZ FIZIKE. Pre početka sa radom pažljivo se upoznati sa napomenama iz ovog uputstva!. Na početku opisa

Διαβάστε περισσότερα

Rad, energija, snaga. Glava Rad

Rad, energija, snaga. Glava Rad Glava 4 Rad, energija, snaga Pojam energije je jedan od najvažnijih u nauci i tehnici ali se koristi i u svakodnevnom životu. U našoj svakodnevnici taj pojam se obično odnosi na gorivo za pokretanje automobila

Διαβάστε περισσότερα

AKTIVNI I REAKTIVNI OTPORI U KOLU NAIZMJENIČNE STRUJE

AKTIVNI I REAKTIVNI OTPORI U KOLU NAIZMJENIČNE STRUJE MJEŠOVITA SREDNJA TEHNIČKA ŠKOLA TRAVNIK AKTIVNI I REAKTIVNI OTPORI U KOLU NAIZMJENIČNE STRUJE Električna kola Profesor: mr. Selmir Gajip, dipl. ing. el. Travnik, februar 2014. Osnovni pojmovi- naizmjenična

Διαβάστε περισσότερα

OSNOVI ELEKTROTEHNIKE I ELEKTRIČNIH MAŠINA

OSNOVI ELEKTROTEHNIKE I ELEKTRIČNIH MAŠINA Tihomir Latinović Miroslav Prša Tihomir Latinović, Miroslav Prša OSNOVI ELEKTROTEHNIKE I ELEKTRIČNIH MAŠINA Banja Luka, 2013. 1 Osnovi elektrotehnike i električnih mašina Biblioteka: INFORMACIONE TEHNOLOGIJE

Διαβάστε περισσότερα

POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, Vladimir Balti

POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, Vladimir Balti POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, 004. Vladimir Balti Pojam polinoma. Prsten polinoma.. Dati su polinomi P (x) = x + x +, Q(x) = x 4 x +, R(x) = x x +. Proveriti da li za

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo.

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo. Kompleksni brojevi Algebarski oblik kompleksnog broja je z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo Trigonometrijski oblik kompleksnog broja je z = rcos θ + i sin θ,

Διαβάστε περισσότερα

Termofizika. Glava Temperatura

Termofizika. Glava Temperatura Glava 7 Termofizika Toplota je jedan od oblika energije sa čijim transferom sa tela na telo se svakodnevno srećemo. Tako nas na primer, leti Sunce zagreva tokom dana dok su vedre letnje noći često prilično

Διαβάστε περισσότερα

BIOGENI ELEMENTI (BIOELEMENTI)

BIOGENI ELEMENTI (BIOELEMENTI) BIOGENI ELEMENTI (BIOELEMENTI) IAKO BIOMOLEKULI SAČINJAVANJU SVA ŽIVA BIĆA ONI SAMI SU NAČINJENI OD MALOG BROJA HEMIJSKIH ELEMENATA -BIOGENI ELEMENTI- C, H, O, N, P i S čine 99% mase ćelija-najvažniji

Διαβάστε περισσότερα

Atmosfera. Glava Nastanak planetarne atmosfere Nastanak Sunčevog sistema

Atmosfera. Glava Nastanak planetarne atmosfere Nastanak Sunčevog sistema Glava 1 Atmosfera 1.1 Nastanak planetarne atmosfere Atmosfera 1 Zemlje je relativno tanak sferni gasoviti omotač koji gravitacija drži uz Zemlju. U postupku analize Zemljine atmosfere i ljudskog uticaja

Διαβάστε περισσότερα

BIOGENI ELEMENTI (BIOELEMENTI)

BIOGENI ELEMENTI (BIOELEMENTI) BIOGENI ELEMENTI (BIOELEMENTI) IAKO BIOMOLEKULI SAČINJAVANJU SVA ŽIVA BIĆA ONI SAMI SU NAČINJENI OD MALOG BROJA HEMIJSKIH ELEMENATA -BIOGENI ELEMENTI BILJAKA- Makroelementi: C, H, O, N, P i S čine 99%

Διαβάστε περισσότερα

Αλληλεπίδραση ακτίνων-χ με την ύλη

Αλληλεπίδραση ακτίνων-χ με την ύλη Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων

Διαβάστε περισσότερα

Str

Str Str. Testiranje statističkih hipoteza Predavač: Dr Mirko Savić savicmirko@ef.uns.ac.rs www.ef.uns.ac.rs Definicija: Hipoteza predstavlja pretpostavku koja je zasnovana na određenim činjenicama (najčešće

Διαβάστε περισσότερα

MERENJE, GREŠKE MERENJA I OBRADA REZULTATA MERENJA

MERENJE, GREŠKE MERENJA I OBRADA REZULTATA MERENJA MERENJE, GREŠKE MERENJA I OBRADA REZULTATA MERENJA 1 Merenje Svaki eksperimentalni rad u fizici praćen je merenjem neke fizičke veličine. Izmeriti neku fizičku veličinu znači uporediti je sa standardnom

Διαβάστε περισσότερα

NAIZMENIČNE STRUJE POTREBNE FORMULE: Trenutna vrednost ems naizmeničnog izvora: e(t) = E max sin(ωt + θ)

NAIZMENIČNE STRUJE POTREBNE FORMULE: Trenutna vrednost ems naizmeničnog izvora: e(t) = E max sin(ωt + θ) NAIZMENIČNE STRUJE POTREBNE FORMULE: Trenutna vrednost ems naizmeničnog izvora: e(t) = E max sin(ωt + θ) Trenutna vrednost naizmeničnog napona: u(t) = U max sin(ωt + θ) Trenutna vrednost naizmenične struje:

Διαβάστε περισσότερα

Okular cilindar koji u sebi ima dvije ili više leća kako bi slika bila u fokusu. Okulari se mogu mijenjati ovisno o povećanju (2x, 5x i 10x).

Okular cilindar koji u sebi ima dvije ili više leća kako bi slika bila u fokusu. Okulari se mogu mijenjati ovisno o povećanju (2x, 5x i 10x). 3. Kako "vidjeti" nanostrukture Nužan preduvjet za razvoj nanotehnologije bila je pojava novih moćnih mikroskopa koji su omogućili promatranje i manipuliranje predmetima na udaljenosti od 1 nm. Kad govorimo

Διαβάστε περισσότερα

Dekompozicija DFT. Brzi algoritmi na bazi radix-2. Brza Furijeova transofrmacija. Tačnost izračunavanja. Kompleksna FFT OASDSP 1: 7 FFT

Dekompozicija DFT. Brzi algoritmi na bazi radix-2. Brza Furijeova transofrmacija. Tačnost izračunavanja. Kompleksna FFT OASDSP 1: 7 FFT OASDSP : 7 FFT Dkompozicija DFT Brzi algoritmi a bazi radix- Brza Furijova trasofrmacija Tačost izračuavaja Komplksa FFT ovi Sad, Oktobar 5 straa OASDSP : 7 FFT Brza trasformacija : itrativa dkompozicija

Διαβάστε περισσότερα

LABORATORIJSKE VEŽBE IZ FIZIKE. za generaciju 2013/14.

LABORATORIJSKE VEŽBE IZ FIZIKE. za generaciju 2013/14. LABORATORIJSKE VEŽBE IZ FIZIKE za generaciju 03/4. UNIVERZITET U NIŠU UPUTSTVO ZA IZRADU LABORATORIJSKIH VEŽBI IZ FIZIKE. Pre početka rada pažljivo se upoznati sa napomenama iz ovog uputstva!. Na početku

Διαβάστε περισσότερα

RASTVORLJIVOST LEKOVA

RASTVORLJIVOST LEKOVA FIZIČK-HEMIJSKA KARAKTERIZACIJA LEKVA RASTVRLJIVST LEKVA Rastvorljivost leka u GIT-u Portalna vena Krvna plazma Enterociti Aktivni transport Tableta Raspadanje tablete Pasivna difuzija Rastvaranje Lek

Διαβάστε περισσότερα

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa: Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

MERE DISPERZIJE ( VARIJABILNOSTI )

MERE DISPERZIJE ( VARIJABILNOSTI ) MERE DISPERZIJE ( VARIJABILNOSTI ) 1. RASPON VARIJACIJE 2.KVARTILNO ODSTUPANJE 3.PROSEČNO ODSTUPANJE 4.STANDARDNA DEVIJACIJA 5.KORELACIJA 6.STATISTIČKI POSTUPCI PRI BAŽDARENJU MERE DISPERZIJE Pokazatelji

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

Vektorski prostori. Vektorski prostor

Vektorski prostori. Vektorski prostor Vektorski prostori Vektorski prostor Neka je X neprazan skup i (K, +, ) polje. Skup X je vektorski ili linearni prostor nad poljem skalara K ako ima sledeću strukturu: (1) Definisana je operacija + u skupu

Διαβάστε περισσότερα

Teorija kodiranja. Hamingov kod i njegova definicija

Teorija kodiranja. Hamingov kod i njegova definicija Teorija kodiranja. Hamingov kod i njegova definicija Erna Oklapi Gimnazija Novi Pazar ernaoklapii@yahoo.com Sanela Numanović Gimnazija Kruševac sanelanumanovic@yahoo.com Rezime U ovom radu predstavljen

Διαβάστε περισσότερα

5.1 Njutnov zakon univerzalne gravitacije

5.1 Njutnov zakon univerzalne gravitacije Glava 5 Gravitacija Orbitiranje prirodnih i veštačkih satelita oko Zemlje, planeta oko Sunca, fenomen plime i oseke, prenos toplote strujanjem fluida, visoka temperatura unutrašnjosti planeta, padanje

Διαβάστε περισσότερα

NAIZMENIČNA STRUJA koristiti kao dopunu udžbenika

NAIZMENIČNA STRUJA koristiti kao dopunu udžbenika NAIZMENIČNA STRUJA koristiti kao dopunu udžbenika 1 Da bude jasno na samom početku : Tesla nije izmislio struju jer je ona bila poznata ljudima pre nogo što je Tesla ušao u svet nauke. Njegov doprinos

Διαβάστε περισσότερα

2. METODE RJEŠAVANJA STRUJNIH KRUGOVA ISTOSMJERNE STRUJE

2. METODE RJEŠAVANJA STRUJNIH KRUGOVA ISTOSMJERNE STRUJE 2. METOE RJEŠVNJ STRUJNH KRUGOV STOSMJERNE STRUJE U svrhu lakšeg snalaženja u analizi složenih strujnih krugova i električnih mreža uvode se nazivi za pojedine dijelove mreže. Onaj dio električne mreže

Διαβάστε περισσότερα

Univerzitet u Nišu Građevinsko-arhitektonski fakultet. Konstante, promenljive, identifikatori, operatori Biblioteka funkcija Milica Ćirić

Univerzitet u Nišu Građevinsko-arhitektonski fakultet. Konstante, promenljive, identifikatori, operatori Biblioteka funkcija Milica Ćirić Univerzitet u Nišu Građevinsko-arhitektonski fakultet Informatika 2 Mathematica Konstante, promenljive, identifikatori, operatori Biblioteka funkcija Milica Ćirić Mathematica Programski paket Mathematica

Διαβάστε περισσότερα

Karakterizacija kontinualnih sistema u prelaznom režimu

Karakterizacija kontinualnih sistema u prelaznom režimu Karakterizacija kontinualnih sistema u prelaznom režimu Postoji veći broj parametara koji karakterišu ponašanje sistema u prelaznom režimu. Ovi parametri pripadaju različitim prostorima u kojima se sistemi

Διαβάστε περισσότερα

Dr Miodrag Popović. Osnovi elektronike. za studente Odseka za softversko inženjerstvo. Elektrotehnički fakultet Beograd, 2006.

Dr Miodrag Popović. Osnovi elektronike. za studente Odseka za softversko inženjerstvo. Elektrotehnički fakultet Beograd, 2006. Dr Miodrag Popović Osnovi elektronike za studente Odseka za softversko inženjerstvo Elektrotehnički fakultet Beograd, 2006. Sadržaj 1. UOD... 1 1.1 Šta je to elektrotehnika?... 1 1.2 Oblasti elektrotehnike:...

Διαβάστε περισσότερα

LABORATORIJSKI PRAKTIKUM - FIZIKA. za generaciju 2015/16.

LABORATORIJSKI PRAKTIKUM - FIZIKA. za generaciju 2015/16. LABORATORIJSKI PRAKTIKUM - FIZIKA za generaciju 015/16. SPISAK LABORATORIJSKIH VEŽBI IZ FIZIKE 1. VEŽBA - a) Određivanje ubrzanja Zemljine teže pomoću matematičkog klatna b) Određivanje Jungovog modula

Διαβάστε περισσότερα

PRSKALICA - LELA 12 L / LELA16 L

PRSKALICA - LELA 12 L / LELA16 L PRSKALICA - LELA 12 L / LELA16 L UPUTSTVO ZA UPOTREBU 1 Prskalica je pogodna za raspršivanje materija kao sto su : insekticidi, fungicidi i sredstva za tretiranje semena. Uredjaj je namenjen za kućnu,

Διαβάστε περισσότερα

POJAVE NA GRANICAMA FAZA ADSORPCIJA

POJAVE NA GRANICAMA FAZA ADSORPCIJA POJAVE NA GRANICAMA FAZA ADSORPCIJA Šta je adsorpcija na granici tečne faze Adsorpcija je povećanje ili smanjenje koncentracije rastvorka u graničnom nom sloju u odnosu na unutrašnjost njost rastvora.

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα

Διαβάστε περισσότερα

Μάθημα 12ο. O Περιοδικός Πίνακας Και το περιεχόμενό του

Μάθημα 12ο. O Περιοδικός Πίνακας Και το περιεχόμενό του Μάθημα 12ο O Περιοδικός Πίνακας Και το περιεχόμενό του Γενική και Ανόργανη Χημεία 201-17 2 Η χημεία ΠΠΠ (= προ περιοδικού πίνακα) μαύρο χάλι από αταξία της πληροφορίας!!! Καμμία οργάνωση των στοιχείων.

Διαβάστε περισσότερα

PRAVILNIK O DETEKTORIMA JONIZUJUĆEG ZRAČENJA. ("Sl. glasnik RS", br. 4/2017) Član 1

PRAVILNIK O DETEKTORIMA JONIZUJUĆEG ZRAČENJA. (Sl. glasnik RS, br. 4/2017) Član 1 Preuzeto iz elektronske pravne baze Paragraf Lex izvor: www.paragraf.rs Informacije o izmenama, dopunama, važenju, prethodnim verzijama ili napomenama propisa, kao i o drugim dokumentima koji su relacijski

Διαβάστε περισσότερα

Preuzeto iz elektronske pravne baze Paragraf Lex

Preuzeto iz elektronske pravne baze Paragraf Lex www.paragraf.rs Preuzeto iz elektronske pravne baze Paragraf Lex Ukoliko ovaj propis niste preuzeli sa Paragrafovog sajta ili niste sigurni da li je u pitanju važeća verzija propisa, poslednju verziju

Διαβάστε περισσότερα

O SKUPOVIMA. Do pojma skupa može se vrlo lako doći empirijskim putem, posmatrajući razne grupe,

O SKUPOVIMA. Do pojma skupa može se vrlo lako doći empirijskim putem, posmatrajući razne grupe, O SKUPOVIM Do pojma skupa može se vrlo lako doći empirijskim putem, posmatrajući razne grupe, skupine, mnoštva neke vrste objekata, stvari, živih bića i dr. Tako imamo skup stanovnika nekog grada, skup

Διαβάστε περισσότερα